// Copyright 2021 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package fiat implements prime order fields using formally verified algorithms // from the Fiat Cryptography project. package fiat import ( "crypto/subtle" "errors" ) // P521Element is an integer modulo 2^521 - 1. // // The zero value is a valid zero element. type P521Element struct { // This element has the following bounds, which are tighter than // the output bounds of some operations. Those operations must be // followed by a carry. // // [0x0 ~> 0x400000000000000], [0x0 ~> 0x400000000000000], [0x0 ~> 0x400000000000000], // [0x0 ~> 0x400000000000000], [0x0 ~> 0x400000000000000], [0x0 ~> 0x400000000000000], // [0x0 ~> 0x400000000000000], [0x0 ~> 0x400000000000000], [0x0 ~> 0x200000000000000] x [9]uint64 } // One sets e = 1, and returns e. func (e *P521Element) One() *P521Element { *e = P521Element{} e.x[0] = 1 return e } // Equal returns 1 if e == t, and zero otherwise. func (e *P521Element) Equal(t *P521Element) int { eBytes := e.Bytes() tBytes := t.Bytes() return subtle.ConstantTimeCompare(eBytes, tBytes) } var p521ZeroEncoding = new(P521Element).Bytes() // IsZero returns 1 if e == 0, and zero otherwise. func (e *P521Element) IsZero() int { eBytes := e.Bytes() return subtle.ConstantTimeCompare(eBytes, p521ZeroEncoding) } // Set sets e = t, and returns e. func (e *P521Element) Set(t *P521Element) *P521Element { e.x = t.x return e } // Bytes returns the 66-byte little-endian encoding of e. func (e *P521Element) Bytes() []byte { // This function must be inlined to move the allocation to the parent and // save it from escaping to the heap. var out [66]byte p521ToBytes(&out, &e.x) return out[:] } // SetBytes sets e = v, where v is a little-endian 66-byte encoding, and returns // e. If v is not 66 bytes or it encodes a value higher than 2^521 - 1, SetBytes // returns nil and an error, and e is unchanged. func (e *P521Element) SetBytes(v []byte) (*P521Element, error) { if len(v) != 66 || v[65] > 1 { return nil, errors.New("invalid P-521 field encoding") } var in [66]byte copy(in[:], v) p521FromBytes(&e.x, &in) return e, nil } // Add sets e = t1 + t2, and returns e. func (e *P521Element) Add(t1, t2 *P521Element) *P521Element { p521Add(&e.x, &t1.x, &t2.x) p521Carry(&e.x, &e.x) return e } // Sub sets e = t1 - t2, and returns e. func (e *P521Element) Sub(t1, t2 *P521Element) *P521Element { p521Sub(&e.x, &t1.x, &t2.x) p521Carry(&e.x, &e.x) return e } // Mul sets e = t1 * t2, and returns e. func (e *P521Element) Mul(t1, t2 *P521Element) *P521Element { p521CarryMul(&e.x, &t1.x, &t2.x) return e } // Square sets e = t * t, and returns e. func (e *P521Element) Square(t *P521Element) *P521Element { p521CarrySquare(&e.x, &t.x) return e } // Select sets e to a if cond == 1, and to b if cond == 0. func (v *P521Element) Select(a, b *P521Element, cond int) *P521Element { p521Selectznz(&v.x, p521Uint1(cond), &b.x, &a.x) return v } // Invert sets e = 1/t, and returns e. // // If t == 0, Invert returns e = 0. func (e *P521Element) Invert(t *P521Element) *P521Element { // Inversion is implemented as exponentiation with exponent p − 2. // The sequence of multiplications and squarings was generated with // github.com/mmcloughlin/addchain v0.2.0. var t1, t2 = new(P521Element), new(P521Element) // _10 = 2 * 1 t1.Square(t) // _11 = 1 + _10 t1.Mul(t, t1) // _1100 = _11 << 2 t2.Square(t1) t2.Square(t2) // _1111 = _11 + _1100 t1.Mul(t1, t2) // _11110000 = _1111 << 4 t2.Square(t1) for i := 0; i < 3; i++ { t2.Square(t2) } // _11111111 = _1111 + _11110000 t1.Mul(t1, t2) // x16 = _11111111<<8 + _11111111 t2.Square(t1) for i := 0; i < 7; i++ { t2.Square(t2) } t1.Mul(t1, t2) // x32 = x16<<16 + x16 t2.Square(t1) for i := 0; i < 15; i++ { t2.Square(t2) } t1.Mul(t1, t2) // x64 = x32<<32 + x32 t2.Square(t1) for i := 0; i < 31; i++ { t2.Square(t2) } t1.Mul(t1, t2) // x65 = 2*x64 + 1 t2.Square(t1) t2.Mul(t2, t) // x129 = x65<<64 + x64 for i := 0; i < 64; i++ { t2.Square(t2) } t1.Mul(t1, t2) // x130 = 2*x129 + 1 t2.Square(t1) t2.Mul(t2, t) // x259 = x130<<129 + x129 for i := 0; i < 129; i++ { t2.Square(t2) } t1.Mul(t1, t2) // x260 = 2*x259 + 1 t2.Square(t1) t2.Mul(t2, t) // x519 = x260<<259 + x259 for i := 0; i < 259; i++ { t2.Square(t2) } t1.Mul(t1, t2) // return x519<<2 + 1 t1.Square(t1) t1.Square(t1) return e.Mul(t1, t) }