summaryrefslogtreecommitdiffstats
path: root/src/crypto/elliptic/p256_asm.go
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/crypto/elliptic/p256_asm.go539
1 files changed, 539 insertions, 0 deletions
diff --git a/src/crypto/elliptic/p256_asm.go b/src/crypto/elliptic/p256_asm.go
new file mode 100644
index 0000000..9a808f2
--- /dev/null
+++ b/src/crypto/elliptic/p256_asm.go
@@ -0,0 +1,539 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file contains the Go wrapper for the constant-time, 64-bit assembly
+// implementation of P256. The optimizations performed here are described in
+// detail in:
+// S.Gueron and V.Krasnov, "Fast prime field elliptic-curve cryptography with
+// 256-bit primes"
+// https://link.springer.com/article/10.1007%2Fs13389-014-0090-x
+// https://eprint.iacr.org/2013/816.pdf
+
+//go:build amd64 || arm64
+// +build amd64 arm64
+
+package elliptic
+
+import (
+ "math/big"
+)
+
+type (
+ p256Curve struct {
+ *CurveParams
+ }
+
+ p256Point struct {
+ xyz [12]uint64
+ }
+)
+
+var p256 p256Curve
+
+func initP256() {
+ // See FIPS 186-3, section D.2.3
+ p256.CurveParams = &CurveParams{Name: "P-256"}
+ p256.P, _ = new(big.Int).SetString("115792089210356248762697446949407573530086143415290314195533631308867097853951", 10)
+ p256.N, _ = new(big.Int).SetString("115792089210356248762697446949407573529996955224135760342422259061068512044369", 10)
+ p256.B, _ = new(big.Int).SetString("5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b", 16)
+ p256.Gx, _ = new(big.Int).SetString("6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296", 16)
+ p256.Gy, _ = new(big.Int).SetString("4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5", 16)
+ p256.BitSize = 256
+}
+
+func (curve p256Curve) Params() *CurveParams {
+ return curve.CurveParams
+}
+
+// Functions implemented in p256_asm_*64.s
+// Montgomery multiplication modulo P256
+//go:noescape
+func p256Mul(res, in1, in2 []uint64)
+
+// Montgomery square modulo P256, repeated n times (n >= 1)
+//go:noescape
+func p256Sqr(res, in []uint64, n int)
+
+// Montgomery multiplication by 1
+//go:noescape
+func p256FromMont(res, in []uint64)
+
+// iff cond == 1 val <- -val
+//go:noescape
+func p256NegCond(val []uint64, cond int)
+
+// if cond == 0 res <- b; else res <- a
+//go:noescape
+func p256MovCond(res, a, b []uint64, cond int)
+
+// Endianness swap
+//go:noescape
+func p256BigToLittle(res []uint64, in []byte)
+
+//go:noescape
+func p256LittleToBig(res []byte, in []uint64)
+
+// Constant time table access
+//go:noescape
+func p256Select(point, table []uint64, idx int)
+
+//go:noescape
+func p256SelectBase(point, table []uint64, idx int)
+
+// Montgomery multiplication modulo Ord(G)
+//go:noescape
+func p256OrdMul(res, in1, in2 []uint64)
+
+// Montgomery square modulo Ord(G), repeated n times
+//go:noescape
+func p256OrdSqr(res, in []uint64, n int)
+
+// Point add with in2 being affine point
+// If sign == 1 -> in2 = -in2
+// If sel == 0 -> res = in1
+// if zero == 0 -> res = in2
+//go:noescape
+func p256PointAddAffineAsm(res, in1, in2 []uint64, sign, sel, zero int)
+
+// Point add. Returns one if the two input points were equal and zero
+// otherwise. (Note that, due to the way that the equations work out, some
+// representations of ∞ are considered equal to everything by this function.)
+//go:noescape
+func p256PointAddAsm(res, in1, in2 []uint64) int
+
+// Point double
+//go:noescape
+func p256PointDoubleAsm(res, in []uint64)
+
+func (curve p256Curve) Inverse(k *big.Int) *big.Int {
+ if k.Sign() < 0 {
+ // This should never happen.
+ k = new(big.Int).Neg(k)
+ }
+
+ if k.Cmp(p256.N) >= 0 {
+ // This should never happen.
+ k = new(big.Int).Mod(k, p256.N)
+ }
+
+ // table will store precomputed powers of x.
+ var table [4 * 9]uint64
+ var (
+ _1 = table[4*0 : 4*1]
+ _11 = table[4*1 : 4*2]
+ _101 = table[4*2 : 4*3]
+ _111 = table[4*3 : 4*4]
+ _1111 = table[4*4 : 4*5]
+ _10101 = table[4*5 : 4*6]
+ _101111 = table[4*6 : 4*7]
+ x = table[4*7 : 4*8]
+ t = table[4*8 : 4*9]
+ )
+
+ fromBig(x[:], k)
+ // This code operates in the Montgomery domain where R = 2^256 mod n
+ // and n is the order of the scalar field. (See initP256 for the
+ // value.) Elements in the Montgomery domain take the form a×R and
+ // multiplication of x and y in the calculates (x × y × R^-1) mod n. RR
+ // is R×R mod n thus the Montgomery multiplication x and RR gives x×R,
+ // i.e. converts x into the Montgomery domain.
+ // Window values borrowed from https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
+ RR := []uint64{0x83244c95be79eea2, 0x4699799c49bd6fa6, 0x2845b2392b6bec59, 0x66e12d94f3d95620}
+ p256OrdMul(_1, x, RR) // _1
+ p256OrdSqr(x, _1, 1) // _10
+ p256OrdMul(_11, x, _1) // _11
+ p256OrdMul(_101, x, _11) // _101
+ p256OrdMul(_111, x, _101) // _111
+ p256OrdSqr(x, _101, 1) // _1010
+ p256OrdMul(_1111, _101, x) // _1111
+
+ p256OrdSqr(t, x, 1) // _10100
+ p256OrdMul(_10101, t, _1) // _10101
+ p256OrdSqr(x, _10101, 1) // _101010
+ p256OrdMul(_101111, _101, x) // _101111
+ p256OrdMul(x, _10101, x) // _111111 = x6
+ p256OrdSqr(t, x, 2) // _11111100
+ p256OrdMul(t, t, _11) // _11111111 = x8
+ p256OrdSqr(x, t, 8) // _ff00
+ p256OrdMul(x, x, t) // _ffff = x16
+ p256OrdSqr(t, x, 16) // _ffff0000
+ p256OrdMul(t, t, x) // _ffffffff = x32
+
+ p256OrdSqr(x, t, 64)
+ p256OrdMul(x, x, t)
+ p256OrdSqr(x, x, 32)
+ p256OrdMul(x, x, t)
+
+ sqrs := []uint8{
+ 6, 5, 4, 5, 5,
+ 4, 3, 3, 5, 9,
+ 6, 2, 5, 6, 5,
+ 4, 5, 5, 3, 10,
+ 2, 5, 5, 3, 7, 6}
+ muls := [][]uint64{
+ _101111, _111, _11, _1111, _10101,
+ _101, _101, _101, _111, _101111,
+ _1111, _1, _1, _1111, _111,
+ _111, _111, _101, _11, _101111,
+ _11, _11, _11, _1, _10101, _1111}
+
+ for i, s := range sqrs {
+ p256OrdSqr(x, x, int(s))
+ p256OrdMul(x, x, muls[i])
+ }
+
+ // Multiplying by one in the Montgomery domain converts a Montgomery
+ // value out of the domain.
+ one := []uint64{1, 0, 0, 0}
+ p256OrdMul(x, x, one)
+
+ xOut := make([]byte, 32)
+ p256LittleToBig(xOut, x)
+ return new(big.Int).SetBytes(xOut)
+}
+
+// fromBig converts a *big.Int into a format used by this code.
+func fromBig(out []uint64, big *big.Int) {
+ for i := range out {
+ out[i] = 0
+ }
+
+ for i, v := range big.Bits() {
+ out[i] = uint64(v)
+ }
+}
+
+// p256GetScalar endian-swaps the big-endian scalar value from in and writes it
+// to out. If the scalar is equal or greater than the order of the group, it's
+// reduced modulo that order.
+func p256GetScalar(out []uint64, in []byte) {
+ n := new(big.Int).SetBytes(in)
+
+ if n.Cmp(p256.N) >= 0 {
+ n.Mod(n, p256.N)
+ }
+ fromBig(out, n)
+}
+
+// p256Mul operates in a Montgomery domain with R = 2^256 mod p, where p is the
+// underlying field of the curve. (See initP256 for the value.) Thus rr here is
+// R×R mod p. See comment in Inverse about how this is used.
+var rr = []uint64{0x0000000000000003, 0xfffffffbffffffff, 0xfffffffffffffffe, 0x00000004fffffffd}
+
+func maybeReduceModP(in *big.Int) *big.Int {
+ if in.Cmp(p256.P) < 0 {
+ return in
+ }
+ return new(big.Int).Mod(in, p256.P)
+}
+
+func (curve p256Curve) CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int) {
+ scalarReversed := make([]uint64, 4)
+ var r1, r2 p256Point
+ p256GetScalar(scalarReversed, baseScalar)
+ r1IsInfinity := scalarIsZero(scalarReversed)
+ r1.p256BaseMult(scalarReversed)
+
+ p256GetScalar(scalarReversed, scalar)
+ r2IsInfinity := scalarIsZero(scalarReversed)
+ fromBig(r2.xyz[0:4], maybeReduceModP(bigX))
+ fromBig(r2.xyz[4:8], maybeReduceModP(bigY))
+ p256Mul(r2.xyz[0:4], r2.xyz[0:4], rr[:])
+ p256Mul(r2.xyz[4:8], r2.xyz[4:8], rr[:])
+
+ // This sets r2's Z value to 1, in the Montgomery domain.
+ r2.xyz[8] = 0x0000000000000001
+ r2.xyz[9] = 0xffffffff00000000
+ r2.xyz[10] = 0xffffffffffffffff
+ r2.xyz[11] = 0x00000000fffffffe
+
+ r2.p256ScalarMult(scalarReversed)
+
+ var sum, double p256Point
+ pointsEqual := p256PointAddAsm(sum.xyz[:], r1.xyz[:], r2.xyz[:])
+ p256PointDoubleAsm(double.xyz[:], r1.xyz[:])
+ sum.CopyConditional(&double, pointsEqual)
+ sum.CopyConditional(&r1, r2IsInfinity)
+ sum.CopyConditional(&r2, r1IsInfinity)
+
+ return sum.p256PointToAffine()
+}
+
+func (curve p256Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) {
+ scalarReversed := make([]uint64, 4)
+ p256GetScalar(scalarReversed, scalar)
+
+ var r p256Point
+ r.p256BaseMult(scalarReversed)
+ return r.p256PointToAffine()
+}
+
+func (curve p256Curve) ScalarMult(bigX, bigY *big.Int, scalar []byte) (x, y *big.Int) {
+ scalarReversed := make([]uint64, 4)
+ p256GetScalar(scalarReversed, scalar)
+
+ var r p256Point
+ fromBig(r.xyz[0:4], maybeReduceModP(bigX))
+ fromBig(r.xyz[4:8], maybeReduceModP(bigY))
+ p256Mul(r.xyz[0:4], r.xyz[0:4], rr[:])
+ p256Mul(r.xyz[4:8], r.xyz[4:8], rr[:])
+ // This sets r2's Z value to 1, in the Montgomery domain.
+ r.xyz[8] = 0x0000000000000001
+ r.xyz[9] = 0xffffffff00000000
+ r.xyz[10] = 0xffffffffffffffff
+ r.xyz[11] = 0x00000000fffffffe
+
+ r.p256ScalarMult(scalarReversed)
+ return r.p256PointToAffine()
+}
+
+// uint64IsZero returns 1 if x is zero and zero otherwise.
+func uint64IsZero(x uint64) int {
+ x = ^x
+ x &= x >> 32
+ x &= x >> 16
+ x &= x >> 8
+ x &= x >> 4
+ x &= x >> 2
+ x &= x >> 1
+ return int(x & 1)
+}
+
+// scalarIsZero returns 1 if scalar represents the zero value, and zero
+// otherwise.
+func scalarIsZero(scalar []uint64) int {
+ return uint64IsZero(scalar[0] | scalar[1] | scalar[2] | scalar[3])
+}
+
+func (p *p256Point) p256PointToAffine() (x, y *big.Int) {
+ zInv := make([]uint64, 4)
+ zInvSq := make([]uint64, 4)
+ p256Inverse(zInv, p.xyz[8:12])
+ p256Sqr(zInvSq, zInv, 1)
+ p256Mul(zInv, zInv, zInvSq)
+
+ p256Mul(zInvSq, p.xyz[0:4], zInvSq)
+ p256Mul(zInv, p.xyz[4:8], zInv)
+
+ p256FromMont(zInvSq, zInvSq)
+ p256FromMont(zInv, zInv)
+
+ xOut := make([]byte, 32)
+ yOut := make([]byte, 32)
+ p256LittleToBig(xOut, zInvSq)
+ p256LittleToBig(yOut, zInv)
+
+ return new(big.Int).SetBytes(xOut), new(big.Int).SetBytes(yOut)
+}
+
+// CopyConditional copies overwrites p with src if v == 1, and leaves p
+// unchanged if v == 0.
+func (p *p256Point) CopyConditional(src *p256Point, v int) {
+ pMask := uint64(v) - 1
+ srcMask := ^pMask
+
+ for i, n := range p.xyz {
+ p.xyz[i] = (n & pMask) | (src.xyz[i] & srcMask)
+ }
+}
+
+// p256Inverse sets out to in^-1 mod p.
+func p256Inverse(out, in []uint64) {
+ var stack [6 * 4]uint64
+ p2 := stack[4*0 : 4*0+4]
+ p4 := stack[4*1 : 4*1+4]
+ p8 := stack[4*2 : 4*2+4]
+ p16 := stack[4*3 : 4*3+4]
+ p32 := stack[4*4 : 4*4+4]
+
+ p256Sqr(out, in, 1)
+ p256Mul(p2, out, in) // 3*p
+
+ p256Sqr(out, p2, 2)
+ p256Mul(p4, out, p2) // f*p
+
+ p256Sqr(out, p4, 4)
+ p256Mul(p8, out, p4) // ff*p
+
+ p256Sqr(out, p8, 8)
+ p256Mul(p16, out, p8) // ffff*p
+
+ p256Sqr(out, p16, 16)
+ p256Mul(p32, out, p16) // ffffffff*p
+
+ p256Sqr(out, p32, 32)
+ p256Mul(out, out, in)
+
+ p256Sqr(out, out, 128)
+ p256Mul(out, out, p32)
+
+ p256Sqr(out, out, 32)
+ p256Mul(out, out, p32)
+
+ p256Sqr(out, out, 16)
+ p256Mul(out, out, p16)
+
+ p256Sqr(out, out, 8)
+ p256Mul(out, out, p8)
+
+ p256Sqr(out, out, 4)
+ p256Mul(out, out, p4)
+
+ p256Sqr(out, out, 2)
+ p256Mul(out, out, p2)
+
+ p256Sqr(out, out, 2)
+ p256Mul(out, out, in)
+}
+
+func (p *p256Point) p256StorePoint(r *[16 * 4 * 3]uint64, index int) {
+ copy(r[index*12:], p.xyz[:])
+}
+
+func boothW5(in uint) (int, int) {
+ var s uint = ^((in >> 5) - 1)
+ var d uint = (1 << 6) - in - 1
+ d = (d & s) | (in & (^s))
+ d = (d >> 1) + (d & 1)
+ return int(d), int(s & 1)
+}
+
+func boothW6(in uint) (int, int) {
+ var s uint = ^((in >> 6) - 1)
+ var d uint = (1 << 7) - in - 1
+ d = (d & s) | (in & (^s))
+ d = (d >> 1) + (d & 1)
+ return int(d), int(s & 1)
+}
+
+func (p *p256Point) p256BaseMult(scalar []uint64) {
+ wvalue := (scalar[0] << 1) & 0x7f
+ sel, sign := boothW6(uint(wvalue))
+ p256SelectBase(p.xyz[0:8], p256Precomputed[0][0:], sel)
+ p256NegCond(p.xyz[4:8], sign)
+
+ // (This is one, in the Montgomery domain.)
+ p.xyz[8] = 0x0000000000000001
+ p.xyz[9] = 0xffffffff00000000
+ p.xyz[10] = 0xffffffffffffffff
+ p.xyz[11] = 0x00000000fffffffe
+
+ var t0 p256Point
+ // (This is one, in the Montgomery domain.)
+ t0.xyz[8] = 0x0000000000000001
+ t0.xyz[9] = 0xffffffff00000000
+ t0.xyz[10] = 0xffffffffffffffff
+ t0.xyz[11] = 0x00000000fffffffe
+
+ index := uint(5)
+ zero := sel
+
+ for i := 1; i < 43; i++ {
+ if index < 192 {
+ wvalue = ((scalar[index/64] >> (index % 64)) + (scalar[index/64+1] << (64 - (index % 64)))) & 0x7f
+ } else {
+ wvalue = (scalar[index/64] >> (index % 64)) & 0x7f
+ }
+ index += 6
+ sel, sign = boothW6(uint(wvalue))
+ p256SelectBase(t0.xyz[0:8], p256Precomputed[i][0:], sel)
+ p256PointAddAffineAsm(p.xyz[0:12], p.xyz[0:12], t0.xyz[0:8], sign, sel, zero)
+ zero |= sel
+ }
+}
+
+func (p *p256Point) p256ScalarMult(scalar []uint64) {
+ // precomp is a table of precomputed points that stores powers of p
+ // from p^1 to p^16.
+ var precomp [16 * 4 * 3]uint64
+ var t0, t1, t2, t3 p256Point
+
+ // Prepare the table
+ p.p256StorePoint(&precomp, 0) // 1
+
+ p256PointDoubleAsm(t0.xyz[:], p.xyz[:])
+ p256PointDoubleAsm(t1.xyz[:], t0.xyz[:])
+ p256PointDoubleAsm(t2.xyz[:], t1.xyz[:])
+ p256PointDoubleAsm(t3.xyz[:], t2.xyz[:])
+ t0.p256StorePoint(&precomp, 1) // 2
+ t1.p256StorePoint(&precomp, 3) // 4
+ t2.p256StorePoint(&precomp, 7) // 8
+ t3.p256StorePoint(&precomp, 15) // 16
+
+ p256PointAddAsm(t0.xyz[:], t0.xyz[:], p.xyz[:])
+ p256PointAddAsm(t1.xyz[:], t1.xyz[:], p.xyz[:])
+ p256PointAddAsm(t2.xyz[:], t2.xyz[:], p.xyz[:])
+ t0.p256StorePoint(&precomp, 2) // 3
+ t1.p256StorePoint(&precomp, 4) // 5
+ t2.p256StorePoint(&precomp, 8) // 9
+
+ p256PointDoubleAsm(t0.xyz[:], t0.xyz[:])
+ p256PointDoubleAsm(t1.xyz[:], t1.xyz[:])
+ t0.p256StorePoint(&precomp, 5) // 6
+ t1.p256StorePoint(&precomp, 9) // 10
+
+ p256PointAddAsm(t2.xyz[:], t0.xyz[:], p.xyz[:])
+ p256PointAddAsm(t1.xyz[:], t1.xyz[:], p.xyz[:])
+ t2.p256StorePoint(&precomp, 6) // 7
+ t1.p256StorePoint(&precomp, 10) // 11
+
+ p256PointDoubleAsm(t0.xyz[:], t0.xyz[:])
+ p256PointDoubleAsm(t2.xyz[:], t2.xyz[:])
+ t0.p256StorePoint(&precomp, 11) // 12
+ t2.p256StorePoint(&precomp, 13) // 14
+
+ p256PointAddAsm(t0.xyz[:], t0.xyz[:], p.xyz[:])
+ p256PointAddAsm(t2.xyz[:], t2.xyz[:], p.xyz[:])
+ t0.p256StorePoint(&precomp, 12) // 13
+ t2.p256StorePoint(&precomp, 14) // 15
+
+ // Start scanning the window from top bit
+ index := uint(254)
+ var sel, sign int
+
+ wvalue := (scalar[index/64] >> (index % 64)) & 0x3f
+ sel, _ = boothW5(uint(wvalue))
+
+ p256Select(p.xyz[0:12], precomp[0:], sel)
+ zero := sel
+
+ for index > 4 {
+ index -= 5
+ p256PointDoubleAsm(p.xyz[:], p.xyz[:])
+ p256PointDoubleAsm(p.xyz[:], p.xyz[:])
+ p256PointDoubleAsm(p.xyz[:], p.xyz[:])
+ p256PointDoubleAsm(p.xyz[:], p.xyz[:])
+ p256PointDoubleAsm(p.xyz[:], p.xyz[:])
+
+ if index < 192 {
+ wvalue = ((scalar[index/64] >> (index % 64)) + (scalar[index/64+1] << (64 - (index % 64)))) & 0x3f
+ } else {
+ wvalue = (scalar[index/64] >> (index % 64)) & 0x3f
+ }
+
+ sel, sign = boothW5(uint(wvalue))
+
+ p256Select(t0.xyz[0:], precomp[0:], sel)
+ p256NegCond(t0.xyz[4:8], sign)
+ p256PointAddAsm(t1.xyz[:], p.xyz[:], t0.xyz[:])
+ p256MovCond(t1.xyz[0:12], t1.xyz[0:12], p.xyz[0:12], sel)
+ p256MovCond(p.xyz[0:12], t1.xyz[0:12], t0.xyz[0:12], zero)
+ zero |= sel
+ }
+
+ p256PointDoubleAsm(p.xyz[:], p.xyz[:])
+ p256PointDoubleAsm(p.xyz[:], p.xyz[:])
+ p256PointDoubleAsm(p.xyz[:], p.xyz[:])
+ p256PointDoubleAsm(p.xyz[:], p.xyz[:])
+ p256PointDoubleAsm(p.xyz[:], p.xyz[:])
+
+ wvalue = (scalar[0] << 1) & 0x3f
+ sel, sign = boothW5(uint(wvalue))
+
+ p256Select(t0.xyz[0:], precomp[0:], sel)
+ p256NegCond(t0.xyz[4:8], sign)
+ p256PointAddAsm(t1.xyz[:], p.xyz[:], t0.xyz[:])
+ p256MovCond(t1.xyz[0:12], t1.xyz[0:12], p.xyz[0:12], sel)
+ p256MovCond(p.xyz[0:12], t1.xyz[0:12], t0.xyz[0:12], zero)
+}