diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 13:15:26 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 13:15:26 +0000 |
commit | 82539ad8d59729fb45b0bb0edda8f2bddb719eb1 (patch) | |
tree | 58f0b58e6f44f0e04d4a6373132cf426fa835fa7 /src/crypto/cipher/gcm.go | |
parent | Initial commit. (diff) | |
download | golang-1.17-upstream.tar.xz golang-1.17-upstream.zip |
Adding upstream version 1.17.13.upstream/1.17.13upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | src/crypto/cipher/gcm.go | 426 |
1 files changed, 426 insertions, 0 deletions
diff --git a/src/crypto/cipher/gcm.go b/src/crypto/cipher/gcm.go new file mode 100644 index 0000000..ba0af84 --- /dev/null +++ b/src/crypto/cipher/gcm.go @@ -0,0 +1,426 @@ +// Copyright 2013 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package cipher + +import ( + subtleoverlap "crypto/internal/subtle" + "crypto/subtle" + "encoding/binary" + "errors" +) + +// AEAD is a cipher mode providing authenticated encryption with associated +// data. For a description of the methodology, see +// https://en.wikipedia.org/wiki/Authenticated_encryption +type AEAD interface { + // NonceSize returns the size of the nonce that must be passed to Seal + // and Open. + NonceSize() int + + // Overhead returns the maximum difference between the lengths of a + // plaintext and its ciphertext. + Overhead() int + + // Seal encrypts and authenticates plaintext, authenticates the + // additional data and appends the result to dst, returning the updated + // slice. The nonce must be NonceSize() bytes long and unique for all + // time, for a given key. + // + // To reuse plaintext's storage for the encrypted output, use plaintext[:0] + // as dst. Otherwise, the remaining capacity of dst must not overlap plaintext. + Seal(dst, nonce, plaintext, additionalData []byte) []byte + + // Open decrypts and authenticates ciphertext, authenticates the + // additional data and, if successful, appends the resulting plaintext + // to dst, returning the updated slice. The nonce must be NonceSize() + // bytes long and both it and the additional data must match the + // value passed to Seal. + // + // To reuse ciphertext's storage for the decrypted output, use ciphertext[:0] + // as dst. Otherwise, the remaining capacity of dst must not overlap plaintext. + // + // Even if the function fails, the contents of dst, up to its capacity, + // may be overwritten. + Open(dst, nonce, ciphertext, additionalData []byte) ([]byte, error) +} + +// gcmAble is an interface implemented by ciphers that have a specific optimized +// implementation of GCM, like crypto/aes. NewGCM will check for this interface +// and return the specific AEAD if found. +type gcmAble interface { + NewGCM(nonceSize, tagSize int) (AEAD, error) +} + +// gcmFieldElement represents a value in GF(2¹²⁸). In order to reflect the GCM +// standard and make binary.BigEndian suitable for marshaling these values, the +// bits are stored in big endian order. For example: +// the coefficient of x⁰ can be obtained by v.low >> 63. +// the coefficient of x⁶³ can be obtained by v.low & 1. +// the coefficient of x⁶⁴ can be obtained by v.high >> 63. +// the coefficient of x¹²⁷ can be obtained by v.high & 1. +type gcmFieldElement struct { + low, high uint64 +} + +// gcm represents a Galois Counter Mode with a specific key. See +// https://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf +type gcm struct { + cipher Block + nonceSize int + tagSize int + // productTable contains the first sixteen powers of the key, H. + // However, they are in bit reversed order. See NewGCMWithNonceSize. + productTable [16]gcmFieldElement +} + +// NewGCM returns the given 128-bit, block cipher wrapped in Galois Counter Mode +// with the standard nonce length. +// +// In general, the GHASH operation performed by this implementation of GCM is not constant-time. +// An exception is when the underlying Block was created by aes.NewCipher +// on systems with hardware support for AES. See the crypto/aes package documentation for details. +func NewGCM(cipher Block) (AEAD, error) { + return newGCMWithNonceAndTagSize(cipher, gcmStandardNonceSize, gcmTagSize) +} + +// NewGCMWithNonceSize returns the given 128-bit, block cipher wrapped in Galois +// Counter Mode, which accepts nonces of the given length. The length must not +// be zero. +// +// Only use this function if you require compatibility with an existing +// cryptosystem that uses non-standard nonce lengths. All other users should use +// NewGCM, which is faster and more resistant to misuse. +func NewGCMWithNonceSize(cipher Block, size int) (AEAD, error) { + return newGCMWithNonceAndTagSize(cipher, size, gcmTagSize) +} + +// NewGCMWithTagSize returns the given 128-bit, block cipher wrapped in Galois +// Counter Mode, which generates tags with the given length. +// +// Tag sizes between 12 and 16 bytes are allowed. +// +// Only use this function if you require compatibility with an existing +// cryptosystem that uses non-standard tag lengths. All other users should use +// NewGCM, which is more resistant to misuse. +func NewGCMWithTagSize(cipher Block, tagSize int) (AEAD, error) { + return newGCMWithNonceAndTagSize(cipher, gcmStandardNonceSize, tagSize) +} + +func newGCMWithNonceAndTagSize(cipher Block, nonceSize, tagSize int) (AEAD, error) { + if tagSize < gcmMinimumTagSize || tagSize > gcmBlockSize { + return nil, errors.New("cipher: incorrect tag size given to GCM") + } + + if nonceSize <= 0 { + return nil, errors.New("cipher: the nonce can't have zero length, or the security of the key will be immediately compromised") + } + + if cipher, ok := cipher.(gcmAble); ok { + return cipher.NewGCM(nonceSize, tagSize) + } + + if cipher.BlockSize() != gcmBlockSize { + return nil, errors.New("cipher: NewGCM requires 128-bit block cipher") + } + + var key [gcmBlockSize]byte + cipher.Encrypt(key[:], key[:]) + + g := &gcm{cipher: cipher, nonceSize: nonceSize, tagSize: tagSize} + + // We precompute 16 multiples of |key|. However, when we do lookups + // into this table we'll be using bits from a field element and + // therefore the bits will be in the reverse order. So normally one + // would expect, say, 4*key to be in index 4 of the table but due to + // this bit ordering it will actually be in index 0010 (base 2) = 2. + x := gcmFieldElement{ + binary.BigEndian.Uint64(key[:8]), + binary.BigEndian.Uint64(key[8:]), + } + g.productTable[reverseBits(1)] = x + + for i := 2; i < 16; i += 2 { + g.productTable[reverseBits(i)] = gcmDouble(&g.productTable[reverseBits(i/2)]) + g.productTable[reverseBits(i+1)] = gcmAdd(&g.productTable[reverseBits(i)], &x) + } + + return g, nil +} + +const ( + gcmBlockSize = 16 + gcmTagSize = 16 + gcmMinimumTagSize = 12 // NIST SP 800-38D recommends tags with 12 or more bytes. + gcmStandardNonceSize = 12 +) + +func (g *gcm) NonceSize() int { + return g.nonceSize +} + +func (g *gcm) Overhead() int { + return g.tagSize +} + +func (g *gcm) Seal(dst, nonce, plaintext, data []byte) []byte { + if len(nonce) != g.nonceSize { + panic("crypto/cipher: incorrect nonce length given to GCM") + } + if uint64(len(plaintext)) > ((1<<32)-2)*uint64(g.cipher.BlockSize()) { + panic("crypto/cipher: message too large for GCM") + } + + ret, out := sliceForAppend(dst, len(plaintext)+g.tagSize) + if subtleoverlap.InexactOverlap(out, plaintext) { + panic("crypto/cipher: invalid buffer overlap") + } + + var counter, tagMask [gcmBlockSize]byte + g.deriveCounter(&counter, nonce) + + g.cipher.Encrypt(tagMask[:], counter[:]) + gcmInc32(&counter) + + g.counterCrypt(out, plaintext, &counter) + + var tag [gcmTagSize]byte + g.auth(tag[:], out[:len(plaintext)], data, &tagMask) + copy(out[len(plaintext):], tag[:]) + + return ret +} + +var errOpen = errors.New("cipher: message authentication failed") + +func (g *gcm) Open(dst, nonce, ciphertext, data []byte) ([]byte, error) { + if len(nonce) != g.nonceSize { + panic("crypto/cipher: incorrect nonce length given to GCM") + } + // Sanity check to prevent the authentication from always succeeding if an implementation + // leaves tagSize uninitialized, for example. + if g.tagSize < gcmMinimumTagSize { + panic("crypto/cipher: incorrect GCM tag size") + } + + if len(ciphertext) < g.tagSize { + return nil, errOpen + } + if uint64(len(ciphertext)) > ((1<<32)-2)*uint64(g.cipher.BlockSize())+uint64(g.tagSize) { + return nil, errOpen + } + + tag := ciphertext[len(ciphertext)-g.tagSize:] + ciphertext = ciphertext[:len(ciphertext)-g.tagSize] + + var counter, tagMask [gcmBlockSize]byte + g.deriveCounter(&counter, nonce) + + g.cipher.Encrypt(tagMask[:], counter[:]) + gcmInc32(&counter) + + var expectedTag [gcmTagSize]byte + g.auth(expectedTag[:], ciphertext, data, &tagMask) + + ret, out := sliceForAppend(dst, len(ciphertext)) + if subtleoverlap.InexactOverlap(out, ciphertext) { + panic("crypto/cipher: invalid buffer overlap") + } + + if subtle.ConstantTimeCompare(expectedTag[:g.tagSize], tag) != 1 { + // The AESNI code decrypts and authenticates concurrently, and + // so overwrites dst in the event of a tag mismatch. That + // behavior is mimicked here in order to be consistent across + // platforms. + for i := range out { + out[i] = 0 + } + return nil, errOpen + } + + g.counterCrypt(out, ciphertext, &counter) + + return ret, nil +} + +// reverseBits reverses the order of the bits of 4-bit number in i. +func reverseBits(i int) int { + i = ((i << 2) & 0xc) | ((i >> 2) & 0x3) + i = ((i << 1) & 0xa) | ((i >> 1) & 0x5) + return i +} + +// gcmAdd adds two elements of GF(2¹²⁸) and returns the sum. +func gcmAdd(x, y *gcmFieldElement) gcmFieldElement { + // Addition in a characteristic 2 field is just XOR. + return gcmFieldElement{x.low ^ y.low, x.high ^ y.high} +} + +// gcmDouble returns the result of doubling an element of GF(2¹²⁸). +func gcmDouble(x *gcmFieldElement) (double gcmFieldElement) { + msbSet := x.high&1 == 1 + + // Because of the bit-ordering, doubling is actually a right shift. + double.high = x.high >> 1 + double.high |= x.low << 63 + double.low = x.low >> 1 + + // If the most-significant bit was set before shifting then it, + // conceptually, becomes a term of x^128. This is greater than the + // irreducible polynomial so the result has to be reduced. The + // irreducible polynomial is 1+x+x^2+x^7+x^128. We can subtract that to + // eliminate the term at x^128 which also means subtracting the other + // four terms. In characteristic 2 fields, subtraction == addition == + // XOR. + if msbSet { + double.low ^= 0xe100000000000000 + } + + return +} + +var gcmReductionTable = []uint16{ + 0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0, + 0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0, +} + +// mul sets y to y*H, where H is the GCM key, fixed during NewGCMWithNonceSize. +func (g *gcm) mul(y *gcmFieldElement) { + var z gcmFieldElement + + for i := 0; i < 2; i++ { + word := y.high + if i == 1 { + word = y.low + } + + // Multiplication works by multiplying z by 16 and adding in + // one of the precomputed multiples of H. + for j := 0; j < 64; j += 4 { + msw := z.high & 0xf + z.high >>= 4 + z.high |= z.low << 60 + z.low >>= 4 + z.low ^= uint64(gcmReductionTable[msw]) << 48 + + // the values in |table| are ordered for + // little-endian bit positions. See the comment + // in NewGCMWithNonceSize. + t := &g.productTable[word&0xf] + + z.low ^= t.low + z.high ^= t.high + word >>= 4 + } + } + + *y = z +} + +// updateBlocks extends y with more polynomial terms from blocks, based on +// Horner's rule. There must be a multiple of gcmBlockSize bytes in blocks. +func (g *gcm) updateBlocks(y *gcmFieldElement, blocks []byte) { + for len(blocks) > 0 { + y.low ^= binary.BigEndian.Uint64(blocks) + y.high ^= binary.BigEndian.Uint64(blocks[8:]) + g.mul(y) + blocks = blocks[gcmBlockSize:] + } +} + +// update extends y with more polynomial terms from data. If data is not a +// multiple of gcmBlockSize bytes long then the remainder is zero padded. +func (g *gcm) update(y *gcmFieldElement, data []byte) { + fullBlocks := (len(data) >> 4) << 4 + g.updateBlocks(y, data[:fullBlocks]) + + if len(data) != fullBlocks { + var partialBlock [gcmBlockSize]byte + copy(partialBlock[:], data[fullBlocks:]) + g.updateBlocks(y, partialBlock[:]) + } +} + +// gcmInc32 treats the final four bytes of counterBlock as a big-endian value +// and increments it. +func gcmInc32(counterBlock *[16]byte) { + ctr := counterBlock[len(counterBlock)-4:] + binary.BigEndian.PutUint32(ctr, binary.BigEndian.Uint32(ctr)+1) +} + +// sliceForAppend takes a slice and a requested number of bytes. It returns a +// slice with the contents of the given slice followed by that many bytes and a +// second slice that aliases into it and contains only the extra bytes. If the +// original slice has sufficient capacity then no allocation is performed. +func sliceForAppend(in []byte, n int) (head, tail []byte) { + if total := len(in) + n; cap(in) >= total { + head = in[:total] + } else { + head = make([]byte, total) + copy(head, in) + } + tail = head[len(in):] + return +} + +// counterCrypt crypts in to out using g.cipher in counter mode. +func (g *gcm) counterCrypt(out, in []byte, counter *[gcmBlockSize]byte) { + var mask [gcmBlockSize]byte + + for len(in) >= gcmBlockSize { + g.cipher.Encrypt(mask[:], counter[:]) + gcmInc32(counter) + + xorWords(out, in, mask[:]) + out = out[gcmBlockSize:] + in = in[gcmBlockSize:] + } + + if len(in) > 0 { + g.cipher.Encrypt(mask[:], counter[:]) + gcmInc32(counter) + xorBytes(out, in, mask[:]) + } +} + +// deriveCounter computes the initial GCM counter state from the given nonce. +// See NIST SP 800-38D, section 7.1. This assumes that counter is filled with +// zeros on entry. +func (g *gcm) deriveCounter(counter *[gcmBlockSize]byte, nonce []byte) { + // GCM has two modes of operation with respect to the initial counter + // state: a "fast path" for 96-bit (12-byte) nonces, and a "slow path" + // for nonces of other lengths. For a 96-bit nonce, the nonce, along + // with a four-byte big-endian counter starting at one, is used + // directly as the starting counter. For other nonce sizes, the counter + // is computed by passing it through the GHASH function. + if len(nonce) == gcmStandardNonceSize { + copy(counter[:], nonce) + counter[gcmBlockSize-1] = 1 + } else { + var y gcmFieldElement + g.update(&y, nonce) + y.high ^= uint64(len(nonce)) * 8 + g.mul(&y) + binary.BigEndian.PutUint64(counter[:8], y.low) + binary.BigEndian.PutUint64(counter[8:], y.high) + } +} + +// auth calculates GHASH(ciphertext, additionalData), masks the result with +// tagMask and writes the result to out. +func (g *gcm) auth(out, ciphertext, additionalData []byte, tagMask *[gcmTagSize]byte) { + var y gcmFieldElement + g.update(&y, additionalData) + g.update(&y, ciphertext) + + y.low ^= uint64(len(additionalData)) * 8 + y.high ^= uint64(len(ciphertext)) * 8 + + g.mul(&y) + + binary.BigEndian.PutUint64(out, y.low) + binary.BigEndian.PutUint64(out[8:], y.high) + + xorWords(out, out, tagMask[:]) +} |