diff options
Diffstat (limited to 'src/crypto/elliptic/elliptic.go')
-rw-r--r-- | src/crypto/elliptic/elliptic.go | 491 |
1 files changed, 491 insertions, 0 deletions
diff --git a/src/crypto/elliptic/elliptic.go b/src/crypto/elliptic/elliptic.go new file mode 100644 index 0000000..b84339e --- /dev/null +++ b/src/crypto/elliptic/elliptic.go @@ -0,0 +1,491 @@ +// Copyright 2010 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package elliptic implements several standard elliptic curves over prime +// fields. +package elliptic + +// This package operates, internally, on Jacobian coordinates. For a given +// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1) +// where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole +// calculation can be performed within the transform (as in ScalarMult and +// ScalarBaseMult). But even for Add and Double, it's faster to apply and +// reverse the transform than to operate in affine coordinates. + +import ( + "io" + "math/big" + "sync" +) + +// A Curve represents a short-form Weierstrass curve with a=-3. +// +// Note that the point at infinity (0, 0) is not considered on the curve, and +// although it can be returned by Add, Double, ScalarMult, or ScalarBaseMult, it +// can't be marshaled or unmarshaled, and IsOnCurve will return false for it. +type Curve interface { + // Params returns the parameters for the curve. + Params() *CurveParams + // IsOnCurve reports whether the given (x,y) lies on the curve. + IsOnCurve(x, y *big.Int) bool + // Add returns the sum of (x1,y1) and (x2,y2) + Add(x1, y1, x2, y2 *big.Int) (x, y *big.Int) + // Double returns 2*(x,y) + Double(x1, y1 *big.Int) (x, y *big.Int) + // ScalarMult returns k*(Bx,By) where k is a number in big-endian form. + ScalarMult(x1, y1 *big.Int, k []byte) (x, y *big.Int) + // ScalarBaseMult returns k*G, where G is the base point of the group + // and k is an integer in big-endian form. + ScalarBaseMult(k []byte) (x, y *big.Int) +} + +func matchesSpecificCurve(params *CurveParams, available ...Curve) (Curve, bool) { + for _, c := range available { + if params == c.Params() { + return c, true + } + } + return nil, false +} + +// CurveParams contains the parameters of an elliptic curve and also provides +// a generic, non-constant time implementation of Curve. +type CurveParams struct { + P *big.Int // the order of the underlying field + N *big.Int // the order of the base point + B *big.Int // the constant of the curve equation + Gx, Gy *big.Int // (x,y) of the base point + BitSize int // the size of the underlying field + Name string // the canonical name of the curve +} + +func (curve *CurveParams) Params() *CurveParams { + return curve +} + +// polynomial returns x³ - 3x + b. +func (curve *CurveParams) polynomial(x *big.Int) *big.Int { + x3 := new(big.Int).Mul(x, x) + x3.Mul(x3, x) + + threeX := new(big.Int).Lsh(x, 1) + threeX.Add(threeX, x) + + x3.Sub(x3, threeX) + x3.Add(x3, curve.B) + x3.Mod(x3, curve.P) + + return x3 +} + +func (curve *CurveParams) IsOnCurve(x, y *big.Int) bool { + // If there is a dedicated constant-time implementation for this curve operation, + // use that instead of the generic one. + if specific, ok := matchesSpecificCurve(curve, p224, p521); ok { + return specific.IsOnCurve(x, y) + } + + if x.Sign() < 0 || x.Cmp(curve.P) >= 0 || + y.Sign() < 0 || y.Cmp(curve.P) >= 0 { + return false + } + + // y² = x³ - 3x + b + y2 := new(big.Int).Mul(y, y) + y2.Mod(y2, curve.P) + + return curve.polynomial(x).Cmp(y2) == 0 +} + +// zForAffine returns a Jacobian Z value for the affine point (x, y). If x and +// y are zero, it assumes that they represent the point at infinity because (0, +// 0) is not on the any of the curves handled here. +func zForAffine(x, y *big.Int) *big.Int { + z := new(big.Int) + if x.Sign() != 0 || y.Sign() != 0 { + z.SetInt64(1) + } + return z +} + +// affineFromJacobian reverses the Jacobian transform. See the comment at the +// top of the file. If the point is ∞ it returns 0, 0. +func (curve *CurveParams) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) { + if z.Sign() == 0 { + return new(big.Int), new(big.Int) + } + + zinv := new(big.Int).ModInverse(z, curve.P) + zinvsq := new(big.Int).Mul(zinv, zinv) + + xOut = new(big.Int).Mul(x, zinvsq) + xOut.Mod(xOut, curve.P) + zinvsq.Mul(zinvsq, zinv) + yOut = new(big.Int).Mul(y, zinvsq) + yOut.Mod(yOut, curve.P) + return +} + +func (curve *CurveParams) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { + // If there is a dedicated constant-time implementation for this curve operation, + // use that instead of the generic one. + if specific, ok := matchesSpecificCurve(curve, p224, p521); ok { + return specific.Add(x1, y1, x2, y2) + } + + z1 := zForAffine(x1, y1) + z2 := zForAffine(x2, y2) + return curve.affineFromJacobian(curve.addJacobian(x1, y1, z1, x2, y2, z2)) +} + +// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and +// (x2, y2, z2) and returns their sum, also in Jacobian form. +func (curve *CurveParams) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) { + // See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl + x3, y3, z3 := new(big.Int), new(big.Int), new(big.Int) + if z1.Sign() == 0 { + x3.Set(x2) + y3.Set(y2) + z3.Set(z2) + return x3, y3, z3 + } + if z2.Sign() == 0 { + x3.Set(x1) + y3.Set(y1) + z3.Set(z1) + return x3, y3, z3 + } + + z1z1 := new(big.Int).Mul(z1, z1) + z1z1.Mod(z1z1, curve.P) + z2z2 := new(big.Int).Mul(z2, z2) + z2z2.Mod(z2z2, curve.P) + + u1 := new(big.Int).Mul(x1, z2z2) + u1.Mod(u1, curve.P) + u2 := new(big.Int).Mul(x2, z1z1) + u2.Mod(u2, curve.P) + h := new(big.Int).Sub(u2, u1) + xEqual := h.Sign() == 0 + if h.Sign() == -1 { + h.Add(h, curve.P) + } + i := new(big.Int).Lsh(h, 1) + i.Mul(i, i) + j := new(big.Int).Mul(h, i) + + s1 := new(big.Int).Mul(y1, z2) + s1.Mul(s1, z2z2) + s1.Mod(s1, curve.P) + s2 := new(big.Int).Mul(y2, z1) + s2.Mul(s2, z1z1) + s2.Mod(s2, curve.P) + r := new(big.Int).Sub(s2, s1) + if r.Sign() == -1 { + r.Add(r, curve.P) + } + yEqual := r.Sign() == 0 + if xEqual && yEqual { + return curve.doubleJacobian(x1, y1, z1) + } + r.Lsh(r, 1) + v := new(big.Int).Mul(u1, i) + + x3.Set(r) + x3.Mul(x3, x3) + x3.Sub(x3, j) + x3.Sub(x3, v) + x3.Sub(x3, v) + x3.Mod(x3, curve.P) + + y3.Set(r) + v.Sub(v, x3) + y3.Mul(y3, v) + s1.Mul(s1, j) + s1.Lsh(s1, 1) + y3.Sub(y3, s1) + y3.Mod(y3, curve.P) + + z3.Add(z1, z2) + z3.Mul(z3, z3) + z3.Sub(z3, z1z1) + z3.Sub(z3, z2z2) + z3.Mul(z3, h) + z3.Mod(z3, curve.P) + + return x3, y3, z3 +} + +func (curve *CurveParams) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { + // If there is a dedicated constant-time implementation for this curve operation, + // use that instead of the generic one. + if specific, ok := matchesSpecificCurve(curve, p224, p521); ok { + return specific.Double(x1, y1) + } + + z1 := zForAffine(x1, y1) + return curve.affineFromJacobian(curve.doubleJacobian(x1, y1, z1)) +} + +// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and +// returns its double, also in Jacobian form. +func (curve *CurveParams) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) { + // See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b + delta := new(big.Int).Mul(z, z) + delta.Mod(delta, curve.P) + gamma := new(big.Int).Mul(y, y) + gamma.Mod(gamma, curve.P) + alpha := new(big.Int).Sub(x, delta) + if alpha.Sign() == -1 { + alpha.Add(alpha, curve.P) + } + alpha2 := new(big.Int).Add(x, delta) + alpha.Mul(alpha, alpha2) + alpha2.Set(alpha) + alpha.Lsh(alpha, 1) + alpha.Add(alpha, alpha2) + + beta := alpha2.Mul(x, gamma) + + x3 := new(big.Int).Mul(alpha, alpha) + beta8 := new(big.Int).Lsh(beta, 3) + beta8.Mod(beta8, curve.P) + x3.Sub(x3, beta8) + if x3.Sign() == -1 { + x3.Add(x3, curve.P) + } + x3.Mod(x3, curve.P) + + z3 := new(big.Int).Add(y, z) + z3.Mul(z3, z3) + z3.Sub(z3, gamma) + if z3.Sign() == -1 { + z3.Add(z3, curve.P) + } + z3.Sub(z3, delta) + if z3.Sign() == -1 { + z3.Add(z3, curve.P) + } + z3.Mod(z3, curve.P) + + beta.Lsh(beta, 2) + beta.Sub(beta, x3) + if beta.Sign() == -1 { + beta.Add(beta, curve.P) + } + y3 := alpha.Mul(alpha, beta) + + gamma.Mul(gamma, gamma) + gamma.Lsh(gamma, 3) + gamma.Mod(gamma, curve.P) + + y3.Sub(y3, gamma) + if y3.Sign() == -1 { + y3.Add(y3, curve.P) + } + y3.Mod(y3, curve.P) + + return x3, y3, z3 +} + +func (curve *CurveParams) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) { + // If there is a dedicated constant-time implementation for this curve operation, + // use that instead of the generic one. + if specific, ok := matchesSpecificCurve(curve, p224, p256, p521); ok { + return specific.ScalarMult(Bx, By, k) + } + + Bz := new(big.Int).SetInt64(1) + x, y, z := new(big.Int), new(big.Int), new(big.Int) + + for _, byte := range k { + for bitNum := 0; bitNum < 8; bitNum++ { + x, y, z = curve.doubleJacobian(x, y, z) + if byte&0x80 == 0x80 { + x, y, z = curve.addJacobian(Bx, By, Bz, x, y, z) + } + byte <<= 1 + } + } + + return curve.affineFromJacobian(x, y, z) +} + +func (curve *CurveParams) ScalarBaseMult(k []byte) (*big.Int, *big.Int) { + // If there is a dedicated constant-time implementation for this curve operation, + // use that instead of the generic one. + if specific, ok := matchesSpecificCurve(curve, p224, p256, p521); ok { + return specific.ScalarBaseMult(k) + } + + return curve.ScalarMult(curve.Gx, curve.Gy, k) +} + +var mask = []byte{0xff, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f} + +// GenerateKey returns a public/private key pair. The private key is +// generated using the given reader, which must return random data. +func GenerateKey(curve Curve, rand io.Reader) (priv []byte, x, y *big.Int, err error) { + N := curve.Params().N + bitSize := N.BitLen() + byteLen := (bitSize + 7) / 8 + priv = make([]byte, byteLen) + + for x == nil { + _, err = io.ReadFull(rand, priv) + if err != nil { + return + } + // We have to mask off any excess bits in the case that the size of the + // underlying field is not a whole number of bytes. + priv[0] &= mask[bitSize%8] + // This is because, in tests, rand will return all zeros and we don't + // want to get the point at infinity and loop forever. + priv[1] ^= 0x42 + + // If the scalar is out of range, sample another random number. + if new(big.Int).SetBytes(priv).Cmp(N) >= 0 { + continue + } + + x, y = curve.ScalarBaseMult(priv) + } + return +} + +// Marshal converts a point on the curve into the uncompressed form specified in +// section 4.3.6 of ANSI X9.62. +func Marshal(curve Curve, x, y *big.Int) []byte { + byteLen := (curve.Params().BitSize + 7) / 8 + + ret := make([]byte, 1+2*byteLen) + ret[0] = 4 // uncompressed point + + x.FillBytes(ret[1 : 1+byteLen]) + y.FillBytes(ret[1+byteLen : 1+2*byteLen]) + + return ret +} + +// MarshalCompressed converts a point on the curve into the compressed form +// specified in section 4.3.6 of ANSI X9.62. +func MarshalCompressed(curve Curve, x, y *big.Int) []byte { + byteLen := (curve.Params().BitSize + 7) / 8 + compressed := make([]byte, 1+byteLen) + compressed[0] = byte(y.Bit(0)) | 2 + x.FillBytes(compressed[1:]) + return compressed +} + +// Unmarshal converts a point, serialized by Marshal, into an x, y pair. +// It is an error if the point is not in uncompressed form or is not on the curve. +// On error, x = nil. +func Unmarshal(curve Curve, data []byte) (x, y *big.Int) { + byteLen := (curve.Params().BitSize + 7) / 8 + if len(data) != 1+2*byteLen { + return nil, nil + } + if data[0] != 4 { // uncompressed form + return nil, nil + } + p := curve.Params().P + x = new(big.Int).SetBytes(data[1 : 1+byteLen]) + y = new(big.Int).SetBytes(data[1+byteLen:]) + if x.Cmp(p) >= 0 || y.Cmp(p) >= 0 { + return nil, nil + } + if !curve.IsOnCurve(x, y) { + return nil, nil + } + return +} + +// UnmarshalCompressed converts a point, serialized by MarshalCompressed, into an x, y pair. +// It is an error if the point is not in compressed form or is not on the curve. +// On error, x = nil. +func UnmarshalCompressed(curve Curve, data []byte) (x, y *big.Int) { + byteLen := (curve.Params().BitSize + 7) / 8 + if len(data) != 1+byteLen { + return nil, nil + } + if data[0] != 2 && data[0] != 3 { // compressed form + return nil, nil + } + p := curve.Params().P + x = new(big.Int).SetBytes(data[1:]) + if x.Cmp(p) >= 0 { + return nil, nil + } + // y² = x³ - 3x + b + y = curve.Params().polynomial(x) + y = y.ModSqrt(y, p) + if y == nil { + return nil, nil + } + if byte(y.Bit(0)) != data[0]&1 { + y.Neg(y).Mod(y, p) + } + if !curve.IsOnCurve(x, y) { + return nil, nil + } + return +} + +var initonce sync.Once +var p384 *CurveParams + +func initAll() { + initP224() + initP256() + initP384() + initP521() +} + +func initP384() { + // See FIPS 186-3, section D.2.4 + p384 = &CurveParams{Name: "P-384"} + p384.P, _ = new(big.Int).SetString("39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319", 10) + p384.N, _ = new(big.Int).SetString("39402006196394479212279040100143613805079739270465446667946905279627659399113263569398956308152294913554433653942643", 10) + p384.B, _ = new(big.Int).SetString("b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef", 16) + p384.Gx, _ = new(big.Int).SetString("aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7", 16) + p384.Gy, _ = new(big.Int).SetString("3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f", 16) + p384.BitSize = 384 +} + +// P256 returns a Curve which implements NIST P-256 (FIPS 186-3, section D.2.3), +// also known as secp256r1 or prime256v1. The CurveParams.Name of this Curve is +// "P-256". +// +// Multiple invocations of this function will return the same value, so it can +// be used for equality checks and switch statements. +// +// ScalarMult and ScalarBaseMult are implemented using constant-time algorithms. +func P256() Curve { + initonce.Do(initAll) + return p256 +} + +// P384 returns a Curve which implements NIST P-384 (FIPS 186-3, section D.2.4), +// also known as secp384r1. The CurveParams.Name of this Curve is "P-384". +// +// Multiple invocations of this function will return the same value, so it can +// be used for equality checks and switch statements. +// +// The cryptographic operations do not use constant-time algorithms. +func P384() Curve { + initonce.Do(initAll) + return p384 +} + +// P521 returns a Curve which implements NIST P-521 (FIPS 186-3, section D.2.5), +// also known as secp521r1. The CurveParams.Name of this Curve is "P-521". +// +// Multiple invocations of this function will return the same value, so it can +// be used for equality checks and switch statements. +// +// The cryptographic operations are implemented using constant-time algorithms. +func P521() Curve { + initonce.Do(initAll) + return p521 +} |