diff options
Diffstat (limited to '')
-rw-r--r-- | src/internal/trace/mud.go | 223 |
1 files changed, 223 insertions, 0 deletions
diff --git a/src/internal/trace/mud.go b/src/internal/trace/mud.go new file mode 100644 index 0000000..8826306 --- /dev/null +++ b/src/internal/trace/mud.go @@ -0,0 +1,223 @@ +// Copyright 2017 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package trace + +import ( + "math" + "sort" +) + +// mud is an updatable mutator utilization distribution. +// +// This is a continuous distribution of duration over mutator +// utilization. For example, the integral from mutator utilization a +// to b is the total duration during which the mutator utilization was +// in the range [a, b]. +// +// This distribution is *not* normalized (it is not a probability +// distribution). This makes it easier to work with as it's being +// updated. +// +// It is represented as the sum of scaled uniform distribution +// functions and Dirac delta functions (which are treated as +// degenerate uniform distributions). +type mud struct { + sorted, unsorted []edge + + // trackMass is the inverse cumulative sum to track as the + // distribution is updated. + trackMass float64 + // trackBucket is the bucket in which trackMass falls. If the + // total mass of the distribution is < trackMass, this is + // len(hist). + trackBucket int + // trackSum is the cumulative sum of hist[:trackBucket]. Once + // trackSum >= trackMass, trackBucket must be recomputed. + trackSum float64 + + // hist is a hierarchical histogram of distribution mass. + hist [mudDegree]float64 +} + +const ( + // mudDegree is the number of buckets in the MUD summary + // histogram. + mudDegree = 1024 +) + +type edge struct { + // At x, the function increases by y. + x, delta float64 + // Additionally at x is a Dirac delta function with area dirac. + dirac float64 +} + +// add adds a uniform function over [l, r] scaled so the total weight +// of the uniform is area. If l==r, this adds a Dirac delta function. +func (d *mud) add(l, r, area float64) { + if area == 0 { + return + } + + if r < l { + l, r = r, l + } + + // Add the edges. + if l == r { + d.unsorted = append(d.unsorted, edge{l, 0, area}) + } else { + delta := area / (r - l) + d.unsorted = append(d.unsorted, edge{l, delta, 0}, edge{r, -delta, 0}) + } + + // Update the histogram. + h := &d.hist + lbFloat, lf := math.Modf(l * mudDegree) + lb := int(lbFloat) + if lb >= mudDegree { + lb, lf = mudDegree-1, 1 + } + if l == r { + h[lb] += area + } else { + rbFloat, rf := math.Modf(r * mudDegree) + rb := int(rbFloat) + if rb >= mudDegree { + rb, rf = mudDegree-1, 1 + } + if lb == rb { + h[lb] += area + } else { + perBucket := area / (r - l) / mudDegree + h[lb] += perBucket * (1 - lf) + h[rb] += perBucket * rf + for i := lb + 1; i < rb; i++ { + h[i] += perBucket + } + } + } + + // Update mass tracking. + if thresh := float64(d.trackBucket) / mudDegree; l < thresh { + if r < thresh { + d.trackSum += area + } else { + d.trackSum += area * (thresh - l) / (r - l) + } + if d.trackSum >= d.trackMass { + // The tracked mass now falls in a different + // bucket. Recompute the inverse cumulative sum. + d.setTrackMass(d.trackMass) + } + } +} + +// setTrackMass sets the mass to track the inverse cumulative sum for. +// +// Specifically, mass is a cumulative duration, and the mutator +// utilization bounds for this duration can be queried using +// approxInvCumulativeSum. +func (d *mud) setTrackMass(mass float64) { + d.trackMass = mass + + // Find the bucket currently containing trackMass by computing + // the cumulative sum. + sum := 0.0 + for i, val := range d.hist[:] { + newSum := sum + val + if newSum > mass { + // mass falls in bucket i. + d.trackBucket = i + d.trackSum = sum + return + } + sum = newSum + } + d.trackBucket = len(d.hist) + d.trackSum = sum +} + +// approxInvCumulativeSum is like invCumulativeSum, but specifically +// operates on the tracked mass and returns an upper and lower bound +// approximation of the inverse cumulative sum. +// +// The true inverse cumulative sum will be in the range [lower, upper). +func (d *mud) approxInvCumulativeSum() (float64, float64, bool) { + if d.trackBucket == len(d.hist) { + return math.NaN(), math.NaN(), false + } + return float64(d.trackBucket) / mudDegree, float64(d.trackBucket+1) / mudDegree, true +} + +// invCumulativeSum returns x such that the integral of d from -∞ to x +// is y. If the total weight of d is less than y, it returns the +// maximum of the distribution and false. +// +// Specifically, y is a cumulative duration, and invCumulativeSum +// returns the mutator utilization x such that at least y time has +// been spent with mutator utilization <= x. +func (d *mud) invCumulativeSum(y float64) (float64, bool) { + if len(d.sorted) == 0 && len(d.unsorted) == 0 { + return math.NaN(), false + } + + // Sort edges. + edges := d.unsorted + sort.Slice(edges, func(i, j int) bool { + return edges[i].x < edges[j].x + }) + // Merge with sorted edges. + d.unsorted = nil + if d.sorted == nil { + d.sorted = edges + } else { + oldSorted := d.sorted + newSorted := make([]edge, len(oldSorted)+len(edges)) + i, j := 0, 0 + for o := range newSorted { + if i >= len(oldSorted) { + copy(newSorted[o:], edges[j:]) + break + } else if j >= len(edges) { + copy(newSorted[o:], oldSorted[i:]) + break + } else if oldSorted[i].x < edges[j].x { + newSorted[o] = oldSorted[i] + i++ + } else { + newSorted[o] = edges[j] + j++ + } + } + d.sorted = newSorted + } + + // Traverse edges in order computing a cumulative sum. + csum, rate, prevX := 0.0, 0.0, 0.0 + for _, e := range d.sorted { + newCsum := csum + (e.x-prevX)*rate + if newCsum >= y { + // y was exceeded between the previous edge + // and this one. + if rate == 0 { + // Anywhere between prevX and + // e.x will do. We return e.x + // because that takes care of + // the y==0 case naturally. + return e.x, true + } + return (y-csum)/rate + prevX, true + } + newCsum += e.dirac + if newCsum >= y { + // y was exceeded by the Dirac delta at e.x. + return e.x, true + } + csum, prevX = newCsum, e.x + rate += e.delta + } + return prevX, false +} |