diff options
Diffstat (limited to '')
-rw-r--r-- | src/crypto/ecdsa/ecdsa.go | 367 |
1 files changed, 367 insertions, 0 deletions
diff --git a/src/crypto/ecdsa/ecdsa.go b/src/crypto/ecdsa/ecdsa.go new file mode 100644 index 0000000..2194369 --- /dev/null +++ b/src/crypto/ecdsa/ecdsa.go @@ -0,0 +1,367 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as +// defined in FIPS 186-3. +// +// This implementation derives the nonce from an AES-CTR CSPRNG keyed by: +// +// SHA2-512(priv.D || entropy || hash)[:32] +// +// The CSPRNG key is indifferentiable from a random oracle as shown in +// [Coron], the AES-CTR stream is indifferentiable from a random oracle +// under standard cryptographic assumptions (see [Larsson] for examples). +// +// References: +// [Coron] +// https://cs.nyu.edu/~dodis/ps/merkle.pdf +// [Larsson] +// https://web.archive.org/web/20040719170906/https://www.nada.kth.se/kurser/kth/2D1441/semteo03/lecturenotes/assump.pdf +package ecdsa + +// Further references: +// [NSA]: Suite B implementer's guide to FIPS 186-3 +// https://apps.nsa.gov/iaarchive/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/suite-b-implementers-guide-to-fips-186-3-ecdsa.cfm +// [SECG]: SECG, SEC1 +// http://www.secg.org/sec1-v2.pdf + +import ( + "crypto" + "crypto/aes" + "crypto/cipher" + "crypto/elliptic" + "crypto/internal/randutil" + "crypto/sha512" + "errors" + "io" + "math/big" + + "golang.org/x/crypto/cryptobyte" + "golang.org/x/crypto/cryptobyte/asn1" +) + +// A invertible implements fast inverse mod Curve.Params().N +type invertible interface { + // Inverse returns the inverse of k in GF(P) + Inverse(k *big.Int) *big.Int +} + +// combinedMult implements fast multiplication S1*g + S2*p (g - generator, p - arbitrary point) +type combinedMult interface { + CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int) +} + +const ( + aesIV = "IV for ECDSA CTR" +) + +// PublicKey represents an ECDSA public key. +type PublicKey struct { + elliptic.Curve + X, Y *big.Int +} + +// Any methods implemented on PublicKey might need to also be implemented on +// PrivateKey, as the latter embeds the former and will expose its methods. + +// Equal reports whether pub and x have the same value. +// +// Two keys are only considered to have the same value if they have the same Curve value. +// Note that for example elliptic.P256() and elliptic.P256().Params() are different +// values, as the latter is a generic not constant time implementation. +func (pub *PublicKey) Equal(x crypto.PublicKey) bool { + xx, ok := x.(*PublicKey) + if !ok { + return false + } + return pub.X.Cmp(xx.X) == 0 && pub.Y.Cmp(xx.Y) == 0 && + // Standard library Curve implementations are singletons, so this check + // will work for those. Other Curves might be equivalent even if not + // singletons, but there is no definitive way to check for that, and + // better to err on the side of safety. + pub.Curve == xx.Curve +} + +// PrivateKey represents an ECDSA private key. +type PrivateKey struct { + PublicKey + D *big.Int +} + +// Public returns the public key corresponding to priv. +func (priv *PrivateKey) Public() crypto.PublicKey { + return &priv.PublicKey +} + +// Equal reports whether priv and x have the same value. +// +// See PublicKey.Equal for details on how Curve is compared. +func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool { + xx, ok := x.(*PrivateKey) + if !ok { + return false + } + return priv.PublicKey.Equal(&xx.PublicKey) && priv.D.Cmp(xx.D) == 0 +} + +// Sign signs digest with priv, reading randomness from rand. The opts argument +// is not currently used but, in keeping with the crypto.Signer interface, +// should be the hash function used to digest the message. +// +// This method implements crypto.Signer, which is an interface to support keys +// where the private part is kept in, for example, a hardware module. Common +// uses should use the Sign function in this package directly. +func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) { + r, s, err := Sign(rand, priv, digest) + if err != nil { + return nil, err + } + + var b cryptobyte.Builder + b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) { + b.AddASN1BigInt(r) + b.AddASN1BigInt(s) + }) + return b.Bytes() +} + +var one = new(big.Int).SetInt64(1) + +// randFieldElement returns a random element of the field underlying the given +// curve using the procedure given in [NSA] A.2.1. +func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) { + params := c.Params() + b := make([]byte, params.BitSize/8+8) + _, err = io.ReadFull(rand, b) + if err != nil { + return + } + + k = new(big.Int).SetBytes(b) + n := new(big.Int).Sub(params.N, one) + k.Mod(k, n) + k.Add(k, one) + return +} + +// GenerateKey generates a public and private key pair. +func GenerateKey(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) { + k, err := randFieldElement(c, rand) + if err != nil { + return nil, err + } + + priv := new(PrivateKey) + priv.PublicKey.Curve = c + priv.D = k + priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes()) + return priv, nil +} + +// hashToInt converts a hash value to an integer. There is some disagreement +// about how this is done. [NSA] suggests that this is done in the obvious +// manner, but [SECG] truncates the hash to the bit-length of the curve order +// first. We follow [SECG] because that's what OpenSSL does. Additionally, +// OpenSSL right shifts excess bits from the number if the hash is too large +// and we mirror that too. +func hashToInt(hash []byte, c elliptic.Curve) *big.Int { + orderBits := c.Params().N.BitLen() + orderBytes := (orderBits + 7) / 8 + if len(hash) > orderBytes { + hash = hash[:orderBytes] + } + + ret := new(big.Int).SetBytes(hash) + excess := len(hash)*8 - orderBits + if excess > 0 { + ret.Rsh(ret, uint(excess)) + } + return ret +} + +// fermatInverse calculates the inverse of k in GF(P) using Fermat's method. +// This has better constant-time properties than Euclid's method (implemented +// in math/big.Int.ModInverse) although math/big itself isn't strictly +// constant-time so it's not perfect. +func fermatInverse(k, N *big.Int) *big.Int { + two := big.NewInt(2) + nMinus2 := new(big.Int).Sub(N, two) + return new(big.Int).Exp(k, nMinus2, N) +} + +var errZeroParam = errors.New("zero parameter") + +// Sign signs a hash (which should be the result of hashing a larger message) +// using the private key, priv. If the hash is longer than the bit-length of the +// private key's curve order, the hash will be truncated to that length. It +// returns the signature as a pair of integers. The security of the private key +// depends on the entropy of rand. +func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) { + randutil.MaybeReadByte(rand) + + // Get min(log2(q) / 2, 256) bits of entropy from rand. + entropylen := (priv.Curve.Params().BitSize + 7) / 16 + if entropylen > 32 { + entropylen = 32 + } + entropy := make([]byte, entropylen) + _, err = io.ReadFull(rand, entropy) + if err != nil { + return + } + + // Initialize an SHA-512 hash context; digest ... + md := sha512.New() + md.Write(priv.D.Bytes()) // the private key, + md.Write(entropy) // the entropy, + md.Write(hash) // and the input hash; + key := md.Sum(nil)[:32] // and compute ChopMD-256(SHA-512), + // which is an indifferentiable MAC. + + // Create an AES-CTR instance to use as a CSPRNG. + block, err := aes.NewCipher(key) + if err != nil { + return nil, nil, err + } + + // Create a CSPRNG that xors a stream of zeros with + // the output of the AES-CTR instance. + csprng := cipher.StreamReader{ + R: zeroReader, + S: cipher.NewCTR(block, []byte(aesIV)), + } + + // See [NSA] 3.4.1 + c := priv.PublicKey.Curve + return sign(priv, &csprng, c, hash) +} + +func signGeneric(priv *PrivateKey, csprng *cipher.StreamReader, c elliptic.Curve, hash []byte) (r, s *big.Int, err error) { + N := c.Params().N + if N.Sign() == 0 { + return nil, nil, errZeroParam + } + var k, kInv *big.Int + for { + for { + k, err = randFieldElement(c, *csprng) + if err != nil { + r = nil + return + } + + if in, ok := priv.Curve.(invertible); ok { + kInv = in.Inverse(k) + } else { + kInv = fermatInverse(k, N) // N != 0 + } + + r, _ = priv.Curve.ScalarBaseMult(k.Bytes()) + r.Mod(r, N) + if r.Sign() != 0 { + break + } + } + + e := hashToInt(hash, c) + s = new(big.Int).Mul(priv.D, r) + s.Add(s, e) + s.Mul(s, kInv) + s.Mod(s, N) // N != 0 + if s.Sign() != 0 { + break + } + } + + return +} + +// SignASN1 signs a hash (which should be the result of hashing a larger message) +// using the private key, priv. If the hash is longer than the bit-length of the +// private key's curve order, the hash will be truncated to that length. It +// returns the ASN.1 encoded signature. The security of the private key +// depends on the entropy of rand. +func SignASN1(rand io.Reader, priv *PrivateKey, hash []byte) ([]byte, error) { + return priv.Sign(rand, hash, nil) +} + +// Verify verifies the signature in r, s of hash using the public key, pub. Its +// return value records whether the signature is valid. +func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool { + // See [NSA] 3.4.2 + c := pub.Curve + N := c.Params().N + + if r.Sign() <= 0 || s.Sign() <= 0 { + return false + } + if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 { + return false + } + return verify(pub, c, hash, r, s) +} + +func verifyGeneric(pub *PublicKey, c elliptic.Curve, hash []byte, r, s *big.Int) bool { + e := hashToInt(hash, c) + var w *big.Int + N := c.Params().N + if in, ok := c.(invertible); ok { + w = in.Inverse(s) + } else { + w = new(big.Int).ModInverse(s, N) + } + + u1 := e.Mul(e, w) + u1.Mod(u1, N) + u2 := w.Mul(r, w) + u2.Mod(u2, N) + + // Check if implements S1*g + S2*p + var x, y *big.Int + if opt, ok := c.(combinedMult); ok { + x, y = opt.CombinedMult(pub.X, pub.Y, u1.Bytes(), u2.Bytes()) + } else { + x1, y1 := c.ScalarBaseMult(u1.Bytes()) + x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes()) + x, y = c.Add(x1, y1, x2, y2) + } + + if x.Sign() == 0 && y.Sign() == 0 { + return false + } + x.Mod(x, N) + return x.Cmp(r) == 0 +} + +// VerifyASN1 verifies the ASN.1 encoded signature, sig, of hash using the +// public key, pub. Its return value records whether the signature is valid. +func VerifyASN1(pub *PublicKey, hash, sig []byte) bool { + var ( + r, s = &big.Int{}, &big.Int{} + inner cryptobyte.String + ) + input := cryptobyte.String(sig) + if !input.ReadASN1(&inner, asn1.SEQUENCE) || + !input.Empty() || + !inner.ReadASN1Integer(r) || + !inner.ReadASN1Integer(s) || + !inner.Empty() { + return false + } + return Verify(pub, hash, r, s) +} + +type zr struct { + io.Reader +} + +// Read replaces the contents of dst with zeros. +func (z *zr) Read(dst []byte) (n int, err error) { + for i := range dst { + dst[i] = 0 + } + return len(dst), nil +} + +var zeroReader = &zr{} |