summaryrefslogtreecommitdiffstats
path: root/src/strconv/atof.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/strconv/atof.go')
-rw-r--r--src/strconv/atof.go704
1 files changed, 704 insertions, 0 deletions
diff --git a/src/strconv/atof.go b/src/strconv/atof.go
new file mode 100644
index 0000000..57556c7
--- /dev/null
+++ b/src/strconv/atof.go
@@ -0,0 +1,704 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package strconv
+
+// decimal to binary floating point conversion.
+// Algorithm:
+// 1) Store input in multiprecision decimal.
+// 2) Multiply/divide decimal by powers of two until in range [0.5, 1)
+// 3) Multiply by 2^precision and round to get mantissa.
+
+import "math"
+
+var optimize = true // set to false to force slow-path conversions for testing
+
+// commonPrefixLenIgnoreCase returns the length of the common
+// prefix of s and prefix, with the character case of s ignored.
+// The prefix argument must be all lower-case.
+func commonPrefixLenIgnoreCase(s, prefix string) int {
+ n := len(prefix)
+ if n > len(s) {
+ n = len(s)
+ }
+ for i := 0; i < n; i++ {
+ c := s[i]
+ if 'A' <= c && c <= 'Z' {
+ c += 'a' - 'A'
+ }
+ if c != prefix[i] {
+ return i
+ }
+ }
+ return n
+}
+
+// special returns the floating-point value for the special,
+// possibly signed floating-point representations inf, infinity,
+// and NaN. The result is ok if a prefix of s contains one
+// of these representations and n is the length of that prefix.
+// The character case is ignored.
+func special(s string) (f float64, n int, ok bool) {
+ if len(s) == 0 {
+ return 0, 0, false
+ }
+ sign := 1
+ nsign := 0
+ switch s[0] {
+ case '+', '-':
+ if s[0] == '-' {
+ sign = -1
+ }
+ nsign = 1
+ s = s[1:]
+ fallthrough
+ case 'i', 'I':
+ n := commonPrefixLenIgnoreCase(s, "infinity")
+ // Anything longer than "inf" is ok, but if we
+ // don't have "infinity", only consume "inf".
+ if 3 < n && n < 8 {
+ n = 3
+ }
+ if n == 3 || n == 8 {
+ return math.Inf(sign), nsign + n, true
+ }
+ case 'n', 'N':
+ if commonPrefixLenIgnoreCase(s, "nan") == 3 {
+ return math.NaN(), 3, true
+ }
+ }
+ return 0, 0, false
+}
+
+func (b *decimal) set(s string) (ok bool) {
+ i := 0
+ b.neg = false
+ b.trunc = false
+
+ // optional sign
+ if i >= len(s) {
+ return
+ }
+ switch {
+ case s[i] == '+':
+ i++
+ case s[i] == '-':
+ b.neg = true
+ i++
+ }
+
+ // digits
+ sawdot := false
+ sawdigits := false
+ for ; i < len(s); i++ {
+ switch {
+ case s[i] == '_':
+ // readFloat already checked underscores
+ continue
+ case s[i] == '.':
+ if sawdot {
+ return
+ }
+ sawdot = true
+ b.dp = b.nd
+ continue
+
+ case '0' <= s[i] && s[i] <= '9':
+ sawdigits = true
+ if s[i] == '0' && b.nd == 0 { // ignore leading zeros
+ b.dp--
+ continue
+ }
+ if b.nd < len(b.d) {
+ b.d[b.nd] = s[i]
+ b.nd++
+ } else if s[i] != '0' {
+ b.trunc = true
+ }
+ continue
+ }
+ break
+ }
+ if !sawdigits {
+ return
+ }
+ if !sawdot {
+ b.dp = b.nd
+ }
+
+ // optional exponent moves decimal point.
+ // if we read a very large, very long number,
+ // just be sure to move the decimal point by
+ // a lot (say, 100000). it doesn't matter if it's
+ // not the exact number.
+ if i < len(s) && lower(s[i]) == 'e' {
+ i++
+ if i >= len(s) {
+ return
+ }
+ esign := 1
+ if s[i] == '+' {
+ i++
+ } else if s[i] == '-' {
+ i++
+ esign = -1
+ }
+ if i >= len(s) || s[i] < '0' || s[i] > '9' {
+ return
+ }
+ e := 0
+ for ; i < len(s) && ('0' <= s[i] && s[i] <= '9' || s[i] == '_'); i++ {
+ if s[i] == '_' {
+ // readFloat already checked underscores
+ continue
+ }
+ if e < 10000 {
+ e = e*10 + int(s[i]) - '0'
+ }
+ }
+ b.dp += e * esign
+ }
+
+ if i != len(s) {
+ return
+ }
+
+ ok = true
+ return
+}
+
+// readFloat reads a decimal or hexadecimal mantissa and exponent from a float
+// string representation in s; the number may be followed by other characters.
+// readFloat reports the number of bytes consumed (i), and whether the number
+// is valid (ok).
+func readFloat(s string) (mantissa uint64, exp int, neg, trunc, hex bool, i int, ok bool) {
+ underscores := false
+
+ // optional sign
+ if i >= len(s) {
+ return
+ }
+ switch {
+ case s[i] == '+':
+ i++
+ case s[i] == '-':
+ neg = true
+ i++
+ }
+
+ // digits
+ base := uint64(10)
+ maxMantDigits := 19 // 10^19 fits in uint64
+ expChar := byte('e')
+ if i+2 < len(s) && s[i] == '0' && lower(s[i+1]) == 'x' {
+ base = 16
+ maxMantDigits = 16 // 16^16 fits in uint64
+ i += 2
+ expChar = 'p'
+ hex = true
+ }
+ sawdot := false
+ sawdigits := false
+ nd := 0
+ ndMant := 0
+ dp := 0
+loop:
+ for ; i < len(s); i++ {
+ switch c := s[i]; true {
+ case c == '_':
+ underscores = true
+ continue
+
+ case c == '.':
+ if sawdot {
+ break loop
+ }
+ sawdot = true
+ dp = nd
+ continue
+
+ case '0' <= c && c <= '9':
+ sawdigits = true
+ if c == '0' && nd == 0 { // ignore leading zeros
+ dp--
+ continue
+ }
+ nd++
+ if ndMant < maxMantDigits {
+ mantissa *= base
+ mantissa += uint64(c - '0')
+ ndMant++
+ } else if c != '0' {
+ trunc = true
+ }
+ continue
+
+ case base == 16 && 'a' <= lower(c) && lower(c) <= 'f':
+ sawdigits = true
+ nd++
+ if ndMant < maxMantDigits {
+ mantissa *= 16
+ mantissa += uint64(lower(c) - 'a' + 10)
+ ndMant++
+ } else {
+ trunc = true
+ }
+ continue
+ }
+ break
+ }
+ if !sawdigits {
+ return
+ }
+ if !sawdot {
+ dp = nd
+ }
+
+ if base == 16 {
+ dp *= 4
+ ndMant *= 4
+ }
+
+ // optional exponent moves decimal point.
+ // if we read a very large, very long number,
+ // just be sure to move the decimal point by
+ // a lot (say, 100000). it doesn't matter if it's
+ // not the exact number.
+ if i < len(s) && lower(s[i]) == expChar {
+ i++
+ if i >= len(s) {
+ return
+ }
+ esign := 1
+ if s[i] == '+' {
+ i++
+ } else if s[i] == '-' {
+ i++
+ esign = -1
+ }
+ if i >= len(s) || s[i] < '0' || s[i] > '9' {
+ return
+ }
+ e := 0
+ for ; i < len(s) && ('0' <= s[i] && s[i] <= '9' || s[i] == '_'); i++ {
+ if s[i] == '_' {
+ underscores = true
+ continue
+ }
+ if e < 10000 {
+ e = e*10 + int(s[i]) - '0'
+ }
+ }
+ dp += e * esign
+ } else if base == 16 {
+ // Must have exponent.
+ return
+ }
+
+ if mantissa != 0 {
+ exp = dp - ndMant
+ }
+
+ if underscores && !underscoreOK(s[:i]) {
+ return
+ }
+
+ ok = true
+ return
+}
+
+// decimal power of ten to binary power of two.
+var powtab = []int{1, 3, 6, 9, 13, 16, 19, 23, 26}
+
+func (d *decimal) floatBits(flt *floatInfo) (b uint64, overflow bool) {
+ var exp int
+ var mant uint64
+
+ // Zero is always a special case.
+ if d.nd == 0 {
+ mant = 0
+ exp = flt.bias
+ goto out
+ }
+
+ // Obvious overflow/underflow.
+ // These bounds are for 64-bit floats.
+ // Will have to change if we want to support 80-bit floats in the future.
+ if d.dp > 310 {
+ goto overflow
+ }
+ if d.dp < -330 {
+ // zero
+ mant = 0
+ exp = flt.bias
+ goto out
+ }
+
+ // Scale by powers of two until in range [0.5, 1.0)
+ exp = 0
+ for d.dp > 0 {
+ var n int
+ if d.dp >= len(powtab) {
+ n = 27
+ } else {
+ n = powtab[d.dp]
+ }
+ d.Shift(-n)
+ exp += n
+ }
+ for d.dp < 0 || d.dp == 0 && d.d[0] < '5' {
+ var n int
+ if -d.dp >= len(powtab) {
+ n = 27
+ } else {
+ n = powtab[-d.dp]
+ }
+ d.Shift(n)
+ exp -= n
+ }
+
+ // Our range is [0.5,1) but floating point range is [1,2).
+ exp--
+
+ // Minimum representable exponent is flt.bias+1.
+ // If the exponent is smaller, move it up and
+ // adjust d accordingly.
+ if exp < flt.bias+1 {
+ n := flt.bias + 1 - exp
+ d.Shift(-n)
+ exp += n
+ }
+
+ if exp-flt.bias >= 1<<flt.expbits-1 {
+ goto overflow
+ }
+
+ // Extract 1+flt.mantbits bits.
+ d.Shift(int(1 + flt.mantbits))
+ mant = d.RoundedInteger()
+
+ // Rounding might have added a bit; shift down.
+ if mant == 2<<flt.mantbits {
+ mant >>= 1
+ exp++
+ if exp-flt.bias >= 1<<flt.expbits-1 {
+ goto overflow
+ }
+ }
+
+ // Denormalized?
+ if mant&(1<<flt.mantbits) == 0 {
+ exp = flt.bias
+ }
+ goto out
+
+overflow:
+ // ±Inf
+ mant = 0
+ exp = 1<<flt.expbits - 1 + flt.bias
+ overflow = true
+
+out:
+ // Assemble bits.
+ bits := mant & (uint64(1)<<flt.mantbits - 1)
+ bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits
+ if d.neg {
+ bits |= 1 << flt.mantbits << flt.expbits
+ }
+ return bits, overflow
+}
+
+// Exact powers of 10.
+var float64pow10 = []float64{
+ 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
+ 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
+ 1e20, 1e21, 1e22,
+}
+var float32pow10 = []float32{1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10}
+
+// If possible to convert decimal representation to 64-bit float f exactly,
+// entirely in floating-point math, do so, avoiding the expense of decimalToFloatBits.
+// Three common cases:
+// value is exact integer
+// value is exact integer * exact power of ten
+// value is exact integer / exact power of ten
+// These all produce potentially inexact but correctly rounded answers.
+func atof64exact(mantissa uint64, exp int, neg bool) (f float64, ok bool) {
+ if mantissa>>float64info.mantbits != 0 {
+ return
+ }
+ f = float64(mantissa)
+ if neg {
+ f = -f
+ }
+ switch {
+ case exp == 0:
+ // an integer.
+ return f, true
+ // Exact integers are <= 10^15.
+ // Exact powers of ten are <= 10^22.
+ case exp > 0 && exp <= 15+22: // int * 10^k
+ // If exponent is big but number of digits is not,
+ // can move a few zeros into the integer part.
+ if exp > 22 {
+ f *= float64pow10[exp-22]
+ exp = 22
+ }
+ if f > 1e15 || f < -1e15 {
+ // the exponent was really too large.
+ return
+ }
+ return f * float64pow10[exp], true
+ case exp < 0 && exp >= -22: // int / 10^k
+ return f / float64pow10[-exp], true
+ }
+ return
+}
+
+// If possible to compute mantissa*10^exp to 32-bit float f exactly,
+// entirely in floating-point math, do so, avoiding the machinery above.
+func atof32exact(mantissa uint64, exp int, neg bool) (f float32, ok bool) {
+ if mantissa>>float32info.mantbits != 0 {
+ return
+ }
+ f = float32(mantissa)
+ if neg {
+ f = -f
+ }
+ switch {
+ case exp == 0:
+ return f, true
+ // Exact integers are <= 10^7.
+ // Exact powers of ten are <= 10^10.
+ case exp > 0 && exp <= 7+10: // int * 10^k
+ // If exponent is big but number of digits is not,
+ // can move a few zeros into the integer part.
+ if exp > 10 {
+ f *= float32pow10[exp-10]
+ exp = 10
+ }
+ if f > 1e7 || f < -1e7 {
+ // the exponent was really too large.
+ return
+ }
+ return f * float32pow10[exp], true
+ case exp < 0 && exp >= -10: // int / 10^k
+ return f / float32pow10[-exp], true
+ }
+ return
+}
+
+// atofHex converts the hex floating-point string s
+// to a rounded float32 or float64 value (depending on flt==&float32info or flt==&float64info)
+// and returns it as a float64.
+// The string s has already been parsed into a mantissa, exponent, and sign (neg==true for negative).
+// If trunc is true, trailing non-zero bits have been omitted from the mantissa.
+func atofHex(s string, flt *floatInfo, mantissa uint64, exp int, neg, trunc bool) (float64, error) {
+ maxExp := 1<<flt.expbits + flt.bias - 2
+ minExp := flt.bias + 1
+ exp += int(flt.mantbits) // mantissa now implicitly divided by 2^mantbits.
+
+ // Shift mantissa and exponent to bring representation into float range.
+ // Eventually we want a mantissa with a leading 1-bit followed by mantbits other bits.
+ // For rounding, we need two more, where the bottom bit represents
+ // whether that bit or any later bit was non-zero.
+ // (If the mantissa has already lost non-zero bits, trunc is true,
+ // and we OR in a 1 below after shifting left appropriately.)
+ for mantissa != 0 && mantissa>>(flt.mantbits+2) == 0 {
+ mantissa <<= 1
+ exp--
+ }
+ if trunc {
+ mantissa |= 1
+ }
+ for mantissa>>(1+flt.mantbits+2) != 0 {
+ mantissa = mantissa>>1 | mantissa&1
+ exp++
+ }
+
+ // If exponent is too negative,
+ // denormalize in hopes of making it representable.
+ // (The -2 is for the rounding bits.)
+ for mantissa > 1 && exp < minExp-2 {
+ mantissa = mantissa>>1 | mantissa&1
+ exp++
+ }
+
+ // Round using two bottom bits.
+ round := mantissa & 3
+ mantissa >>= 2
+ round |= mantissa & 1 // round to even (round up if mantissa is odd)
+ exp += 2
+ if round == 3 {
+ mantissa++
+ if mantissa == 1<<(1+flt.mantbits) {
+ mantissa >>= 1
+ exp++
+ }
+ }
+
+ if mantissa>>flt.mantbits == 0 { // Denormal or zero.
+ exp = flt.bias
+ }
+ var err error
+ if exp > maxExp { // infinity and range error
+ mantissa = 1 << flt.mantbits
+ exp = maxExp + 1
+ err = rangeError(fnParseFloat, s)
+ }
+
+ bits := mantissa & (1<<flt.mantbits - 1)
+ bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits
+ if neg {
+ bits |= 1 << flt.mantbits << flt.expbits
+ }
+ if flt == &float32info {
+ return float64(math.Float32frombits(uint32(bits))), err
+ }
+ return math.Float64frombits(bits), err
+}
+
+const fnParseFloat = "ParseFloat"
+
+func atof32(s string) (f float32, n int, err error) {
+ if val, n, ok := special(s); ok {
+ return float32(val), n, nil
+ }
+
+ mantissa, exp, neg, trunc, hex, n, ok := readFloat(s)
+ if !ok {
+ return 0, n, syntaxError(fnParseFloat, s)
+ }
+
+ if hex {
+ f, err := atofHex(s[:n], &float32info, mantissa, exp, neg, trunc)
+ return float32(f), n, err
+ }
+
+ if optimize {
+ // Try pure floating-point arithmetic conversion, and if that fails,
+ // the Eisel-Lemire algorithm.
+ if !trunc {
+ if f, ok := atof32exact(mantissa, exp, neg); ok {
+ return f, n, nil
+ }
+ }
+ f, ok := eiselLemire32(mantissa, exp, neg)
+ if ok {
+ if !trunc {
+ return f, n, nil
+ }
+ // Even if the mantissa was truncated, we may
+ // have found the correct result. Confirm by
+ // converting the upper mantissa bound.
+ fUp, ok := eiselLemire32(mantissa+1, exp, neg)
+ if ok && f == fUp {
+ return f, n, nil
+ }
+ }
+ }
+
+ // Slow fallback.
+ var d decimal
+ if !d.set(s[:n]) {
+ return 0, n, syntaxError(fnParseFloat, s)
+ }
+ b, ovf := d.floatBits(&float32info)
+ f = math.Float32frombits(uint32(b))
+ if ovf {
+ err = rangeError(fnParseFloat, s)
+ }
+ return f, n, err
+}
+
+func atof64(s string) (f float64, n int, err error) {
+ if val, n, ok := special(s); ok {
+ return val, n, nil
+ }
+
+ mantissa, exp, neg, trunc, hex, n, ok := readFloat(s)
+ if !ok {
+ return 0, n, syntaxError(fnParseFloat, s)
+ }
+
+ if hex {
+ f, err := atofHex(s[:n], &float64info, mantissa, exp, neg, trunc)
+ return f, n, err
+ }
+
+ if optimize {
+ // Try pure floating-point arithmetic conversion, and if that fails,
+ // the Eisel-Lemire algorithm.
+ if !trunc {
+ if f, ok := atof64exact(mantissa, exp, neg); ok {
+ return f, n, nil
+ }
+ }
+ f, ok := eiselLemire64(mantissa, exp, neg)
+ if ok {
+ if !trunc {
+ return f, n, nil
+ }
+ // Even if the mantissa was truncated, we may
+ // have found the correct result. Confirm by
+ // converting the upper mantissa bound.
+ fUp, ok := eiselLemire64(mantissa+1, exp, neg)
+ if ok && f == fUp {
+ return f, n, nil
+ }
+ }
+ }
+
+ // Slow fallback.
+ var d decimal
+ if !d.set(s[:n]) {
+ return 0, n, syntaxError(fnParseFloat, s)
+ }
+ b, ovf := d.floatBits(&float64info)
+ f = math.Float64frombits(b)
+ if ovf {
+ err = rangeError(fnParseFloat, s)
+ }
+ return f, n, err
+}
+
+// ParseFloat converts the string s to a floating-point number
+// with the precision specified by bitSize: 32 for float32, or 64 for float64.
+// When bitSize=32, the result still has type float64, but it will be
+// convertible to float32 without changing its value.
+//
+// ParseFloat accepts decimal and hexadecimal floating-point number syntax.
+// If s is well-formed and near a valid floating-point number,
+// ParseFloat returns the nearest floating-point number rounded
+// using IEEE754 unbiased rounding.
+// (Parsing a hexadecimal floating-point value only rounds when
+// there are more bits in the hexadecimal representation than
+// will fit in the mantissa.)
+//
+// The errors that ParseFloat returns have concrete type *NumError
+// and include err.Num = s.
+//
+// If s is not syntactically well-formed, ParseFloat returns err.Err = ErrSyntax.
+//
+// If s is syntactically well-formed but is more than 1/2 ULP
+// away from the largest floating point number of the given size,
+// ParseFloat returns f = ±Inf, err.Err = ErrRange.
+//
+// ParseFloat recognizes the strings "NaN", and the (possibly signed) strings "Inf" and "Infinity"
+// as their respective special floating point values. It ignores case when matching.
+func ParseFloat(s string, bitSize int) (float64, error) {
+ f, n, err := parseFloatPrefix(s, bitSize)
+ if n != len(s) && (err == nil || err.(*NumError).Err != ErrSyntax) {
+ return 0, syntaxError(fnParseFloat, s)
+ }
+ return f, err
+}
+
+func parseFloatPrefix(s string, bitSize int) (float64, int, error) {
+ if bitSize == 32 {
+ f, n, err := atof32(s)
+ return float64(f), n, err
+ }
+ return atof64(s)
+}