diff options
Diffstat (limited to '')
-rw-r--r-- | src/crypto/elliptic/p256_ppc64le.go | 522 |
1 files changed, 522 insertions, 0 deletions
diff --git a/src/crypto/elliptic/p256_ppc64le.go b/src/crypto/elliptic/p256_ppc64le.go new file mode 100644 index 0000000..40d9ed9 --- /dev/null +++ b/src/crypto/elliptic/p256_ppc64le.go @@ -0,0 +1,522 @@ +// Copyright 2019 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +//go:build ppc64le +// +build ppc64le + +package elliptic + +import ( + "crypto/subtle" + "encoding/binary" + "math/big" +) + +// This was ported from the s390x implementation for ppc64le. +// Some hints are included here for changes that should be +// in the big endian ppc64 implementation, however more +// investigation and testing is needed for the ppc64 big +// endian version to work. +type p256CurveFast struct { + *CurveParams +} + +type p256Point struct { + x [32]byte + y [32]byte + z [32]byte +} + +var ( + p256 Curve + p256PreFast *[37][64]p256Point +) + +func initP256Arch() { + p256 = p256CurveFast{p256Params} + initTable() + return +} + +func (curve p256CurveFast) Params() *CurveParams { + return curve.CurveParams +} + +// Functions implemented in p256_asm_ppc64le.s +// Montgomery multiplication modulo P256 +// +//go:noescape +func p256MulAsm(res, in1, in2 []byte) + +// Montgomery square modulo P256 +// +func p256Sqr(res, in []byte) { + p256MulAsm(res, in, in) +} + +// Montgomery multiplication by 1 +// +//go:noescape +func p256FromMont(res, in []byte) + +// iff cond == 1 val <- -val +// +//go:noescape +func p256NegCond(val *p256Point, cond int) + +// if cond == 0 res <- b; else res <- a +// +//go:noescape +func p256MovCond(res, a, b *p256Point, cond int) + +// Constant time table access +// +//go:noescape +func p256Select(point *p256Point, table []p256Point, idx int) + +// +//go:noescape +func p256SelectBase(point *p256Point, table []p256Point, idx int) + +// Point add with P2 being affine point +// If sign == 1 -> P2 = -P2 +// If sel == 0 -> P3 = P1 +// if zero == 0 -> P3 = P2 +// +//go:noescape +func p256PointAddAffineAsm(res, in1, in2 *p256Point, sign, sel, zero int) + +// Point add +// +//go:noescape +func p256PointAddAsm(res, in1, in2 *p256Point) int + +// +//go:noescape +func p256PointDoubleAsm(res, in *p256Point) + +// The result should be a slice in LE order, but the slice +// from big.Bytes is in BE order. +// TODO: For big endian implementation, do not reverse bytes. +// +func fromBig(big *big.Int) []byte { + // This could be done a lot more efficiently... + res := big.Bytes() + t := make([]byte, 32) + if len(res) < 32 { + copy(t[32-len(res):], res) + } else if len(res) == 32 { + copy(t, res) + } else { + copy(t, res[len(res)-32:]) + } + p256ReverseBytes(t, t) + return t +} + +// p256GetMultiplier makes sure byte array will have 32 byte elements, If the scalar +// is equal or greater than the order of the group, it's reduced modulo that order. +func p256GetMultiplier(in []byte) []byte { + n := new(big.Int).SetBytes(in) + + if n.Cmp(p256Params.N) >= 0 { + n.Mod(n, p256Params.N) + } + return fromBig(n) +} + +// p256MulAsm operates in a Montgomery domain with R = 2^256 mod p, where p is the +// underlying field of the curve. (See initP256 for the value.) Thus rr here is +// R×R mod p. See comment in Inverse about how this is used. +// TODO: For big endian implementation, the bytes in these slices should be in reverse order, +// as found in the s390x implementation. +var rr = []byte{0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0, 0xff, 0xff, 0xff, 0xff, 0xfb, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfd, 0xff, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00} + +// (This is one, in the Montgomery domain.) +var one = []byte{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00} + +func maybeReduceModP(in *big.Int) *big.Int { + if in.Cmp(p256Params.P) < 0 { + return in + } + return new(big.Int).Mod(in, p256Params.P) +} + +// p256ReverseBytes copies the first 32 bytes from in to res in reverse order. +func p256ReverseBytes(res, in []byte) { + // remove bounds check + in = in[:32] + res = res[:32] + + // Load in reverse order + a := binary.BigEndian.Uint64(in[0:]) + b := binary.BigEndian.Uint64(in[8:]) + c := binary.BigEndian.Uint64(in[16:]) + d := binary.BigEndian.Uint64(in[24:]) + + // Store in normal order + binary.LittleEndian.PutUint64(res[0:], d) + binary.LittleEndian.PutUint64(res[8:], c) + binary.LittleEndian.PutUint64(res[16:], b) + binary.LittleEndian.PutUint64(res[24:], a) +} + +func (curve p256CurveFast) CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int) { + var r1, r2 p256Point + + scalarReduced := p256GetMultiplier(baseScalar) + r1IsInfinity := scalarIsZero(scalarReduced) + r1.p256BaseMult(scalarReduced) + + copy(r2.x[:], fromBig(maybeReduceModP(bigX))) + copy(r2.y[:], fromBig(maybeReduceModP(bigY))) + copy(r2.z[:], one) + p256MulAsm(r2.x[:], r2.x[:], rr[:]) + p256MulAsm(r2.y[:], r2.y[:], rr[:]) + + scalarReduced = p256GetMultiplier(scalar) + r2IsInfinity := scalarIsZero(scalarReduced) + r2.p256ScalarMult(scalarReduced) + + var sum, double p256Point + pointsEqual := p256PointAddAsm(&sum, &r1, &r2) + p256PointDoubleAsm(&double, &r1) + p256MovCond(&sum, &double, &sum, pointsEqual) + p256MovCond(&sum, &r1, &sum, r2IsInfinity) + p256MovCond(&sum, &r2, &sum, r1IsInfinity) + return sum.p256PointToAffine() +} + +func (curve p256CurveFast) ScalarBaseMult(scalar []byte) (x, y *big.Int) { + var r p256Point + reducedScalar := p256GetMultiplier(scalar) + r.p256BaseMult(reducedScalar) + return r.p256PointToAffine() +} + +func (curve p256CurveFast) ScalarMult(bigX, bigY *big.Int, scalar []byte) (x, y *big.Int) { + scalarReduced := p256GetMultiplier(scalar) + var r p256Point + copy(r.x[:], fromBig(maybeReduceModP(bigX))) + copy(r.y[:], fromBig(maybeReduceModP(bigY))) + copy(r.z[:], one) + p256MulAsm(r.x[:], r.x[:], rr[:]) + p256MulAsm(r.y[:], r.y[:], rr[:]) + r.p256ScalarMult(scalarReduced) + return r.p256PointToAffine() +} + +func scalarIsZero(scalar []byte) int { + // If any byte is not zero, return 0. + // Check for -0.... since that appears to compare to 0. + b := byte(0) + for _, s := range scalar { + b |= s + } + return subtle.ConstantTimeByteEq(b, 0) +} + +func (p *p256Point) p256PointToAffine() (x, y *big.Int) { + zInv := make([]byte, 32) + zInvSq := make([]byte, 32) + + p256Inverse(zInv, p.z[:]) + p256Sqr(zInvSq, zInv) + p256MulAsm(zInv, zInv, zInvSq) + + p256MulAsm(zInvSq, p.x[:], zInvSq) + p256MulAsm(zInv, p.y[:], zInv) + + p256FromMont(zInvSq, zInvSq) + p256FromMont(zInv, zInv) + + // SetBytes expects a slice in big endian order, + // since ppc64le is little endian, reverse the bytes. + // TODO: For big endian, bytes don't need to be reversed. + p256ReverseBytes(zInvSq, zInvSq) + p256ReverseBytes(zInv, zInv) + rx := new(big.Int).SetBytes(zInvSq) + ry := new(big.Int).SetBytes(zInv) + return rx, ry +} + +// p256Inverse sets out to in^-1 mod p. +func p256Inverse(out, in []byte) { + var stack [6 * 32]byte + p2 := stack[32*0 : 32*0+32] + p4 := stack[32*1 : 32*1+32] + p8 := stack[32*2 : 32*2+32] + p16 := stack[32*3 : 32*3+32] + p32 := stack[32*4 : 32*4+32] + + p256Sqr(out, in) + p256MulAsm(p2, out, in) // 3*p + + p256Sqr(out, p2) + p256Sqr(out, out) + p256MulAsm(p4, out, p2) // f*p + + p256Sqr(out, p4) + p256Sqr(out, out) + p256Sqr(out, out) + p256Sqr(out, out) + p256MulAsm(p8, out, p4) // ff*p + + p256Sqr(out, p8) + + for i := 0; i < 7; i++ { + p256Sqr(out, out) + } + p256MulAsm(p16, out, p8) // ffff*p + + p256Sqr(out, p16) + for i := 0; i < 15; i++ { + p256Sqr(out, out) + } + p256MulAsm(p32, out, p16) // ffffffff*p + + p256Sqr(out, p32) + + for i := 0; i < 31; i++ { + p256Sqr(out, out) + } + p256MulAsm(out, out, in) + + for i := 0; i < 32*4; i++ { + p256Sqr(out, out) + } + p256MulAsm(out, out, p32) + + for i := 0; i < 32; i++ { + p256Sqr(out, out) + } + p256MulAsm(out, out, p32) + + for i := 0; i < 16; i++ { + p256Sqr(out, out) + } + p256MulAsm(out, out, p16) + + for i := 0; i < 8; i++ { + p256Sqr(out, out) + } + p256MulAsm(out, out, p8) + + p256Sqr(out, out) + p256Sqr(out, out) + p256Sqr(out, out) + p256Sqr(out, out) + p256MulAsm(out, out, p4) + + p256Sqr(out, out) + p256Sqr(out, out) + p256MulAsm(out, out, p2) + + p256Sqr(out, out) + p256Sqr(out, out) + p256MulAsm(out, out, in) +} + +func boothW5(in uint) (int, int) { + var s uint = ^((in >> 5) - 1) + var d uint = (1 << 6) - in - 1 + d = (d & s) | (in & (^s)) + d = (d >> 1) + (d & 1) + return int(d), int(s & 1) +} + +func boothW6(in uint) (int, int) { + var s uint = ^((in >> 6) - 1) + var d uint = (1 << 7) - in - 1 + d = (d & s) | (in & (^s)) + d = (d >> 1) + (d & 1) + return int(d), int(s & 1) +} + +func boothW7(in uint) (int, int) { + var s uint = ^((in >> 7) - 1) + var d uint = (1 << 8) - in - 1 + d = (d & s) | (in & (^s)) + d = (d >> 1) + (d & 1) + return int(d), int(s & 1) +} + +func initTable() { + + p256PreFast = new([37][64]p256Point) + + // TODO: For big endian, these slices should be in reverse byte order, + // as found in the s390x implementation. + basePoint := p256Point{ + x: [32]byte{0x3c, 0x14, 0xa9, 0x18, 0xd4, 0x30, 0xe7, 0x79, 0x01, 0xb6, 0xed, 0x5f, 0xfc, 0x95, 0xba, 0x75, + 0x10, 0x25, 0x62, 0x77, 0x2b, 0x73, 0xfb, 0x79, 0xc6, 0x55, 0x37, 0xa5, 0x76, 0x5f, 0x90, 0x18}, //(p256.x*2^256)%p + y: [32]byte{0x0a, 0x56, 0x95, 0xce, 0x57, 0x53, 0xf2, 0xdd, 0x5c, 0xe4, 0x19, 0xba, 0xe4, 0xb8, 0x4a, 0x8b, + 0x25, 0xf3, 0x21, 0xdd, 0x88, 0x86, 0xe8, 0xd2, 0x85, 0x5d, 0x88, 0x25, 0x18, 0xff, 0x71, 0x85}, //(p256.y*2^256)%p + z: [32]byte{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00}, //(p256.z*2^256)%p + + } + + t1 := new(p256Point) + t2 := new(p256Point) + *t2 = basePoint + + zInv := make([]byte, 32) + zInvSq := make([]byte, 32) + for j := 0; j < 64; j++ { + *t1 = *t2 + for i := 0; i < 37; i++ { + // The window size is 7 so we need to double 7 times. + if i != 0 { + for k := 0; k < 7; k++ { + p256PointDoubleAsm(t1, t1) + } + } + // Convert the point to affine form. (Its values are + // still in Montgomery form however.) + p256Inverse(zInv, t1.z[:]) + p256Sqr(zInvSq, zInv) + p256MulAsm(zInv, zInv, zInvSq) + + p256MulAsm(t1.x[:], t1.x[:], zInvSq) + p256MulAsm(t1.y[:], t1.y[:], zInv) + + copy(t1.z[:], basePoint.z[:]) + // Update the table entry + copy(p256PreFast[i][j].x[:], t1.x[:]) + copy(p256PreFast[i][j].y[:], t1.y[:]) + } + if j == 0 { + p256PointDoubleAsm(t2, &basePoint) + } else { + p256PointAddAsm(t2, t2, &basePoint) + } + } +} + +func (p *p256Point) p256BaseMult(scalar []byte) { + // TODO: For big endian, the index should be 31 not 0. + wvalue := (uint(scalar[0]) << 1) & 0xff + sel, sign := boothW7(uint(wvalue)) + p256SelectBase(p, p256PreFast[0][:], sel) + p256NegCond(p, sign) + + copy(p.z[:], one[:]) + var t0 p256Point + + copy(t0.z[:], one[:]) + + index := uint(6) + zero := sel + for i := 1; i < 37; i++ { + // TODO: For big endian, use the same index values as found + // in the s390x implementation. + if index < 247 { + wvalue = ((uint(scalar[index/8]) >> (index % 8)) + (uint(scalar[index/8+1]) << (8 - (index % 8)))) & 0xff + } else { + wvalue = (uint(scalar[index/8]) >> (index % 8)) & 0xff + } + index += 7 + sel, sign = boothW7(uint(wvalue)) + p256SelectBase(&t0, p256PreFast[i][:], sel) + p256PointAddAffineAsm(p, p, &t0, sign, sel, zero) + zero |= sel + } +} + +func (p *p256Point) p256ScalarMult(scalar []byte) { + // precomp is a table of precomputed points that stores powers of p + // from p^1 to p^16. + var precomp [16]p256Point + var t0, t1, t2, t3 p256Point + + *&precomp[0] = *p + p256PointDoubleAsm(&t0, p) + p256PointDoubleAsm(&t1, &t0) + p256PointDoubleAsm(&t2, &t1) + p256PointDoubleAsm(&t3, &t2) + *&precomp[1] = t0 + *&precomp[3] = t1 + *&precomp[7] = t2 + *&precomp[15] = t3 + + p256PointAddAsm(&t0, &t0, p) + p256PointAddAsm(&t1, &t1, p) + p256PointAddAsm(&t2, &t2, p) + + *&precomp[2] = t0 + *&precomp[4] = t1 + *&precomp[8] = t2 + + p256PointDoubleAsm(&t0, &t0) + p256PointDoubleAsm(&t1, &t1) + *&precomp[5] = t0 + *&precomp[9] = t1 + + p256PointAddAsm(&t2, &t0, p) + p256PointAddAsm(&t1, &t1, p) + *&precomp[6] = t2 + *&precomp[10] = t1 + + p256PointDoubleAsm(&t0, &t0) + p256PointDoubleAsm(&t2, &t2) + *&precomp[11] = t0 + *&precomp[13] = t2 + + p256PointAddAsm(&t0, &t0, p) + p256PointAddAsm(&t2, &t2, p) + *&precomp[12] = t0 + *&precomp[14] = t2 + + // Start scanning the window from top bit + index := uint(254) + var sel, sign int + + // TODO: For big endian, use index found in s390x implementation. + wvalue := (uint(scalar[index/8]) >> (index % 8)) & 0x3f + sel, _ = boothW5(uint(wvalue)) + p256Select(p, precomp[:], sel) + zero := sel + + for index > 4 { + index -= 5 + p256PointDoubleAsm(p, p) + p256PointDoubleAsm(p, p) + p256PointDoubleAsm(p, p) + p256PointDoubleAsm(p, p) + p256PointDoubleAsm(p, p) + + // TODO: For big endian, use index values as found in s390x implementation. + if index < 247 { + wvalue = ((uint(scalar[index/8]) >> (index % 8)) + (uint(scalar[index/8+1]) << (8 - (index % 8)))) & 0x3f + } else { + wvalue = (uint(scalar[index/8]) >> (index % 8)) & 0x3f + } + + sel, sign = boothW5(uint(wvalue)) + + p256Select(&t0, precomp[:], sel) + p256NegCond(&t0, sign) + p256PointAddAsm(&t1, p, &t0) + p256MovCond(&t1, &t1, p, sel) + p256MovCond(p, &t1, &t0, zero) + zero |= sel + } + + p256PointDoubleAsm(p, p) + p256PointDoubleAsm(p, p) + p256PointDoubleAsm(p, p) + p256PointDoubleAsm(p, p) + p256PointDoubleAsm(p, p) + + // TODO: Use index for big endian as found in s390x implementation. + wvalue = (uint(scalar[0]) << 1) & 0x3f + sel, sign = boothW5(uint(wvalue)) + + p256Select(&t0, precomp[:], sel) + p256NegCond(&t0, sign) + p256PointAddAsm(&t1, p, &t0) + p256MovCond(&t1, &t1, p, sel) + p256MovCond(p, &t1, &t0, zero) +} |