// Copyright 2019 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:build ppc64le // +build ppc64le package aes import ( "crypto/cipher" "crypto/subtle" "encoding/binary" "errors" ) // This file implements GCM using an optimized GHASH function. //go:noescape func gcmInit(productTable *[256]byte, h []byte) //go:noescape func gcmHash(output []byte, productTable *[256]byte, inp []byte, len int) //go:noescape func gcmMul(output []byte, productTable *[256]byte) const ( gcmCounterSize = 16 gcmBlockSize = 16 gcmTagSize = 16 gcmStandardNonceSize = 12 ) var errOpen = errors.New("cipher: message authentication failed") // Assert that aesCipherGCM implements the gcmAble interface. var _ gcmAble = (*aesCipherAsm)(nil) type gcmAsm struct { cipher *aesCipherAsm // ks is the key schedule, the length of which depends on the size of // the AES key. ks []uint32 // productTable contains pre-computed multiples of the binary-field // element used in GHASH. productTable [256]byte // nonceSize contains the expected size of the nonce, in bytes. nonceSize int // tagSize contains the size of the tag, in bytes. tagSize int } // NewGCM returns the AES cipher wrapped in Galois Counter Mode. This is only // called by crypto/cipher.NewGCM via the gcmAble interface. func (c *aesCipherAsm) NewGCM(nonceSize, tagSize int) (cipher.AEAD, error) { g := &gcmAsm{cipher: c, ks: c.enc, nonceSize: nonceSize, tagSize: tagSize} hle := make([]byte, gcmBlockSize) c.Encrypt(hle, hle) // Reverse the bytes in each 8 byte chunk // Load little endian, store big endian h1 := binary.LittleEndian.Uint64(hle[:8]) h2 := binary.LittleEndian.Uint64(hle[8:]) binary.BigEndian.PutUint64(hle[:8], h1) binary.BigEndian.PutUint64(hle[8:], h2) gcmInit(&g.productTable, hle) return g, nil } func (g *gcmAsm) NonceSize() int { return g.nonceSize } func (g *gcmAsm) Overhead() int { return g.tagSize } func sliceForAppend(in []byte, n int) (head, tail []byte) { if total := len(in) + n; cap(in) >= total { head = in[:total] } else { head = make([]byte, total) copy(head, in) } tail = head[len(in):] return } // deriveCounter computes the initial GCM counter state from the given nonce. func (g *gcmAsm) deriveCounter(counter *[gcmBlockSize]byte, nonce []byte) { if len(nonce) == gcmStandardNonceSize { copy(counter[:], nonce) counter[gcmBlockSize-1] = 1 } else { var hash [16]byte g.paddedGHASH(&hash, nonce) lens := gcmLengths(0, uint64(len(nonce))*8) g.paddedGHASH(&hash, lens[:]) copy(counter[:], hash[:]) } } // counterCrypt encrypts in using AES in counter mode and places the result // into out. counter is the initial count value and will be updated with the next // count value. The length of out must be greater than or equal to the length // of in. func (g *gcmAsm) counterCrypt(out, in []byte, counter *[gcmBlockSize]byte) { var mask [gcmBlockSize]byte for len(in) >= gcmBlockSize { // Hint to avoid bounds check _, _ = in[15], out[15] g.cipher.Encrypt(mask[:], counter[:]) gcmInc32(counter) // XOR 16 bytes each loop iteration in 8 byte chunks in0 := binary.LittleEndian.Uint64(in[0:]) in1 := binary.LittleEndian.Uint64(in[8:]) m0 := binary.LittleEndian.Uint64(mask[:8]) m1 := binary.LittleEndian.Uint64(mask[8:]) binary.LittleEndian.PutUint64(out[:8], in0^m0) binary.LittleEndian.PutUint64(out[8:], in1^m1) out = out[16:] in = in[16:] } if len(in) > 0 { g.cipher.Encrypt(mask[:], counter[:]) gcmInc32(counter) // XOR leftover bytes for i, inb := range in { out[i] = inb ^ mask[i] } } } // increments the rightmost 32-bits of the count value by 1. func gcmInc32(counterBlock *[16]byte) { c := counterBlock[len(counterBlock)-4:] x := binary.BigEndian.Uint32(c) + 1 binary.BigEndian.PutUint32(c, x) } // paddedGHASH pads data with zeroes until its length is a multiple of // 16-bytes. It then calculates a new value for hash using the ghash // algorithm. func (g *gcmAsm) paddedGHASH(hash *[16]byte, data []byte) { if siz := len(data) - (len(data) % gcmBlockSize); siz > 0 { gcmHash(hash[:], &g.productTable, data[:], siz) data = data[siz:] } if len(data) > 0 { var s [16]byte copy(s[:], data) gcmHash(hash[:], &g.productTable, s[:], len(s)) } } // auth calculates GHASH(ciphertext, additionalData), masks the result with // tagMask and writes the result to out. func (g *gcmAsm) auth(out, ciphertext, aad []byte, tagMask *[gcmTagSize]byte) { var hash [16]byte g.paddedGHASH(&hash, aad) g.paddedGHASH(&hash, ciphertext) lens := gcmLengths(uint64(len(aad))*8, uint64(len(ciphertext))*8) g.paddedGHASH(&hash, lens[:]) copy(out, hash[:]) for i := range out { out[i] ^= tagMask[i] } } // Seal encrypts and authenticates plaintext. See the cipher.AEAD interface for // details. func (g *gcmAsm) Seal(dst, nonce, plaintext, data []byte) []byte { if len(nonce) != g.nonceSize { panic("cipher: incorrect nonce length given to GCM") } if uint64(len(plaintext)) > ((1<<32)-2)*BlockSize { panic("cipher: message too large for GCM") } ret, out := sliceForAppend(dst, len(plaintext)+g.tagSize) var counter, tagMask [gcmBlockSize]byte g.deriveCounter(&counter, nonce) g.cipher.Encrypt(tagMask[:], counter[:]) gcmInc32(&counter) g.counterCrypt(out, plaintext, &counter) g.auth(out[len(plaintext):], out[:len(plaintext)], data, &tagMask) return ret } // Open authenticates and decrypts ciphertext. See the cipher.AEAD interface // for details. func (g *gcmAsm) Open(dst, nonce, ciphertext, data []byte) ([]byte, error) { if len(nonce) != g.nonceSize { panic("cipher: incorrect nonce length given to GCM") } if len(ciphertext) < g.tagSize { return nil, errOpen } if uint64(len(ciphertext)) > ((1<<32)-2)*uint64(BlockSize)+uint64(g.tagSize) { return nil, errOpen } tag := ciphertext[len(ciphertext)-g.tagSize:] ciphertext = ciphertext[:len(ciphertext)-g.tagSize] var counter, tagMask [gcmBlockSize]byte g.deriveCounter(&counter, nonce) g.cipher.Encrypt(tagMask[:], counter[:]) gcmInc32(&counter) var expectedTag [gcmTagSize]byte g.auth(expectedTag[:], ciphertext, data, &tagMask) ret, out := sliceForAppend(dst, len(ciphertext)) if subtle.ConstantTimeCompare(expectedTag[:g.tagSize], tag) != 1 { for i := range out { out[i] = 0 } return nil, errOpen } g.counterCrypt(out, ciphertext, &counter) return ret, nil } func gcmLengths(len0, len1 uint64) [16]byte { return [16]byte{ byte(len0 >> 56), byte(len0 >> 48), byte(len0 >> 40), byte(len0 >> 32), byte(len0 >> 24), byte(len0 >> 16), byte(len0 >> 8), byte(len0), byte(len1 >> 56), byte(len1 >> 48), byte(len1 >> 40), byte(len1 >> 32), byte(len1 >> 24), byte(len1 >> 16), byte(len1 >> 8), byte(len1), } }