diff options
Diffstat (limited to 'src/crypto/rsa/example_test.go')
-rw-r--r-- | src/crypto/rsa/example_test.go | 169 |
1 files changed, 169 insertions, 0 deletions
diff --git a/src/crypto/rsa/example_test.go b/src/crypto/rsa/example_test.go new file mode 100644 index 0000000..ce5c2d9 --- /dev/null +++ b/src/crypto/rsa/example_test.go @@ -0,0 +1,169 @@ +// Copyright 2016 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package rsa + +import ( + "crypto" + "crypto/aes" + "crypto/cipher" + "crypto/rand" + "crypto/sha256" + "encoding/hex" + "fmt" + "io" + "os" +) + +// RSA is able to encrypt only a very limited amount of data. In order +// to encrypt reasonable amounts of data a hybrid scheme is commonly +// used: RSA is used to encrypt a key for a symmetric primitive like +// AES-GCM. +// +// Before encrypting, data is “padded” by embedding it in a known +// structure. This is done for a number of reasons, but the most +// obvious is to ensure that the value is large enough that the +// exponentiation is larger than the modulus. (Otherwise it could be +// decrypted with a square-root.) +// +// In these designs, when using PKCS #1 v1.5, it's vitally important to +// avoid disclosing whether the received RSA message was well-formed +// (that is, whether the result of decrypting is a correctly padded +// message) because this leaks secret information. +// DecryptPKCS1v15SessionKey is designed for this situation and copies +// the decrypted, symmetric key (if well-formed) in constant-time over +// a buffer that contains a random key. Thus, if the RSA result isn't +// well-formed, the implementation uses a random key in constant time. +func ExampleDecryptPKCS1v15SessionKey() { + // crypto/rand.Reader is a good source of entropy for blinding the RSA + // operation. + rng := rand.Reader + + // The hybrid scheme should use at least a 16-byte symmetric key. Here + // we read the random key that will be used if the RSA decryption isn't + // well-formed. + key := make([]byte, 32) + if _, err := io.ReadFull(rng, key); err != nil { + panic("RNG failure") + } + + rsaCiphertext, _ := hex.DecodeString("aabbccddeeff") + + if err := DecryptPKCS1v15SessionKey(rng, rsaPrivateKey, rsaCiphertext, key); err != nil { + // Any errors that result will be “public” – meaning that they + // can be determined without any secret information. (For + // instance, if the length of key is impossible given the RSA + // public key.) + fmt.Fprintf(os.Stderr, "Error from RSA decryption: %s\n", err) + return + } + + // Given the resulting key, a symmetric scheme can be used to decrypt a + // larger ciphertext. + block, err := aes.NewCipher(key) + if err != nil { + panic("aes.NewCipher failed: " + err.Error()) + } + + // Since the key is random, using a fixed nonce is acceptable as the + // (key, nonce) pair will still be unique, as required. + var zeroNonce [12]byte + aead, err := cipher.NewGCM(block) + if err != nil { + panic("cipher.NewGCM failed: " + err.Error()) + } + ciphertext, _ := hex.DecodeString("00112233445566") + plaintext, err := aead.Open(nil, zeroNonce[:], ciphertext, nil) + if err != nil { + // The RSA ciphertext was badly formed; the decryption will + // fail here because the AES-GCM key will be incorrect. + fmt.Fprintf(os.Stderr, "Error decrypting: %s\n", err) + return + } + + fmt.Printf("Plaintext: %s\n", string(plaintext)) +} + +func ExampleSignPKCS1v15() { + // crypto/rand.Reader is a good source of entropy for blinding the RSA + // operation. + rng := rand.Reader + + message := []byte("message to be signed") + + // Only small messages can be signed directly; thus the hash of a + // message, rather than the message itself, is signed. This requires + // that the hash function be collision resistant. SHA-256 is the + // least-strong hash function that should be used for this at the time + // of writing (2016). + hashed := sha256.Sum256(message) + + signature, err := SignPKCS1v15(rng, rsaPrivateKey, crypto.SHA256, hashed[:]) + if err != nil { + fmt.Fprintf(os.Stderr, "Error from signing: %s\n", err) + return + } + + fmt.Printf("Signature: %x\n", signature) +} + +func ExampleVerifyPKCS1v15() { + message := []byte("message to be signed") + signature, _ := hex.DecodeString("ad2766728615cc7a746cc553916380ca7bfa4f8983b990913bc69eb0556539a350ff0f8fe65ddfd3ebe91fe1c299c2fac135bc8c61e26be44ee259f2f80c1530") + + // Only small messages can be signed directly; thus the hash of a + // message, rather than the message itself, is signed. This requires + // that the hash function be collision resistant. SHA-256 is the + // least-strong hash function that should be used for this at the time + // of writing (2016). + hashed := sha256.Sum256(message) + + err := VerifyPKCS1v15(&rsaPrivateKey.PublicKey, crypto.SHA256, hashed[:], signature) + if err != nil { + fmt.Fprintf(os.Stderr, "Error from verification: %s\n", err) + return + } + + // signature is a valid signature of message from the public key. +} + +func ExampleEncryptOAEP() { + secretMessage := []byte("send reinforcements, we're going to advance") + label := []byte("orders") + + // crypto/rand.Reader is a good source of entropy for randomizing the + // encryption function. + rng := rand.Reader + + ciphertext, err := EncryptOAEP(sha256.New(), rng, &test2048Key.PublicKey, secretMessage, label) + if err != nil { + fmt.Fprintf(os.Stderr, "Error from encryption: %s\n", err) + return + } + + // Since encryption is a randomized function, ciphertext will be + // different each time. + fmt.Printf("Ciphertext: %x\n", ciphertext) +} + +func ExampleDecryptOAEP() { + ciphertext, _ := hex.DecodeString("4d1ee10e8f286390258c51a5e80802844c3e6358ad6690b7285218a7c7ed7fc3a4c7b950fbd04d4b0239cc060dcc7065ca6f84c1756deb71ca5685cadbb82be025e16449b905c568a19c088a1abfad54bf7ecc67a7df39943ec511091a34c0f2348d04e058fcff4d55644de3cd1d580791d4524b92f3e91695582e6e340a1c50b6c6d78e80b4e42c5b4d45e479b492de42bbd39cc642ebb80226bb5200020d501b24a37bcc2ec7f34e596b4fd6b063de4858dbf5a4e3dd18e262eda0ec2d19dbd8e890d672b63d368768360b20c0b6b8592a438fa275e5fa7f60bef0dd39673fd3989cc54d2cb80c08fcd19dacbc265ee1c6014616b0e04ea0328c2a04e73460") + label := []byte("orders") + + // crypto/rand.Reader is a good source of entropy for blinding the RSA + // operation. + rng := rand.Reader + + plaintext, err := DecryptOAEP(sha256.New(), rng, test2048Key, ciphertext, label) + if err != nil { + fmt.Fprintf(os.Stderr, "Error from decryption: %s\n", err) + return + } + + fmt.Printf("Plaintext: %s\n", string(plaintext)) + + // Remember that encryption only provides confidentiality. The + // ciphertext should be signed before authenticity is assumed and, even + // then, consider that messages might be reordered. +} |