diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 13:15:26 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 13:15:26 +0000 |
commit | 82539ad8d59729fb45b0bb0edda8f2bddb719eb1 (patch) | |
tree | 58f0b58e6f44f0e04d4a6373132cf426fa835fa7 /src/image/draw/draw.go | |
parent | Initial commit. (diff) | |
download | golang-1.17-82539ad8d59729fb45b0bb0edda8f2bddb719eb1.tar.xz golang-1.17-82539ad8d59729fb45b0bb0edda8f2bddb719eb1.zip |
Adding upstream version 1.17.13.upstream/1.17.13upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/image/draw/draw.go')
-rw-r--r-- | src/image/draw/draw.go | 730 |
1 files changed, 730 insertions, 0 deletions
diff --git a/src/image/draw/draw.go b/src/image/draw/draw.go new file mode 100644 index 0000000..13f6668 --- /dev/null +++ b/src/image/draw/draw.go @@ -0,0 +1,730 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package draw provides image composition functions. +// +// See "The Go image/draw package" for an introduction to this package: +// https://golang.org/doc/articles/image_draw.html +package draw + +import ( + "image" + "image/color" + "image/internal/imageutil" +) + +// m is the maximum color value returned by image.Color.RGBA. +const m = 1<<16 - 1 + +// Image is an image.Image with a Set method to change a single pixel. +type Image interface { + image.Image + Set(x, y int, c color.Color) +} + +// RGBA64Image extends both the Image and image.RGBA64Image interfaces with a +// SetRGBA64 method to change a single pixel. SetRGBA64 is equivalent to +// calling Set, but it can avoid allocations from converting concrete color +// types to the color.Color interface type. +type RGBA64Image interface { + image.RGBA64Image + Set(x, y int, c color.Color) + SetRGBA64(x, y int, c color.RGBA64) +} + +// Quantizer produces a palette for an image. +type Quantizer interface { + // Quantize appends up to cap(p) - len(p) colors to p and returns the + // updated palette suitable for converting m to a paletted image. + Quantize(p color.Palette, m image.Image) color.Palette +} + +// Op is a Porter-Duff compositing operator. +type Op int + +const ( + // Over specifies ``(src in mask) over dst''. + Over Op = iota + // Src specifies ``src in mask''. + Src +) + +// Draw implements the Drawer interface by calling the Draw function with this +// Op. +func (op Op) Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) { + DrawMask(dst, r, src, sp, nil, image.Point{}, op) +} + +// Drawer contains the Draw method. +type Drawer interface { + // Draw aligns r.Min in dst with sp in src and then replaces the + // rectangle r in dst with the result of drawing src on dst. + Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) +} + +// FloydSteinberg is a Drawer that is the Src Op with Floyd-Steinberg error +// diffusion. +var FloydSteinberg Drawer = floydSteinberg{} + +type floydSteinberg struct{} + +func (floydSteinberg) Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) { + clip(dst, &r, src, &sp, nil, nil) + if r.Empty() { + return + } + drawPaletted(dst, r, src, sp, true) +} + +// clip clips r against each image's bounds (after translating into the +// destination image's coordinate space) and shifts the points sp and mp by +// the same amount as the change in r.Min. +func clip(dst Image, r *image.Rectangle, src image.Image, sp *image.Point, mask image.Image, mp *image.Point) { + orig := r.Min + *r = r.Intersect(dst.Bounds()) + *r = r.Intersect(src.Bounds().Add(orig.Sub(*sp))) + if mask != nil { + *r = r.Intersect(mask.Bounds().Add(orig.Sub(*mp))) + } + dx := r.Min.X - orig.X + dy := r.Min.Y - orig.Y + if dx == 0 && dy == 0 { + return + } + sp.X += dx + sp.Y += dy + if mp != nil { + mp.X += dx + mp.Y += dy + } +} + +func processBackward(dst image.Image, r image.Rectangle, src image.Image, sp image.Point) bool { + return dst == src && + r.Overlaps(r.Add(sp.Sub(r.Min))) && + (sp.Y < r.Min.Y || (sp.Y == r.Min.Y && sp.X < r.Min.X)) +} + +// Draw calls DrawMask with a nil mask. +func Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point, op Op) { + DrawMask(dst, r, src, sp, nil, image.Point{}, op) +} + +// DrawMask aligns r.Min in dst with sp in src and mp in mask and then replaces the rectangle r +// in dst with the result of a Porter-Duff composition. A nil mask is treated as opaque. +func DrawMask(dst Image, r image.Rectangle, src image.Image, sp image.Point, mask image.Image, mp image.Point, op Op) { + clip(dst, &r, src, &sp, mask, &mp) + if r.Empty() { + return + } + + // Fast paths for special cases. If none of them apply, then we fall back to a general but slow implementation. + switch dst0 := dst.(type) { + case *image.RGBA: + if op == Over { + if mask == nil { + switch src0 := src.(type) { + case *image.Uniform: + sr, sg, sb, sa := src0.RGBA() + if sa == 0xffff { + drawFillSrc(dst0, r, sr, sg, sb, sa) + } else { + drawFillOver(dst0, r, sr, sg, sb, sa) + } + return + case *image.RGBA: + drawCopyOver(dst0, r, src0, sp) + return + case *image.NRGBA: + drawNRGBAOver(dst0, r, src0, sp) + return + case *image.YCbCr: + // An image.YCbCr is always fully opaque, and so if the + // mask is nil (i.e. fully opaque) then the op is + // effectively always Src. Similarly for image.Gray and + // image.CMYK. + if imageutil.DrawYCbCr(dst0, r, src0, sp) { + return + } + case *image.Gray: + drawGray(dst0, r, src0, sp) + return + case *image.CMYK: + drawCMYK(dst0, r, src0, sp) + return + } + } else if mask0, ok := mask.(*image.Alpha); ok { + switch src0 := src.(type) { + case *image.Uniform: + drawGlyphOver(dst0, r, src0, mask0, mp) + return + } + } + } else { + if mask == nil { + switch src0 := src.(type) { + case *image.Uniform: + sr, sg, sb, sa := src0.RGBA() + drawFillSrc(dst0, r, sr, sg, sb, sa) + return + case *image.RGBA: + drawCopySrc(dst0, r, src0, sp) + return + case *image.NRGBA: + drawNRGBASrc(dst0, r, src0, sp) + return + case *image.YCbCr: + if imageutil.DrawYCbCr(dst0, r, src0, sp) { + return + } + case *image.Gray: + drawGray(dst0, r, src0, sp) + return + case *image.CMYK: + drawCMYK(dst0, r, src0, sp) + return + } + } + } + drawRGBA(dst0, r, src, sp, mask, mp, op) + return + case *image.Paletted: + if op == Src && mask == nil { + if src0, ok := src.(*image.Uniform); ok { + colorIndex := uint8(dst0.Palette.Index(src0.C)) + i0 := dst0.PixOffset(r.Min.X, r.Min.Y) + i1 := i0 + r.Dx() + for i := i0; i < i1; i++ { + dst0.Pix[i] = colorIndex + } + firstRow := dst0.Pix[i0:i1] + for y := r.Min.Y + 1; y < r.Max.Y; y++ { + i0 += dst0.Stride + i1 += dst0.Stride + copy(dst0.Pix[i0:i1], firstRow) + } + return + } else if !processBackward(dst, r, src, sp) { + drawPaletted(dst0, r, src, sp, false) + return + } + } + } + + x0, x1, dx := r.Min.X, r.Max.X, 1 + y0, y1, dy := r.Min.Y, r.Max.Y, 1 + if processBackward(dst, r, src, sp) { + x0, x1, dx = x1-1, x0-1, -1 + y0, y1, dy = y1-1, y0-1, -1 + } + + var out color.RGBA64 + sy := sp.Y + y0 - r.Min.Y + my := mp.Y + y0 - r.Min.Y + for y := y0; y != y1; y, sy, my = y+dy, sy+dy, my+dy { + sx := sp.X + x0 - r.Min.X + mx := mp.X + x0 - r.Min.X + for x := x0; x != x1; x, sx, mx = x+dx, sx+dx, mx+dx { + ma := uint32(m) + if mask != nil { + _, _, _, ma = mask.At(mx, my).RGBA() + } + switch { + case ma == 0: + if op == Over { + // No-op. + } else { + dst.Set(x, y, color.Transparent) + } + case ma == m && op == Src: + dst.Set(x, y, src.At(sx, sy)) + default: + sr, sg, sb, sa := src.At(sx, sy).RGBA() + if op == Over { + dr, dg, db, da := dst.At(x, y).RGBA() + a := m - (sa * ma / m) + out.R = uint16((dr*a + sr*ma) / m) + out.G = uint16((dg*a + sg*ma) / m) + out.B = uint16((db*a + sb*ma) / m) + out.A = uint16((da*a + sa*ma) / m) + } else { + out.R = uint16(sr * ma / m) + out.G = uint16(sg * ma / m) + out.B = uint16(sb * ma / m) + out.A = uint16(sa * ma / m) + } + // The third argument is &out instead of out (and out is + // declared outside of the inner loop) to avoid the implicit + // conversion to color.Color here allocating memory in the + // inner loop if sizeof(color.RGBA64) > sizeof(uintptr). + dst.Set(x, y, &out) + } + } + } +} + +func drawFillOver(dst *image.RGBA, r image.Rectangle, sr, sg, sb, sa uint32) { + // The 0x101 is here for the same reason as in drawRGBA. + a := (m - sa) * 0x101 + i0 := dst.PixOffset(r.Min.X, r.Min.Y) + i1 := i0 + r.Dx()*4 + for y := r.Min.Y; y != r.Max.Y; y++ { + for i := i0; i < i1; i += 4 { + dr := &dst.Pix[i+0] + dg := &dst.Pix[i+1] + db := &dst.Pix[i+2] + da := &dst.Pix[i+3] + + *dr = uint8((uint32(*dr)*a/m + sr) >> 8) + *dg = uint8((uint32(*dg)*a/m + sg) >> 8) + *db = uint8((uint32(*db)*a/m + sb) >> 8) + *da = uint8((uint32(*da)*a/m + sa) >> 8) + } + i0 += dst.Stride + i1 += dst.Stride + } +} + +func drawFillSrc(dst *image.RGBA, r image.Rectangle, sr, sg, sb, sa uint32) { + sr8 := uint8(sr >> 8) + sg8 := uint8(sg >> 8) + sb8 := uint8(sb >> 8) + sa8 := uint8(sa >> 8) + // The built-in copy function is faster than a straightforward for loop to fill the destination with + // the color, but copy requires a slice source. We therefore use a for loop to fill the first row, and + // then use the first row as the slice source for the remaining rows. + i0 := dst.PixOffset(r.Min.X, r.Min.Y) + i1 := i0 + r.Dx()*4 + for i := i0; i < i1; i += 4 { + dst.Pix[i+0] = sr8 + dst.Pix[i+1] = sg8 + dst.Pix[i+2] = sb8 + dst.Pix[i+3] = sa8 + } + firstRow := dst.Pix[i0:i1] + for y := r.Min.Y + 1; y < r.Max.Y; y++ { + i0 += dst.Stride + i1 += dst.Stride + copy(dst.Pix[i0:i1], firstRow) + } +} + +func drawCopyOver(dst *image.RGBA, r image.Rectangle, src *image.RGBA, sp image.Point) { + dx, dy := r.Dx(), r.Dy() + d0 := dst.PixOffset(r.Min.X, r.Min.Y) + s0 := src.PixOffset(sp.X, sp.Y) + var ( + ddelta, sdelta int + i0, i1, idelta int + ) + if r.Min.Y < sp.Y || r.Min.Y == sp.Y && r.Min.X <= sp.X { + ddelta = dst.Stride + sdelta = src.Stride + i0, i1, idelta = 0, dx*4, +4 + } else { + // If the source start point is higher than the destination start point, or equal height but to the left, + // then we compose the rows in right-to-left, bottom-up order instead of left-to-right, top-down. + d0 += (dy - 1) * dst.Stride + s0 += (dy - 1) * src.Stride + ddelta = -dst.Stride + sdelta = -src.Stride + i0, i1, idelta = (dx-1)*4, -4, -4 + } + for ; dy > 0; dy-- { + dpix := dst.Pix[d0:] + spix := src.Pix[s0:] + for i := i0; i != i1; i += idelta { + s := spix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 + sr := uint32(s[0]) * 0x101 + sg := uint32(s[1]) * 0x101 + sb := uint32(s[2]) * 0x101 + sa := uint32(s[3]) * 0x101 + + // The 0x101 is here for the same reason as in drawRGBA. + a := (m - sa) * 0x101 + + d := dpix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 + d[0] = uint8((uint32(d[0])*a/m + sr) >> 8) + d[1] = uint8((uint32(d[1])*a/m + sg) >> 8) + d[2] = uint8((uint32(d[2])*a/m + sb) >> 8) + d[3] = uint8((uint32(d[3])*a/m + sa) >> 8) + } + d0 += ddelta + s0 += sdelta + } +} + +func drawCopySrc(dst *image.RGBA, r image.Rectangle, src *image.RGBA, sp image.Point) { + n, dy := 4*r.Dx(), r.Dy() + d0 := dst.PixOffset(r.Min.X, r.Min.Y) + s0 := src.PixOffset(sp.X, sp.Y) + var ddelta, sdelta int + if r.Min.Y <= sp.Y { + ddelta = dst.Stride + sdelta = src.Stride + } else { + // If the source start point is higher than the destination start + // point, then we compose the rows in bottom-up order instead of + // top-down. Unlike the drawCopyOver function, we don't have to check + // the x coordinates because the built-in copy function can handle + // overlapping slices. + d0 += (dy - 1) * dst.Stride + s0 += (dy - 1) * src.Stride + ddelta = -dst.Stride + sdelta = -src.Stride + } + for ; dy > 0; dy-- { + copy(dst.Pix[d0:d0+n], src.Pix[s0:s0+n]) + d0 += ddelta + s0 += sdelta + } +} + +func drawNRGBAOver(dst *image.RGBA, r image.Rectangle, src *image.NRGBA, sp image.Point) { + i0 := (r.Min.X - dst.Rect.Min.X) * 4 + i1 := (r.Max.X - dst.Rect.Min.X) * 4 + si0 := (sp.X - src.Rect.Min.X) * 4 + yMax := r.Max.Y - dst.Rect.Min.Y + + y := r.Min.Y - dst.Rect.Min.Y + sy := sp.Y - src.Rect.Min.Y + for ; y != yMax; y, sy = y+1, sy+1 { + dpix := dst.Pix[y*dst.Stride:] + spix := src.Pix[sy*src.Stride:] + + for i, si := i0, si0; i < i1; i, si = i+4, si+4 { + // Convert from non-premultiplied color to pre-multiplied color. + s := spix[si : si+4 : si+4] // Small cap improves performance, see https://golang.org/issue/27857 + sa := uint32(s[3]) * 0x101 + sr := uint32(s[0]) * sa / 0xff + sg := uint32(s[1]) * sa / 0xff + sb := uint32(s[2]) * sa / 0xff + + d := dpix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 + dr := uint32(d[0]) + dg := uint32(d[1]) + db := uint32(d[2]) + da := uint32(d[3]) + + // The 0x101 is here for the same reason as in drawRGBA. + a := (m - sa) * 0x101 + + d[0] = uint8((dr*a/m + sr) >> 8) + d[1] = uint8((dg*a/m + sg) >> 8) + d[2] = uint8((db*a/m + sb) >> 8) + d[3] = uint8((da*a/m + sa) >> 8) + } + } +} + +func drawNRGBASrc(dst *image.RGBA, r image.Rectangle, src *image.NRGBA, sp image.Point) { + i0 := (r.Min.X - dst.Rect.Min.X) * 4 + i1 := (r.Max.X - dst.Rect.Min.X) * 4 + si0 := (sp.X - src.Rect.Min.X) * 4 + yMax := r.Max.Y - dst.Rect.Min.Y + + y := r.Min.Y - dst.Rect.Min.Y + sy := sp.Y - src.Rect.Min.Y + for ; y != yMax; y, sy = y+1, sy+1 { + dpix := dst.Pix[y*dst.Stride:] + spix := src.Pix[sy*src.Stride:] + + for i, si := i0, si0; i < i1; i, si = i+4, si+4 { + // Convert from non-premultiplied color to pre-multiplied color. + s := spix[si : si+4 : si+4] // Small cap improves performance, see https://golang.org/issue/27857 + sa := uint32(s[3]) * 0x101 + sr := uint32(s[0]) * sa / 0xff + sg := uint32(s[1]) * sa / 0xff + sb := uint32(s[2]) * sa / 0xff + + d := dpix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 + d[0] = uint8(sr >> 8) + d[1] = uint8(sg >> 8) + d[2] = uint8(sb >> 8) + d[3] = uint8(sa >> 8) + } + } +} + +func drawGray(dst *image.RGBA, r image.Rectangle, src *image.Gray, sp image.Point) { + i0 := (r.Min.X - dst.Rect.Min.X) * 4 + i1 := (r.Max.X - dst.Rect.Min.X) * 4 + si0 := (sp.X - src.Rect.Min.X) * 1 + yMax := r.Max.Y - dst.Rect.Min.Y + + y := r.Min.Y - dst.Rect.Min.Y + sy := sp.Y - src.Rect.Min.Y + for ; y != yMax; y, sy = y+1, sy+1 { + dpix := dst.Pix[y*dst.Stride:] + spix := src.Pix[sy*src.Stride:] + + for i, si := i0, si0; i < i1; i, si = i+4, si+1 { + p := spix[si] + d := dpix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 + d[0] = p + d[1] = p + d[2] = p + d[3] = 255 + } + } +} + +func drawCMYK(dst *image.RGBA, r image.Rectangle, src *image.CMYK, sp image.Point) { + i0 := (r.Min.X - dst.Rect.Min.X) * 4 + i1 := (r.Max.X - dst.Rect.Min.X) * 4 + si0 := (sp.X - src.Rect.Min.X) * 4 + yMax := r.Max.Y - dst.Rect.Min.Y + + y := r.Min.Y - dst.Rect.Min.Y + sy := sp.Y - src.Rect.Min.Y + for ; y != yMax; y, sy = y+1, sy+1 { + dpix := dst.Pix[y*dst.Stride:] + spix := src.Pix[sy*src.Stride:] + + for i, si := i0, si0; i < i1; i, si = i+4, si+4 { + s := spix[si : si+4 : si+4] // Small cap improves performance, see https://golang.org/issue/27857 + d := dpix[i : i+4 : i+4] + d[0], d[1], d[2] = color.CMYKToRGB(s[0], s[1], s[2], s[3]) + d[3] = 255 + } + } +} + +func drawGlyphOver(dst *image.RGBA, r image.Rectangle, src *image.Uniform, mask *image.Alpha, mp image.Point) { + i0 := dst.PixOffset(r.Min.X, r.Min.Y) + i1 := i0 + r.Dx()*4 + mi0 := mask.PixOffset(mp.X, mp.Y) + sr, sg, sb, sa := src.RGBA() + for y, my := r.Min.Y, mp.Y; y != r.Max.Y; y, my = y+1, my+1 { + for i, mi := i0, mi0; i < i1; i, mi = i+4, mi+1 { + ma := uint32(mask.Pix[mi]) + if ma == 0 { + continue + } + ma |= ma << 8 + + // The 0x101 is here for the same reason as in drawRGBA. + a := (m - (sa * ma / m)) * 0x101 + + d := dst.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 + d[0] = uint8((uint32(d[0])*a + sr*ma) / m >> 8) + d[1] = uint8((uint32(d[1])*a + sg*ma) / m >> 8) + d[2] = uint8((uint32(d[2])*a + sb*ma) / m >> 8) + d[3] = uint8((uint32(d[3])*a + sa*ma) / m >> 8) + } + i0 += dst.Stride + i1 += dst.Stride + mi0 += mask.Stride + } +} + +func drawRGBA(dst *image.RGBA, r image.Rectangle, src image.Image, sp image.Point, mask image.Image, mp image.Point, op Op) { + x0, x1, dx := r.Min.X, r.Max.X, 1 + y0, y1, dy := r.Min.Y, r.Max.Y, 1 + if image.Image(dst) == src && r.Overlaps(r.Add(sp.Sub(r.Min))) { + if sp.Y < r.Min.Y || sp.Y == r.Min.Y && sp.X < r.Min.X { + x0, x1, dx = x1-1, x0-1, -1 + y0, y1, dy = y1-1, y0-1, -1 + } + } + + sy := sp.Y + y0 - r.Min.Y + my := mp.Y + y0 - r.Min.Y + sx0 := sp.X + x0 - r.Min.X + mx0 := mp.X + x0 - r.Min.X + sx1 := sx0 + (x1 - x0) + i0 := dst.PixOffset(x0, y0) + di := dx * 4 + for y := y0; y != y1; y, sy, my = y+dy, sy+dy, my+dy { + for i, sx, mx := i0, sx0, mx0; sx != sx1; i, sx, mx = i+di, sx+dx, mx+dx { + ma := uint32(m) + if mask != nil { + _, _, _, ma = mask.At(mx, my).RGBA() + } + sr, sg, sb, sa := src.At(sx, sy).RGBA() + d := dst.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 + if op == Over { + dr := uint32(d[0]) + dg := uint32(d[1]) + db := uint32(d[2]) + da := uint32(d[3]) + + // dr, dg, db and da are all 8-bit color at the moment, ranging in [0,255]. + // We work in 16-bit color, and so would normally do: + // dr |= dr << 8 + // and similarly for dg, db and da, but instead we multiply a + // (which is a 16-bit color, ranging in [0,65535]) by 0x101. + // This yields the same result, but is fewer arithmetic operations. + a := (m - (sa * ma / m)) * 0x101 + + d[0] = uint8((dr*a + sr*ma) / m >> 8) + d[1] = uint8((dg*a + sg*ma) / m >> 8) + d[2] = uint8((db*a + sb*ma) / m >> 8) + d[3] = uint8((da*a + sa*ma) / m >> 8) + + } else { + d[0] = uint8(sr * ma / m >> 8) + d[1] = uint8(sg * ma / m >> 8) + d[2] = uint8(sb * ma / m >> 8) + d[3] = uint8(sa * ma / m >> 8) + } + } + i0 += dy * dst.Stride + } +} + +// clamp clamps i to the interval [0, 0xffff]. +func clamp(i int32) int32 { + if i < 0 { + return 0 + } + if i > 0xffff { + return 0xffff + } + return i +} + +// sqDiff returns the squared-difference of x and y, shifted by 2 so that +// adding four of those won't overflow a uint32. +// +// x and y are both assumed to be in the range [0, 0xffff]. +func sqDiff(x, y int32) uint32 { + // This is an optimized code relying on the overflow/wrap around + // properties of unsigned integers operations guaranteed by the language + // spec. See sqDiff from the image/color package for more details. + d := uint32(x - y) + return (d * d) >> 2 +} + +func drawPaletted(dst Image, r image.Rectangle, src image.Image, sp image.Point, floydSteinberg bool) { + // TODO(nigeltao): handle the case where the dst and src overlap. + // Does it even make sense to try and do Floyd-Steinberg whilst + // walking the image backward (right-to-left bottom-to-top)? + + // If dst is an *image.Paletted, we have a fast path for dst.Set and + // dst.At. The dst.Set equivalent is a batch version of the algorithm + // used by color.Palette's Index method in image/color/color.go, plus + // optional Floyd-Steinberg error diffusion. + palette, pix, stride := [][4]int32(nil), []byte(nil), 0 + if p, ok := dst.(*image.Paletted); ok { + palette = make([][4]int32, len(p.Palette)) + for i, col := range p.Palette { + r, g, b, a := col.RGBA() + palette[i][0] = int32(r) + palette[i][1] = int32(g) + palette[i][2] = int32(b) + palette[i][3] = int32(a) + } + pix, stride = p.Pix[p.PixOffset(r.Min.X, r.Min.Y):], p.Stride + } + + // quantErrorCurr and quantErrorNext are the Floyd-Steinberg quantization + // errors that have been propagated to the pixels in the current and next + // rows. The +2 simplifies calculation near the edges. + var quantErrorCurr, quantErrorNext [][4]int32 + if floydSteinberg { + quantErrorCurr = make([][4]int32, r.Dx()+2) + quantErrorNext = make([][4]int32, r.Dx()+2) + } + pxRGBA := func(x, y int) (r, g, b, a uint32) { return src.At(x, y).RGBA() } + // Fast paths for special cases to avoid excessive use of the color.Color + // interface which escapes to the heap but need to be discovered for + // each pixel on r. See also https://golang.org/issues/15759. + switch src0 := src.(type) { + case *image.RGBA: + pxRGBA = func(x, y int) (r, g, b, a uint32) { return src0.RGBAAt(x, y).RGBA() } + case *image.NRGBA: + pxRGBA = func(x, y int) (r, g, b, a uint32) { return src0.NRGBAAt(x, y).RGBA() } + case *image.YCbCr: + pxRGBA = func(x, y int) (r, g, b, a uint32) { return src0.YCbCrAt(x, y).RGBA() } + } + + // Loop over each source pixel. + out := color.RGBA64{A: 0xffff} + for y := 0; y != r.Dy(); y++ { + for x := 0; x != r.Dx(); x++ { + // er, eg and eb are the pixel's R,G,B values plus the + // optional Floyd-Steinberg error. + sr, sg, sb, sa := pxRGBA(sp.X+x, sp.Y+y) + er, eg, eb, ea := int32(sr), int32(sg), int32(sb), int32(sa) + if floydSteinberg { + er = clamp(er + quantErrorCurr[x+1][0]/16) + eg = clamp(eg + quantErrorCurr[x+1][1]/16) + eb = clamp(eb + quantErrorCurr[x+1][2]/16) + ea = clamp(ea + quantErrorCurr[x+1][3]/16) + } + + if palette != nil { + // Find the closest palette color in Euclidean R,G,B,A space: + // the one that minimizes sum-squared-difference. + // TODO(nigeltao): consider smarter algorithms. + bestIndex, bestSum := 0, uint32(1<<32-1) + for index, p := range palette { + sum := sqDiff(er, p[0]) + sqDiff(eg, p[1]) + sqDiff(eb, p[2]) + sqDiff(ea, p[3]) + if sum < bestSum { + bestIndex, bestSum = index, sum + if sum == 0 { + break + } + } + } + pix[y*stride+x] = byte(bestIndex) + + if !floydSteinberg { + continue + } + er -= palette[bestIndex][0] + eg -= palette[bestIndex][1] + eb -= palette[bestIndex][2] + ea -= palette[bestIndex][3] + + } else { + out.R = uint16(er) + out.G = uint16(eg) + out.B = uint16(eb) + out.A = uint16(ea) + // The third argument is &out instead of out (and out is + // declared outside of the inner loop) to avoid the implicit + // conversion to color.Color here allocating memory in the + // inner loop if sizeof(color.RGBA64) > sizeof(uintptr). + dst.Set(r.Min.X+x, r.Min.Y+y, &out) + + if !floydSteinberg { + continue + } + sr, sg, sb, sa = dst.At(r.Min.X+x, r.Min.Y+y).RGBA() + er -= int32(sr) + eg -= int32(sg) + eb -= int32(sb) + ea -= int32(sa) + } + + // Propagate the Floyd-Steinberg quantization error. + quantErrorNext[x+0][0] += er * 3 + quantErrorNext[x+0][1] += eg * 3 + quantErrorNext[x+0][2] += eb * 3 + quantErrorNext[x+0][3] += ea * 3 + quantErrorNext[x+1][0] += er * 5 + quantErrorNext[x+1][1] += eg * 5 + quantErrorNext[x+1][2] += eb * 5 + quantErrorNext[x+1][3] += ea * 5 + quantErrorNext[x+2][0] += er * 1 + quantErrorNext[x+2][1] += eg * 1 + quantErrorNext[x+2][2] += eb * 1 + quantErrorNext[x+2][3] += ea * 1 + quantErrorCurr[x+2][0] += er * 7 + quantErrorCurr[x+2][1] += eg * 7 + quantErrorCurr[x+2][2] += eb * 7 + quantErrorCurr[x+2][3] += ea * 7 + } + + // Recycle the quantization error buffers. + if floydSteinberg { + quantErrorCurr, quantErrorNext = quantErrorNext, quantErrorCurr + for i := range quantErrorNext { + quantErrorNext[i] = [4]int32{} + } + } + } +} |