diff options
Diffstat (limited to 'src/crypto/elliptic/p521.go')
-rw-r--r-- | src/crypto/elliptic/p521.go | 264 |
1 files changed, 264 insertions, 0 deletions
diff --git a/src/crypto/elliptic/p521.go b/src/crypto/elliptic/p521.go new file mode 100644 index 0000000..587991e --- /dev/null +++ b/src/crypto/elliptic/p521.go @@ -0,0 +1,264 @@ +// Copyright 2013 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package elliptic + +import ( + "crypto/elliptic/internal/fiat" + "math/big" +) + +type p521Curve struct { + *CurveParams +} + +var p521 p521Curve +var p521Params *CurveParams + +func initP521() { + // See FIPS 186-3, section D.2.5 + p521.CurveParams = &CurveParams{Name: "P-521"} + p521.P, _ = new(big.Int).SetString("6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151", 10) + p521.N, _ = new(big.Int).SetString("6864797660130609714981900799081393217269435300143305409394463459185543183397655394245057746333217197532963996371363321113864768612440380340372808892707005449", 10) + p521.B, _ = new(big.Int).SetString("051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00", 16) + p521.Gx, _ = new(big.Int).SetString("c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66", 16) + p521.Gy, _ = new(big.Int).SetString("11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650", 16) + p521.BitSize = 521 +} + +func (curve p521Curve) Params() *CurveParams { + return curve.CurveParams +} + +func (curve p521Curve) IsOnCurve(x, y *big.Int) bool { + if x.Sign() < 0 || x.Cmp(curve.P) >= 0 || + y.Sign() < 0 || y.Cmp(curve.P) >= 0 { + return false + } + + x1 := bigIntToFiatP521(x) + y1 := bigIntToFiatP521(y) + b := bigIntToFiatP521(curve.B) // TODO: precompute this value. + + // x³ - 3x + b. + x3 := new(fiat.P521Element).Square(x1) + x3.Mul(x3, x1) + + threeX := new(fiat.P521Element).Add(x1, x1) + threeX.Add(threeX, x1) + + x3.Sub(x3, threeX) + x3.Add(x3, b) + + // y² = x³ - 3x + b + y2 := new(fiat.P521Element).Square(y1) + + return x3.Equal(y2) == 1 +} + +type p521Point struct { + x, y, z *fiat.P521Element +} + +func fiatP521ToBigInt(x *fiat.P521Element) *big.Int { + xBytes := x.Bytes() + for i := range xBytes[:len(xBytes)/2] { + xBytes[i], xBytes[len(xBytes)-i-1] = xBytes[len(xBytes)-i-1], xBytes[i] + } + return new(big.Int).SetBytes(xBytes) +} + +// affineFromJacobian brings a point in Jacobian coordinates back to affine +// coordinates, with (0, 0) representing infinity by convention. It also goes +// back to big.Int values to match the exposed API. +func (curve p521Curve) affineFromJacobian(p *p521Point) (x, y *big.Int) { + if p.z.IsZero() == 1 { + return new(big.Int), new(big.Int) + } + + zinv := new(fiat.P521Element).Invert(p.z) + zinvsq := new(fiat.P521Element).Mul(zinv, zinv) + + xx := new(fiat.P521Element).Mul(p.x, zinvsq) + zinvsq.Mul(zinvsq, zinv) + yy := new(fiat.P521Element).Mul(p.y, zinvsq) + + return fiatP521ToBigInt(xx), fiatP521ToBigInt(yy) +} + +func bigIntToFiatP521(x *big.Int) *fiat.P521Element { + xBytes := new(big.Int).Mod(x, p521.P).FillBytes(make([]byte, 66)) + for i := range xBytes[:len(xBytes)/2] { + xBytes[i], xBytes[len(xBytes)-i-1] = xBytes[len(xBytes)-i-1], xBytes[i] + } + x1, err := new(fiat.P521Element).SetBytes(xBytes) + if err != nil { + // The input is reduced modulo P and encoded in a fixed size bytes + // slice, this should be impossible. + panic("internal error: bigIntToFiatP521") + } + return x1 +} + +// jacobianFromAffine converts (x, y) affine coordinates into (x, y, z) Jacobian +// coordinates. It also converts from big.Int to fiat, which is necessarily a +// messy and variable-time operation, which we can't avoid due to the exposed API. +func (curve p521Curve) jacobianFromAffine(x, y *big.Int) *p521Point { + // (0, 0) is by convention the point at infinity, which can't be represented + // in affine coordinates, but is (0, 0, 0) in Jacobian. + if x.Sign() == 0 && y.Sign() == 0 { + return &p521Point{ + x: new(fiat.P521Element), + y: new(fiat.P521Element), + z: new(fiat.P521Element), + } + } + return &p521Point{ + x: bigIntToFiatP521(x), + y: bigIntToFiatP521(y), + z: new(fiat.P521Element).One(), + } +} + +func (curve p521Curve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { + p1 := curve.jacobianFromAffine(x1, y1) + p2 := curve.jacobianFromAffine(x2, y2) + return curve.affineFromJacobian(p1.addJacobian(p1, p2)) +} + +// addJacobian sets q = p1 + p2, and returns q. The points may overlap. +func (q *p521Point) addJacobian(p1, p2 *p521Point) *p521Point { + // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl + z1IsZero := p1.z.IsZero() + z2IsZero := p2.z.IsZero() + + z1z1 := new(fiat.P521Element).Square(p1.z) + z2z2 := new(fiat.P521Element).Square(p2.z) + + u1 := new(fiat.P521Element).Mul(p1.x, z2z2) + u2 := new(fiat.P521Element).Mul(p2.x, z1z1) + h := new(fiat.P521Element).Sub(u2, u1) + xEqual := h.IsZero() == 1 + i := new(fiat.P521Element).Add(h, h) + i.Square(i) + j := new(fiat.P521Element).Mul(h, i) + + s1 := new(fiat.P521Element).Mul(p1.y, p2.z) + s1.Mul(s1, z2z2) + s2 := new(fiat.P521Element).Mul(p2.y, p1.z) + s2.Mul(s2, z1z1) + r := new(fiat.P521Element).Sub(s2, s1) + yEqual := r.IsZero() == 1 + if xEqual && yEqual && z1IsZero == 0 && z2IsZero == 0 { + return q.doubleJacobian(p1) + } + r.Add(r, r) + v := new(fiat.P521Element).Mul(u1, i) + + x := new(fiat.P521Element).Set(r) + x.Square(x) + x.Sub(x, j) + x.Sub(x, v) + x.Sub(x, v) + + y := new(fiat.P521Element).Set(r) + v.Sub(v, x) + y.Mul(y, v) + s1.Mul(s1, j) + s1.Add(s1, s1) + y.Sub(y, s1) + + z := new(fiat.P521Element).Add(p1.z, p2.z) + z.Square(z) + z.Sub(z, z1z1) + z.Sub(z, z2z2) + z.Mul(z, h) + + x.Select(p2.x, x, z1IsZero) + x.Select(p1.x, x, z2IsZero) + y.Select(p2.y, y, z1IsZero) + y.Select(p1.y, y, z2IsZero) + z.Select(p2.z, z, z1IsZero) + z.Select(p1.z, z, z2IsZero) + + q.x.Set(x) + q.y.Set(y) + q.z.Set(z) + return q +} + +func (curve p521Curve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { + p := curve.jacobianFromAffine(x1, y1) + return curve.affineFromJacobian(p.doubleJacobian(p)) +} + +// doubleJacobian sets q = p + p, and returns q. The points may overlap. +func (q *p521Point) doubleJacobian(p *p521Point) *p521Point { + // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b + delta := new(fiat.P521Element).Square(p.z) + gamma := new(fiat.P521Element).Square(p.y) + alpha := new(fiat.P521Element).Sub(p.x, delta) + alpha2 := new(fiat.P521Element).Add(p.x, delta) + alpha.Mul(alpha, alpha2) + alpha2.Set(alpha) + alpha.Add(alpha, alpha) + alpha.Add(alpha, alpha2) + + beta := alpha2.Mul(p.x, gamma) + + q.x.Square(alpha) + beta8 := new(fiat.P521Element).Add(beta, beta) + beta8.Add(beta8, beta8) + beta8.Add(beta8, beta8) + q.x.Sub(q.x, beta8) + + q.z.Add(p.y, p.z) + q.z.Square(q.z) + q.z.Sub(q.z, gamma) + q.z.Sub(q.z, delta) + + beta.Add(beta, beta) + beta.Add(beta, beta) + beta.Sub(beta, q.x) + q.y.Mul(alpha, beta) + + gamma.Square(gamma) + gamma.Add(gamma, gamma) + gamma.Add(gamma, gamma) + gamma.Add(gamma, gamma) + + q.y.Sub(q.y, gamma) + + return q +} + +func (curve p521Curve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) { + B := curve.jacobianFromAffine(Bx, By) + p, t := &p521Point{ + x: new(fiat.P521Element), + y: new(fiat.P521Element), + z: new(fiat.P521Element), + }, &p521Point{ + x: new(fiat.P521Element), + y: new(fiat.P521Element), + z: new(fiat.P521Element), + } + + for _, byte := range scalar { + for bitNum := 0; bitNum < 8; bitNum++ { + p.doubleJacobian(p) + bit := (byte >> (7 - bitNum)) & 1 + t.addJacobian(p, B) + p.x.Select(t.x, p.x, int(bit)) + p.y.Select(t.y, p.y, int(bit)) + p.z.Select(t.z, p.z, int(bit)) + } + } + + return curve.affineFromJacobian(p) +} + +func (curve p521Curve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) { + return curve.ScalarMult(curve.Gx, curve.Gy, k) +} |