summaryrefslogtreecommitdiffstats
path: root/src/crypto/elliptic/elliptic.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/crypto/elliptic/elliptic.go')
-rw-r--r--src/crypto/elliptic/elliptic.go491
1 files changed, 491 insertions, 0 deletions
diff --git a/src/crypto/elliptic/elliptic.go b/src/crypto/elliptic/elliptic.go
new file mode 100644
index 0000000..b84339e
--- /dev/null
+++ b/src/crypto/elliptic/elliptic.go
@@ -0,0 +1,491 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package elliptic implements several standard elliptic curves over prime
+// fields.
+package elliptic
+
+// This package operates, internally, on Jacobian coordinates. For a given
+// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1)
+// where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole
+// calculation can be performed within the transform (as in ScalarMult and
+// ScalarBaseMult). But even for Add and Double, it's faster to apply and
+// reverse the transform than to operate in affine coordinates.
+
+import (
+ "io"
+ "math/big"
+ "sync"
+)
+
+// A Curve represents a short-form Weierstrass curve with a=-3.
+//
+// Note that the point at infinity (0, 0) is not considered on the curve, and
+// although it can be returned by Add, Double, ScalarMult, or ScalarBaseMult, it
+// can't be marshaled or unmarshaled, and IsOnCurve will return false for it.
+type Curve interface {
+ // Params returns the parameters for the curve.
+ Params() *CurveParams
+ // IsOnCurve reports whether the given (x,y) lies on the curve.
+ IsOnCurve(x, y *big.Int) bool
+ // Add returns the sum of (x1,y1) and (x2,y2)
+ Add(x1, y1, x2, y2 *big.Int) (x, y *big.Int)
+ // Double returns 2*(x,y)
+ Double(x1, y1 *big.Int) (x, y *big.Int)
+ // ScalarMult returns k*(Bx,By) where k is a number in big-endian form.
+ ScalarMult(x1, y1 *big.Int, k []byte) (x, y *big.Int)
+ // ScalarBaseMult returns k*G, where G is the base point of the group
+ // and k is an integer in big-endian form.
+ ScalarBaseMult(k []byte) (x, y *big.Int)
+}
+
+func matchesSpecificCurve(params *CurveParams, available ...Curve) (Curve, bool) {
+ for _, c := range available {
+ if params == c.Params() {
+ return c, true
+ }
+ }
+ return nil, false
+}
+
+// CurveParams contains the parameters of an elliptic curve and also provides
+// a generic, non-constant time implementation of Curve.
+type CurveParams struct {
+ P *big.Int // the order of the underlying field
+ N *big.Int // the order of the base point
+ B *big.Int // the constant of the curve equation
+ Gx, Gy *big.Int // (x,y) of the base point
+ BitSize int // the size of the underlying field
+ Name string // the canonical name of the curve
+}
+
+func (curve *CurveParams) Params() *CurveParams {
+ return curve
+}
+
+// polynomial returns x³ - 3x + b.
+func (curve *CurveParams) polynomial(x *big.Int) *big.Int {
+ x3 := new(big.Int).Mul(x, x)
+ x3.Mul(x3, x)
+
+ threeX := new(big.Int).Lsh(x, 1)
+ threeX.Add(threeX, x)
+
+ x3.Sub(x3, threeX)
+ x3.Add(x3, curve.B)
+ x3.Mod(x3, curve.P)
+
+ return x3
+}
+
+func (curve *CurveParams) IsOnCurve(x, y *big.Int) bool {
+ // If there is a dedicated constant-time implementation for this curve operation,
+ // use that instead of the generic one.
+ if specific, ok := matchesSpecificCurve(curve, p224, p521); ok {
+ return specific.IsOnCurve(x, y)
+ }
+
+ if x.Sign() < 0 || x.Cmp(curve.P) >= 0 ||
+ y.Sign() < 0 || y.Cmp(curve.P) >= 0 {
+ return false
+ }
+
+ // y² = x³ - 3x + b
+ y2 := new(big.Int).Mul(y, y)
+ y2.Mod(y2, curve.P)
+
+ return curve.polynomial(x).Cmp(y2) == 0
+}
+
+// zForAffine returns a Jacobian Z value for the affine point (x, y). If x and
+// y are zero, it assumes that they represent the point at infinity because (0,
+// 0) is not on the any of the curves handled here.
+func zForAffine(x, y *big.Int) *big.Int {
+ z := new(big.Int)
+ if x.Sign() != 0 || y.Sign() != 0 {
+ z.SetInt64(1)
+ }
+ return z
+}
+
+// affineFromJacobian reverses the Jacobian transform. See the comment at the
+// top of the file. If the point is ∞ it returns 0, 0.
+func (curve *CurveParams) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
+ if z.Sign() == 0 {
+ return new(big.Int), new(big.Int)
+ }
+
+ zinv := new(big.Int).ModInverse(z, curve.P)
+ zinvsq := new(big.Int).Mul(zinv, zinv)
+
+ xOut = new(big.Int).Mul(x, zinvsq)
+ xOut.Mod(xOut, curve.P)
+ zinvsq.Mul(zinvsq, zinv)
+ yOut = new(big.Int).Mul(y, zinvsq)
+ yOut.Mod(yOut, curve.P)
+ return
+}
+
+func (curve *CurveParams) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
+ // If there is a dedicated constant-time implementation for this curve operation,
+ // use that instead of the generic one.
+ if specific, ok := matchesSpecificCurve(curve, p224, p521); ok {
+ return specific.Add(x1, y1, x2, y2)
+ }
+
+ z1 := zForAffine(x1, y1)
+ z2 := zForAffine(x2, y2)
+ return curve.affineFromJacobian(curve.addJacobian(x1, y1, z1, x2, y2, z2))
+}
+
+// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
+// (x2, y2, z2) and returns their sum, also in Jacobian form.
+func (curve *CurveParams) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
+ // See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl
+ x3, y3, z3 := new(big.Int), new(big.Int), new(big.Int)
+ if z1.Sign() == 0 {
+ x3.Set(x2)
+ y3.Set(y2)
+ z3.Set(z2)
+ return x3, y3, z3
+ }
+ if z2.Sign() == 0 {
+ x3.Set(x1)
+ y3.Set(y1)
+ z3.Set(z1)
+ return x3, y3, z3
+ }
+
+ z1z1 := new(big.Int).Mul(z1, z1)
+ z1z1.Mod(z1z1, curve.P)
+ z2z2 := new(big.Int).Mul(z2, z2)
+ z2z2.Mod(z2z2, curve.P)
+
+ u1 := new(big.Int).Mul(x1, z2z2)
+ u1.Mod(u1, curve.P)
+ u2 := new(big.Int).Mul(x2, z1z1)
+ u2.Mod(u2, curve.P)
+ h := new(big.Int).Sub(u2, u1)
+ xEqual := h.Sign() == 0
+ if h.Sign() == -1 {
+ h.Add(h, curve.P)
+ }
+ i := new(big.Int).Lsh(h, 1)
+ i.Mul(i, i)
+ j := new(big.Int).Mul(h, i)
+
+ s1 := new(big.Int).Mul(y1, z2)
+ s1.Mul(s1, z2z2)
+ s1.Mod(s1, curve.P)
+ s2 := new(big.Int).Mul(y2, z1)
+ s2.Mul(s2, z1z1)
+ s2.Mod(s2, curve.P)
+ r := new(big.Int).Sub(s2, s1)
+ if r.Sign() == -1 {
+ r.Add(r, curve.P)
+ }
+ yEqual := r.Sign() == 0
+ if xEqual && yEqual {
+ return curve.doubleJacobian(x1, y1, z1)
+ }
+ r.Lsh(r, 1)
+ v := new(big.Int).Mul(u1, i)
+
+ x3.Set(r)
+ x3.Mul(x3, x3)
+ x3.Sub(x3, j)
+ x3.Sub(x3, v)
+ x3.Sub(x3, v)
+ x3.Mod(x3, curve.P)
+
+ y3.Set(r)
+ v.Sub(v, x3)
+ y3.Mul(y3, v)
+ s1.Mul(s1, j)
+ s1.Lsh(s1, 1)
+ y3.Sub(y3, s1)
+ y3.Mod(y3, curve.P)
+
+ z3.Add(z1, z2)
+ z3.Mul(z3, z3)
+ z3.Sub(z3, z1z1)
+ z3.Sub(z3, z2z2)
+ z3.Mul(z3, h)
+ z3.Mod(z3, curve.P)
+
+ return x3, y3, z3
+}
+
+func (curve *CurveParams) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
+ // If there is a dedicated constant-time implementation for this curve operation,
+ // use that instead of the generic one.
+ if specific, ok := matchesSpecificCurve(curve, p224, p521); ok {
+ return specific.Double(x1, y1)
+ }
+
+ z1 := zForAffine(x1, y1)
+ return curve.affineFromJacobian(curve.doubleJacobian(x1, y1, z1))
+}
+
+// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
+// returns its double, also in Jacobian form.
+func (curve *CurveParams) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
+ // See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
+ delta := new(big.Int).Mul(z, z)
+ delta.Mod(delta, curve.P)
+ gamma := new(big.Int).Mul(y, y)
+ gamma.Mod(gamma, curve.P)
+ alpha := new(big.Int).Sub(x, delta)
+ if alpha.Sign() == -1 {
+ alpha.Add(alpha, curve.P)
+ }
+ alpha2 := new(big.Int).Add(x, delta)
+ alpha.Mul(alpha, alpha2)
+ alpha2.Set(alpha)
+ alpha.Lsh(alpha, 1)
+ alpha.Add(alpha, alpha2)
+
+ beta := alpha2.Mul(x, gamma)
+
+ x3 := new(big.Int).Mul(alpha, alpha)
+ beta8 := new(big.Int).Lsh(beta, 3)
+ beta8.Mod(beta8, curve.P)
+ x3.Sub(x3, beta8)
+ if x3.Sign() == -1 {
+ x3.Add(x3, curve.P)
+ }
+ x3.Mod(x3, curve.P)
+
+ z3 := new(big.Int).Add(y, z)
+ z3.Mul(z3, z3)
+ z3.Sub(z3, gamma)
+ if z3.Sign() == -1 {
+ z3.Add(z3, curve.P)
+ }
+ z3.Sub(z3, delta)
+ if z3.Sign() == -1 {
+ z3.Add(z3, curve.P)
+ }
+ z3.Mod(z3, curve.P)
+
+ beta.Lsh(beta, 2)
+ beta.Sub(beta, x3)
+ if beta.Sign() == -1 {
+ beta.Add(beta, curve.P)
+ }
+ y3 := alpha.Mul(alpha, beta)
+
+ gamma.Mul(gamma, gamma)
+ gamma.Lsh(gamma, 3)
+ gamma.Mod(gamma, curve.P)
+
+ y3.Sub(y3, gamma)
+ if y3.Sign() == -1 {
+ y3.Add(y3, curve.P)
+ }
+ y3.Mod(y3, curve.P)
+
+ return x3, y3, z3
+}
+
+func (curve *CurveParams) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
+ // If there is a dedicated constant-time implementation for this curve operation,
+ // use that instead of the generic one.
+ if specific, ok := matchesSpecificCurve(curve, p224, p256, p521); ok {
+ return specific.ScalarMult(Bx, By, k)
+ }
+
+ Bz := new(big.Int).SetInt64(1)
+ x, y, z := new(big.Int), new(big.Int), new(big.Int)
+
+ for _, byte := range k {
+ for bitNum := 0; bitNum < 8; bitNum++ {
+ x, y, z = curve.doubleJacobian(x, y, z)
+ if byte&0x80 == 0x80 {
+ x, y, z = curve.addJacobian(Bx, By, Bz, x, y, z)
+ }
+ byte <<= 1
+ }
+ }
+
+ return curve.affineFromJacobian(x, y, z)
+}
+
+func (curve *CurveParams) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
+ // If there is a dedicated constant-time implementation for this curve operation,
+ // use that instead of the generic one.
+ if specific, ok := matchesSpecificCurve(curve, p224, p256, p521); ok {
+ return specific.ScalarBaseMult(k)
+ }
+
+ return curve.ScalarMult(curve.Gx, curve.Gy, k)
+}
+
+var mask = []byte{0xff, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f}
+
+// GenerateKey returns a public/private key pair. The private key is
+// generated using the given reader, which must return random data.
+func GenerateKey(curve Curve, rand io.Reader) (priv []byte, x, y *big.Int, err error) {
+ N := curve.Params().N
+ bitSize := N.BitLen()
+ byteLen := (bitSize + 7) / 8
+ priv = make([]byte, byteLen)
+
+ for x == nil {
+ _, err = io.ReadFull(rand, priv)
+ if err != nil {
+ return
+ }
+ // We have to mask off any excess bits in the case that the size of the
+ // underlying field is not a whole number of bytes.
+ priv[0] &= mask[bitSize%8]
+ // This is because, in tests, rand will return all zeros and we don't
+ // want to get the point at infinity and loop forever.
+ priv[1] ^= 0x42
+
+ // If the scalar is out of range, sample another random number.
+ if new(big.Int).SetBytes(priv).Cmp(N) >= 0 {
+ continue
+ }
+
+ x, y = curve.ScalarBaseMult(priv)
+ }
+ return
+}
+
+// Marshal converts a point on the curve into the uncompressed form specified in
+// section 4.3.6 of ANSI X9.62.
+func Marshal(curve Curve, x, y *big.Int) []byte {
+ byteLen := (curve.Params().BitSize + 7) / 8
+
+ ret := make([]byte, 1+2*byteLen)
+ ret[0] = 4 // uncompressed point
+
+ x.FillBytes(ret[1 : 1+byteLen])
+ y.FillBytes(ret[1+byteLen : 1+2*byteLen])
+
+ return ret
+}
+
+// MarshalCompressed converts a point on the curve into the compressed form
+// specified in section 4.3.6 of ANSI X9.62.
+func MarshalCompressed(curve Curve, x, y *big.Int) []byte {
+ byteLen := (curve.Params().BitSize + 7) / 8
+ compressed := make([]byte, 1+byteLen)
+ compressed[0] = byte(y.Bit(0)) | 2
+ x.FillBytes(compressed[1:])
+ return compressed
+}
+
+// Unmarshal converts a point, serialized by Marshal, into an x, y pair.
+// It is an error if the point is not in uncompressed form or is not on the curve.
+// On error, x = nil.
+func Unmarshal(curve Curve, data []byte) (x, y *big.Int) {
+ byteLen := (curve.Params().BitSize + 7) / 8
+ if len(data) != 1+2*byteLen {
+ return nil, nil
+ }
+ if data[0] != 4 { // uncompressed form
+ return nil, nil
+ }
+ p := curve.Params().P
+ x = new(big.Int).SetBytes(data[1 : 1+byteLen])
+ y = new(big.Int).SetBytes(data[1+byteLen:])
+ if x.Cmp(p) >= 0 || y.Cmp(p) >= 0 {
+ return nil, nil
+ }
+ if !curve.IsOnCurve(x, y) {
+ return nil, nil
+ }
+ return
+}
+
+// UnmarshalCompressed converts a point, serialized by MarshalCompressed, into an x, y pair.
+// It is an error if the point is not in compressed form or is not on the curve.
+// On error, x = nil.
+func UnmarshalCompressed(curve Curve, data []byte) (x, y *big.Int) {
+ byteLen := (curve.Params().BitSize + 7) / 8
+ if len(data) != 1+byteLen {
+ return nil, nil
+ }
+ if data[0] != 2 && data[0] != 3 { // compressed form
+ return nil, nil
+ }
+ p := curve.Params().P
+ x = new(big.Int).SetBytes(data[1:])
+ if x.Cmp(p) >= 0 {
+ return nil, nil
+ }
+ // y² = x³ - 3x + b
+ y = curve.Params().polynomial(x)
+ y = y.ModSqrt(y, p)
+ if y == nil {
+ return nil, nil
+ }
+ if byte(y.Bit(0)) != data[0]&1 {
+ y.Neg(y).Mod(y, p)
+ }
+ if !curve.IsOnCurve(x, y) {
+ return nil, nil
+ }
+ return
+}
+
+var initonce sync.Once
+var p384 *CurveParams
+
+func initAll() {
+ initP224()
+ initP256()
+ initP384()
+ initP521()
+}
+
+func initP384() {
+ // See FIPS 186-3, section D.2.4
+ p384 = &CurveParams{Name: "P-384"}
+ p384.P, _ = new(big.Int).SetString("39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319", 10)
+ p384.N, _ = new(big.Int).SetString("39402006196394479212279040100143613805079739270465446667946905279627659399113263569398956308152294913554433653942643", 10)
+ p384.B, _ = new(big.Int).SetString("b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef", 16)
+ p384.Gx, _ = new(big.Int).SetString("aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7", 16)
+ p384.Gy, _ = new(big.Int).SetString("3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f", 16)
+ p384.BitSize = 384
+}
+
+// P256 returns a Curve which implements NIST P-256 (FIPS 186-3, section D.2.3),
+// also known as secp256r1 or prime256v1. The CurveParams.Name of this Curve is
+// "P-256".
+//
+// Multiple invocations of this function will return the same value, so it can
+// be used for equality checks and switch statements.
+//
+// ScalarMult and ScalarBaseMult are implemented using constant-time algorithms.
+func P256() Curve {
+ initonce.Do(initAll)
+ return p256
+}
+
+// P384 returns a Curve which implements NIST P-384 (FIPS 186-3, section D.2.4),
+// also known as secp384r1. The CurveParams.Name of this Curve is "P-384".
+//
+// Multiple invocations of this function will return the same value, so it can
+// be used for equality checks and switch statements.
+//
+// The cryptographic operations do not use constant-time algorithms.
+func P384() Curve {
+ initonce.Do(initAll)
+ return p384
+}
+
+// P521 returns a Curve which implements NIST P-521 (FIPS 186-3, section D.2.5),
+// also known as secp521r1. The CurveParams.Name of this Curve is "P-521".
+//
+// Multiple invocations of this function will return the same value, so it can
+// be used for equality checks and switch statements.
+//
+// The cryptographic operations are implemented using constant-time algorithms.
+func P521() Curve {
+ initonce.Do(initAll)
+ return p521
+}