summaryrefslogtreecommitdiffstats
path: root/src/crypto/elliptic/p521.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/crypto/elliptic/p521.go')
-rw-r--r--src/crypto/elliptic/p521.go264
1 files changed, 264 insertions, 0 deletions
diff --git a/src/crypto/elliptic/p521.go b/src/crypto/elliptic/p521.go
new file mode 100644
index 0000000..587991e
--- /dev/null
+++ b/src/crypto/elliptic/p521.go
@@ -0,0 +1,264 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package elliptic
+
+import (
+ "crypto/elliptic/internal/fiat"
+ "math/big"
+)
+
+type p521Curve struct {
+ *CurveParams
+}
+
+var p521 p521Curve
+var p521Params *CurveParams
+
+func initP521() {
+ // See FIPS 186-3, section D.2.5
+ p521.CurveParams = &CurveParams{Name: "P-521"}
+ p521.P, _ = new(big.Int).SetString("6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151", 10)
+ p521.N, _ = new(big.Int).SetString("6864797660130609714981900799081393217269435300143305409394463459185543183397655394245057746333217197532963996371363321113864768612440380340372808892707005449", 10)
+ p521.B, _ = new(big.Int).SetString("051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00", 16)
+ p521.Gx, _ = new(big.Int).SetString("c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66", 16)
+ p521.Gy, _ = new(big.Int).SetString("11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650", 16)
+ p521.BitSize = 521
+}
+
+func (curve p521Curve) Params() *CurveParams {
+ return curve.CurveParams
+}
+
+func (curve p521Curve) IsOnCurve(x, y *big.Int) bool {
+ if x.Sign() < 0 || x.Cmp(curve.P) >= 0 ||
+ y.Sign() < 0 || y.Cmp(curve.P) >= 0 {
+ return false
+ }
+
+ x1 := bigIntToFiatP521(x)
+ y1 := bigIntToFiatP521(y)
+ b := bigIntToFiatP521(curve.B) // TODO: precompute this value.
+
+ // x³ - 3x + b.
+ x3 := new(fiat.P521Element).Square(x1)
+ x3.Mul(x3, x1)
+
+ threeX := new(fiat.P521Element).Add(x1, x1)
+ threeX.Add(threeX, x1)
+
+ x3.Sub(x3, threeX)
+ x3.Add(x3, b)
+
+ // y² = x³ - 3x + b
+ y2 := new(fiat.P521Element).Square(y1)
+
+ return x3.Equal(y2) == 1
+}
+
+type p521Point struct {
+ x, y, z *fiat.P521Element
+}
+
+func fiatP521ToBigInt(x *fiat.P521Element) *big.Int {
+ xBytes := x.Bytes()
+ for i := range xBytes[:len(xBytes)/2] {
+ xBytes[i], xBytes[len(xBytes)-i-1] = xBytes[len(xBytes)-i-1], xBytes[i]
+ }
+ return new(big.Int).SetBytes(xBytes)
+}
+
+// affineFromJacobian brings a point in Jacobian coordinates back to affine
+// coordinates, with (0, 0) representing infinity by convention. It also goes
+// back to big.Int values to match the exposed API.
+func (curve p521Curve) affineFromJacobian(p *p521Point) (x, y *big.Int) {
+ if p.z.IsZero() == 1 {
+ return new(big.Int), new(big.Int)
+ }
+
+ zinv := new(fiat.P521Element).Invert(p.z)
+ zinvsq := new(fiat.P521Element).Mul(zinv, zinv)
+
+ xx := new(fiat.P521Element).Mul(p.x, zinvsq)
+ zinvsq.Mul(zinvsq, zinv)
+ yy := new(fiat.P521Element).Mul(p.y, zinvsq)
+
+ return fiatP521ToBigInt(xx), fiatP521ToBigInt(yy)
+}
+
+func bigIntToFiatP521(x *big.Int) *fiat.P521Element {
+ xBytes := new(big.Int).Mod(x, p521.P).FillBytes(make([]byte, 66))
+ for i := range xBytes[:len(xBytes)/2] {
+ xBytes[i], xBytes[len(xBytes)-i-1] = xBytes[len(xBytes)-i-1], xBytes[i]
+ }
+ x1, err := new(fiat.P521Element).SetBytes(xBytes)
+ if err != nil {
+ // The input is reduced modulo P and encoded in a fixed size bytes
+ // slice, this should be impossible.
+ panic("internal error: bigIntToFiatP521")
+ }
+ return x1
+}
+
+// jacobianFromAffine converts (x, y) affine coordinates into (x, y, z) Jacobian
+// coordinates. It also converts from big.Int to fiat, which is necessarily a
+// messy and variable-time operation, which we can't avoid due to the exposed API.
+func (curve p521Curve) jacobianFromAffine(x, y *big.Int) *p521Point {
+ // (0, 0) is by convention the point at infinity, which can't be represented
+ // in affine coordinates, but is (0, 0, 0) in Jacobian.
+ if x.Sign() == 0 && y.Sign() == 0 {
+ return &p521Point{
+ x: new(fiat.P521Element),
+ y: new(fiat.P521Element),
+ z: new(fiat.P521Element),
+ }
+ }
+ return &p521Point{
+ x: bigIntToFiatP521(x),
+ y: bigIntToFiatP521(y),
+ z: new(fiat.P521Element).One(),
+ }
+}
+
+func (curve p521Curve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
+ p1 := curve.jacobianFromAffine(x1, y1)
+ p2 := curve.jacobianFromAffine(x2, y2)
+ return curve.affineFromJacobian(p1.addJacobian(p1, p2))
+}
+
+// addJacobian sets q = p1 + p2, and returns q. The points may overlap.
+func (q *p521Point) addJacobian(p1, p2 *p521Point) *p521Point {
+ // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl
+ z1IsZero := p1.z.IsZero()
+ z2IsZero := p2.z.IsZero()
+
+ z1z1 := new(fiat.P521Element).Square(p1.z)
+ z2z2 := new(fiat.P521Element).Square(p2.z)
+
+ u1 := new(fiat.P521Element).Mul(p1.x, z2z2)
+ u2 := new(fiat.P521Element).Mul(p2.x, z1z1)
+ h := new(fiat.P521Element).Sub(u2, u1)
+ xEqual := h.IsZero() == 1
+ i := new(fiat.P521Element).Add(h, h)
+ i.Square(i)
+ j := new(fiat.P521Element).Mul(h, i)
+
+ s1 := new(fiat.P521Element).Mul(p1.y, p2.z)
+ s1.Mul(s1, z2z2)
+ s2 := new(fiat.P521Element).Mul(p2.y, p1.z)
+ s2.Mul(s2, z1z1)
+ r := new(fiat.P521Element).Sub(s2, s1)
+ yEqual := r.IsZero() == 1
+ if xEqual && yEqual && z1IsZero == 0 && z2IsZero == 0 {
+ return q.doubleJacobian(p1)
+ }
+ r.Add(r, r)
+ v := new(fiat.P521Element).Mul(u1, i)
+
+ x := new(fiat.P521Element).Set(r)
+ x.Square(x)
+ x.Sub(x, j)
+ x.Sub(x, v)
+ x.Sub(x, v)
+
+ y := new(fiat.P521Element).Set(r)
+ v.Sub(v, x)
+ y.Mul(y, v)
+ s1.Mul(s1, j)
+ s1.Add(s1, s1)
+ y.Sub(y, s1)
+
+ z := new(fiat.P521Element).Add(p1.z, p2.z)
+ z.Square(z)
+ z.Sub(z, z1z1)
+ z.Sub(z, z2z2)
+ z.Mul(z, h)
+
+ x.Select(p2.x, x, z1IsZero)
+ x.Select(p1.x, x, z2IsZero)
+ y.Select(p2.y, y, z1IsZero)
+ y.Select(p1.y, y, z2IsZero)
+ z.Select(p2.z, z, z1IsZero)
+ z.Select(p1.z, z, z2IsZero)
+
+ q.x.Set(x)
+ q.y.Set(y)
+ q.z.Set(z)
+ return q
+}
+
+func (curve p521Curve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
+ p := curve.jacobianFromAffine(x1, y1)
+ return curve.affineFromJacobian(p.doubleJacobian(p))
+}
+
+// doubleJacobian sets q = p + p, and returns q. The points may overlap.
+func (q *p521Point) doubleJacobian(p *p521Point) *p521Point {
+ // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
+ delta := new(fiat.P521Element).Square(p.z)
+ gamma := new(fiat.P521Element).Square(p.y)
+ alpha := new(fiat.P521Element).Sub(p.x, delta)
+ alpha2 := new(fiat.P521Element).Add(p.x, delta)
+ alpha.Mul(alpha, alpha2)
+ alpha2.Set(alpha)
+ alpha.Add(alpha, alpha)
+ alpha.Add(alpha, alpha2)
+
+ beta := alpha2.Mul(p.x, gamma)
+
+ q.x.Square(alpha)
+ beta8 := new(fiat.P521Element).Add(beta, beta)
+ beta8.Add(beta8, beta8)
+ beta8.Add(beta8, beta8)
+ q.x.Sub(q.x, beta8)
+
+ q.z.Add(p.y, p.z)
+ q.z.Square(q.z)
+ q.z.Sub(q.z, gamma)
+ q.z.Sub(q.z, delta)
+
+ beta.Add(beta, beta)
+ beta.Add(beta, beta)
+ beta.Sub(beta, q.x)
+ q.y.Mul(alpha, beta)
+
+ gamma.Square(gamma)
+ gamma.Add(gamma, gamma)
+ gamma.Add(gamma, gamma)
+ gamma.Add(gamma, gamma)
+
+ q.y.Sub(q.y, gamma)
+
+ return q
+}
+
+func (curve p521Curve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) {
+ B := curve.jacobianFromAffine(Bx, By)
+ p, t := &p521Point{
+ x: new(fiat.P521Element),
+ y: new(fiat.P521Element),
+ z: new(fiat.P521Element),
+ }, &p521Point{
+ x: new(fiat.P521Element),
+ y: new(fiat.P521Element),
+ z: new(fiat.P521Element),
+ }
+
+ for _, byte := range scalar {
+ for bitNum := 0; bitNum < 8; bitNum++ {
+ p.doubleJacobian(p)
+ bit := (byte >> (7 - bitNum)) & 1
+ t.addJacobian(p, B)
+ p.x.Select(t.x, p.x, int(bit))
+ p.y.Select(t.y, p.y, int(bit))
+ p.z.Select(t.z, p.z, int(bit))
+ }
+ }
+
+ return curve.affineFromJacobian(p)
+}
+
+func (curve p521Curve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
+ return curve.ScalarMult(curve.Gx, curve.Gy, k)
+}