diff options
Diffstat (limited to 'src/crypto/aes/gcm_s390x.go')
-rw-r--r-- | src/crypto/aes/gcm_s390x.go | 368 |
1 files changed, 368 insertions, 0 deletions
diff --git a/src/crypto/aes/gcm_s390x.go b/src/crypto/aes/gcm_s390x.go new file mode 100644 index 0000000..c58aa2c --- /dev/null +++ b/src/crypto/aes/gcm_s390x.go @@ -0,0 +1,368 @@ +// Copyright 2016 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package aes + +import ( + "crypto/cipher" + subtleoverlap "crypto/internal/subtle" + "crypto/subtle" + "encoding/binary" + "errors" + "internal/cpu" +) + +// This file contains two implementations of AES-GCM. The first implementation +// (gcmAsm) uses the KMCTR instruction to encrypt using AES in counter mode and +// the KIMD instruction for GHASH. The second implementation (gcmKMA) uses the +// newer KMA instruction which performs both operations. + +// gcmCount represents a 16-byte big-endian count value. +type gcmCount [16]byte + +// inc increments the rightmost 32-bits of the count value by 1. +func (x *gcmCount) inc() { + binary.BigEndian.PutUint32(x[len(x)-4:], binary.BigEndian.Uint32(x[len(x)-4:])+1) +} + +// gcmLengths writes len0 || len1 as big-endian values to a 16-byte array. +func gcmLengths(len0, len1 uint64) [16]byte { + v := [16]byte{} + binary.BigEndian.PutUint64(v[0:], len0) + binary.BigEndian.PutUint64(v[8:], len1) + return v +} + +// gcmHashKey represents the 16-byte hash key required by the GHASH algorithm. +type gcmHashKey [16]byte + +type gcmAsm struct { + block *aesCipherAsm + hashKey gcmHashKey + nonceSize int + tagSize int +} + +const ( + gcmBlockSize = 16 + gcmTagSize = 16 + gcmMinimumTagSize = 12 // NIST SP 800-38D recommends tags with 12 or more bytes. + gcmStandardNonceSize = 12 +) + +var errOpen = errors.New("cipher: message authentication failed") + +// Assert that aesCipherAsm implements the gcmAble interface. +var _ gcmAble = (*aesCipherAsm)(nil) + +// NewGCM returns the AES cipher wrapped in Galois Counter Mode. This is only +// called by crypto/cipher.NewGCM via the gcmAble interface. +func (c *aesCipherAsm) NewGCM(nonceSize, tagSize int) (cipher.AEAD, error) { + var hk gcmHashKey + c.Encrypt(hk[:], hk[:]) + g := gcmAsm{ + block: c, + hashKey: hk, + nonceSize: nonceSize, + tagSize: tagSize, + } + if cpu.S390X.HasAESGCM { + g := gcmKMA{g} + return &g, nil + } + return &g, nil +} + +func (g *gcmAsm) NonceSize() int { + return g.nonceSize +} + +func (g *gcmAsm) Overhead() int { + return g.tagSize +} + +// sliceForAppend takes a slice and a requested number of bytes. It returns a +// slice with the contents of the given slice followed by that many bytes and a +// second slice that aliases into it and contains only the extra bytes. If the +// original slice has sufficient capacity then no allocation is performed. +func sliceForAppend(in []byte, n int) (head, tail []byte) { + if total := len(in) + n; cap(in) >= total { + head = in[:total] + } else { + head = make([]byte, total) + copy(head, in) + } + tail = head[len(in):] + return +} + +// ghash uses the GHASH algorithm to hash data with the given key. The initial +// hash value is given by hash which will be updated with the new hash value. +// The length of data must be a multiple of 16-bytes. +//go:noescape +func ghash(key *gcmHashKey, hash *[16]byte, data []byte) + +// paddedGHASH pads data with zeroes until its length is a multiple of +// 16-bytes. It then calculates a new value for hash using the GHASH algorithm. +func (g *gcmAsm) paddedGHASH(hash *[16]byte, data []byte) { + siz := len(data) &^ 0xf // align size to 16-bytes + if siz > 0 { + ghash(&g.hashKey, hash, data[:siz]) + data = data[siz:] + } + if len(data) > 0 { + var s [16]byte + copy(s[:], data) + ghash(&g.hashKey, hash, s[:]) + } +} + +// cryptBlocksGCM encrypts src using AES in counter mode using the given +// function code and key. The rightmost 32-bits of the counter are incremented +// between each block as required by the GCM spec. The initial counter value +// is given by cnt, which is updated with the value of the next counter value +// to use. +// +// The lengths of both dst and buf must be greater than or equal to the length +// of src. buf may be partially or completely overwritten during the execution +// of the function. +//go:noescape +func cryptBlocksGCM(fn code, key, dst, src, buf []byte, cnt *gcmCount) + +// counterCrypt encrypts src using AES in counter mode and places the result +// into dst. cnt is the initial count value and will be updated with the next +// count value. The length of dst must be greater than or equal to the length +// of src. +func (g *gcmAsm) counterCrypt(dst, src []byte, cnt *gcmCount) { + // Copying src into a buffer improves performance on some models when + // src and dst point to the same underlying array. We also need a + // buffer for counter values. + var ctrbuf, srcbuf [2048]byte + for len(src) >= 16 { + siz := len(src) + if len(src) > len(ctrbuf) { + siz = len(ctrbuf) + } + siz &^= 0xf // align siz to 16-bytes + copy(srcbuf[:], src[:siz]) + cryptBlocksGCM(g.block.function, g.block.key, dst[:siz], srcbuf[:siz], ctrbuf[:], cnt) + src = src[siz:] + dst = dst[siz:] + } + if len(src) > 0 { + var x [16]byte + g.block.Encrypt(x[:], cnt[:]) + for i := range src { + dst[i] = src[i] ^ x[i] + } + cnt.inc() + } +} + +// deriveCounter computes the initial GCM counter state from the given nonce. +// See NIST SP 800-38D, section 7.1. +func (g *gcmAsm) deriveCounter(nonce []byte) gcmCount { + // GCM has two modes of operation with respect to the initial counter + // state: a "fast path" for 96-bit (12-byte) nonces, and a "slow path" + // for nonces of other lengths. For a 96-bit nonce, the nonce, along + // with a four-byte big-endian counter starting at one, is used + // directly as the starting counter. For other nonce sizes, the counter + // is computed by passing it through the GHASH function. + var counter gcmCount + if len(nonce) == gcmStandardNonceSize { + copy(counter[:], nonce) + counter[gcmBlockSize-1] = 1 + } else { + var hash [16]byte + g.paddedGHASH(&hash, nonce) + lens := gcmLengths(0, uint64(len(nonce))*8) + g.paddedGHASH(&hash, lens[:]) + copy(counter[:], hash[:]) + } + return counter +} + +// auth calculates GHASH(ciphertext, additionalData), masks the result with +// tagMask and writes the result to out. +func (g *gcmAsm) auth(out, ciphertext, additionalData []byte, tagMask *[gcmTagSize]byte) { + var hash [16]byte + g.paddedGHASH(&hash, additionalData) + g.paddedGHASH(&hash, ciphertext) + lens := gcmLengths(uint64(len(additionalData))*8, uint64(len(ciphertext))*8) + g.paddedGHASH(&hash, lens[:]) + + copy(out, hash[:]) + for i := range out { + out[i] ^= tagMask[i] + } +} + +// Seal encrypts and authenticates plaintext. See the cipher.AEAD interface for +// details. +func (g *gcmAsm) Seal(dst, nonce, plaintext, data []byte) []byte { + if len(nonce) != g.nonceSize { + panic("crypto/cipher: incorrect nonce length given to GCM") + } + if uint64(len(plaintext)) > ((1<<32)-2)*BlockSize { + panic("crypto/cipher: message too large for GCM") + } + + ret, out := sliceForAppend(dst, len(plaintext)+g.tagSize) + if subtleoverlap.InexactOverlap(out[:len(plaintext)], plaintext) { + panic("crypto/cipher: invalid buffer overlap") + } + + counter := g.deriveCounter(nonce) + + var tagMask [gcmBlockSize]byte + g.block.Encrypt(tagMask[:], counter[:]) + counter.inc() + + var tagOut [gcmTagSize]byte + g.counterCrypt(out, plaintext, &counter) + g.auth(tagOut[:], out[:len(plaintext)], data, &tagMask) + copy(out[len(plaintext):], tagOut[:]) + + return ret +} + +// Open authenticates and decrypts ciphertext. See the cipher.AEAD interface +// for details. +func (g *gcmAsm) Open(dst, nonce, ciphertext, data []byte) ([]byte, error) { + if len(nonce) != g.nonceSize { + panic("crypto/cipher: incorrect nonce length given to GCM") + } + // Sanity check to prevent the authentication from always succeeding if an implementation + // leaves tagSize uninitialized, for example. + if g.tagSize < gcmMinimumTagSize { + panic("crypto/cipher: incorrect GCM tag size") + } + if len(ciphertext) < g.tagSize { + return nil, errOpen + } + if uint64(len(ciphertext)) > ((1<<32)-2)*uint64(BlockSize)+uint64(g.tagSize) { + return nil, errOpen + } + + tag := ciphertext[len(ciphertext)-g.tagSize:] + ciphertext = ciphertext[:len(ciphertext)-g.tagSize] + + counter := g.deriveCounter(nonce) + + var tagMask [gcmBlockSize]byte + g.block.Encrypt(tagMask[:], counter[:]) + counter.inc() + + var expectedTag [gcmTagSize]byte + g.auth(expectedTag[:], ciphertext, data, &tagMask) + + ret, out := sliceForAppend(dst, len(ciphertext)) + if subtleoverlap.InexactOverlap(out, ciphertext) { + panic("crypto/cipher: invalid buffer overlap") + } + + if subtle.ConstantTimeCompare(expectedTag[:g.tagSize], tag) != 1 { + // The AESNI code decrypts and authenticates concurrently, and + // so overwrites dst in the event of a tag mismatch. That + // behavior is mimicked here in order to be consistent across + // platforms. + for i := range out { + out[i] = 0 + } + return nil, errOpen + } + + g.counterCrypt(out, ciphertext, &counter) + return ret, nil +} + +// gcmKMA implements the cipher.AEAD interface using the KMA instruction. It should +// only be used if hasKMA is true. +type gcmKMA struct { + gcmAsm +} + +// flags for the KMA instruction +const ( + kmaHS = 1 << 10 // hash subkey supplied + kmaLAAD = 1 << 9 // last series of additional authenticated data + kmaLPC = 1 << 8 // last series of plaintext or ciphertext blocks + kmaDecrypt = 1 << 7 // decrypt +) + +// kmaGCM executes the encryption or decryption operation given by fn. The tag +// will be calculated and written to tag. cnt should contain the current +// counter state and will be overwritten with the updated counter state. +// TODO(mundaym): could pass in hash subkey +//go:noescape +func kmaGCM(fn code, key, dst, src, aad []byte, tag *[16]byte, cnt *gcmCount) + +// Seal encrypts and authenticates plaintext. See the cipher.AEAD interface for +// details. +func (g *gcmKMA) Seal(dst, nonce, plaintext, data []byte) []byte { + if len(nonce) != g.nonceSize { + panic("crypto/cipher: incorrect nonce length given to GCM") + } + if uint64(len(plaintext)) > ((1<<32)-2)*BlockSize { + panic("crypto/cipher: message too large for GCM") + } + + ret, out := sliceForAppend(dst, len(plaintext)+g.tagSize) + if subtleoverlap.InexactOverlap(out[:len(plaintext)], plaintext) { + panic("crypto/cipher: invalid buffer overlap") + } + + counter := g.deriveCounter(nonce) + fc := g.block.function | kmaLAAD | kmaLPC + + var tag [gcmTagSize]byte + kmaGCM(fc, g.block.key, out[:len(plaintext)], plaintext, data, &tag, &counter) + copy(out[len(plaintext):], tag[:]) + + return ret +} + +// Open authenticates and decrypts ciphertext. See the cipher.AEAD interface +// for details. +func (g *gcmKMA) Open(dst, nonce, ciphertext, data []byte) ([]byte, error) { + if len(nonce) != g.nonceSize { + panic("crypto/cipher: incorrect nonce length given to GCM") + } + if len(ciphertext) < g.tagSize { + return nil, errOpen + } + if uint64(len(ciphertext)) > ((1<<32)-2)*uint64(BlockSize)+uint64(g.tagSize) { + return nil, errOpen + } + + tag := ciphertext[len(ciphertext)-g.tagSize:] + ciphertext = ciphertext[:len(ciphertext)-g.tagSize] + ret, out := sliceForAppend(dst, len(ciphertext)) + if subtleoverlap.InexactOverlap(out, ciphertext) { + panic("crypto/cipher: invalid buffer overlap") + } + + if g.tagSize < gcmMinimumTagSize { + panic("crypto/cipher: incorrect GCM tag size") + } + + counter := g.deriveCounter(nonce) + fc := g.block.function | kmaLAAD | kmaLPC | kmaDecrypt + + var expectedTag [gcmTagSize]byte + kmaGCM(fc, g.block.key, out[:len(ciphertext)], ciphertext, data, &expectedTag, &counter) + + if subtle.ConstantTimeCompare(expectedTag[:g.tagSize], tag) != 1 { + // The AESNI code decrypts and authenticates concurrently, and + // so overwrites dst in the event of a tag mismatch. That + // behavior is mimicked here in order to be consistent across + // platforms. + for i := range out { + out[i] = 0 + } + return nil, errOpen + } + + return ret, nil +} |