// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package elliptic import ( "crypto/elliptic/internal/fiat" "math/big" ) type p521Curve struct { *CurveParams } var p521 p521Curve var p521Params *CurveParams func initP521() { // See FIPS 186-3, section D.2.5 p521.CurveParams = &CurveParams{Name: "P-521"} p521.P, _ = new(big.Int).SetString("6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151", 10) p521.N, _ = new(big.Int).SetString("6864797660130609714981900799081393217269435300143305409394463459185543183397655394245057746333217197532963996371363321113864768612440380340372808892707005449", 10) p521.B, _ = new(big.Int).SetString("051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00", 16) p521.Gx, _ = new(big.Int).SetString("c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66", 16) p521.Gy, _ = new(big.Int).SetString("11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650", 16) p521.BitSize = 521 } func (curve p521Curve) Params() *CurveParams { return curve.CurveParams } func (curve p521Curve) IsOnCurve(x, y *big.Int) bool { if x.Sign() < 0 || x.Cmp(curve.P) >= 0 || y.Sign() < 0 || y.Cmp(curve.P) >= 0 { return false } x1 := bigIntToFiatP521(x) y1 := bigIntToFiatP521(y) b := bigIntToFiatP521(curve.B) // TODO: precompute this value. // x³ - 3x + b. x3 := new(fiat.P521Element).Square(x1) x3.Mul(x3, x1) threeX := new(fiat.P521Element).Add(x1, x1) threeX.Add(threeX, x1) x3.Sub(x3, threeX) x3.Add(x3, b) // y² = x³ - 3x + b y2 := new(fiat.P521Element).Square(y1) return x3.Equal(y2) == 1 } type p521Point struct { x, y, z *fiat.P521Element } func fiatP521ToBigInt(x *fiat.P521Element) *big.Int { xBytes := x.Bytes() for i := range xBytes[:len(xBytes)/2] { xBytes[i], xBytes[len(xBytes)-i-1] = xBytes[len(xBytes)-i-1], xBytes[i] } return new(big.Int).SetBytes(xBytes) } // affineFromJacobian brings a point in Jacobian coordinates back to affine // coordinates, with (0, 0) representing infinity by convention. It also goes // back to big.Int values to match the exposed API. func (curve p521Curve) affineFromJacobian(p *p521Point) (x, y *big.Int) { if p.z.IsZero() == 1 { return new(big.Int), new(big.Int) } zinv := new(fiat.P521Element).Invert(p.z) zinvsq := new(fiat.P521Element).Mul(zinv, zinv) xx := new(fiat.P521Element).Mul(p.x, zinvsq) zinvsq.Mul(zinvsq, zinv) yy := new(fiat.P521Element).Mul(p.y, zinvsq) return fiatP521ToBigInt(xx), fiatP521ToBigInt(yy) } func bigIntToFiatP521(x *big.Int) *fiat.P521Element { xBytes := new(big.Int).Mod(x, p521.P).FillBytes(make([]byte, 66)) for i := range xBytes[:len(xBytes)/2] { xBytes[i], xBytes[len(xBytes)-i-1] = xBytes[len(xBytes)-i-1], xBytes[i] } x1, err := new(fiat.P521Element).SetBytes(xBytes) if err != nil { // The input is reduced modulo P and encoded in a fixed size bytes // slice, this should be impossible. panic("internal error: bigIntToFiatP521") } return x1 } // jacobianFromAffine converts (x, y) affine coordinates into (x, y, z) Jacobian // coordinates. It also converts from big.Int to fiat, which is necessarily a // messy and variable-time operation, which we can't avoid due to the exposed API. func (curve p521Curve) jacobianFromAffine(x, y *big.Int) *p521Point { // (0, 0) is by convention the point at infinity, which can't be represented // in affine coordinates, but is (0, 0, 0) in Jacobian. if x.Sign() == 0 && y.Sign() == 0 { return &p521Point{ x: new(fiat.P521Element), y: new(fiat.P521Element), z: new(fiat.P521Element), } } return &p521Point{ x: bigIntToFiatP521(x), y: bigIntToFiatP521(y), z: new(fiat.P521Element).One(), } } func (curve p521Curve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { p1 := curve.jacobianFromAffine(x1, y1) p2 := curve.jacobianFromAffine(x2, y2) return curve.affineFromJacobian(p1.addJacobian(p1, p2)) } // addJacobian sets q = p1 + p2, and returns q. The points may overlap. func (q *p521Point) addJacobian(p1, p2 *p521Point) *p521Point { // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl z1IsZero := p1.z.IsZero() z2IsZero := p2.z.IsZero() z1z1 := new(fiat.P521Element).Square(p1.z) z2z2 := new(fiat.P521Element).Square(p2.z) u1 := new(fiat.P521Element).Mul(p1.x, z2z2) u2 := new(fiat.P521Element).Mul(p2.x, z1z1) h := new(fiat.P521Element).Sub(u2, u1) xEqual := h.IsZero() == 1 i := new(fiat.P521Element).Add(h, h) i.Square(i) j := new(fiat.P521Element).Mul(h, i) s1 := new(fiat.P521Element).Mul(p1.y, p2.z) s1.Mul(s1, z2z2) s2 := new(fiat.P521Element).Mul(p2.y, p1.z) s2.Mul(s2, z1z1) r := new(fiat.P521Element).Sub(s2, s1) yEqual := r.IsZero() == 1 if xEqual && yEqual && z1IsZero == 0 && z2IsZero == 0 { return q.doubleJacobian(p1) } r.Add(r, r) v := new(fiat.P521Element).Mul(u1, i) x := new(fiat.P521Element).Set(r) x.Square(x) x.Sub(x, j) x.Sub(x, v) x.Sub(x, v) y := new(fiat.P521Element).Set(r) v.Sub(v, x) y.Mul(y, v) s1.Mul(s1, j) s1.Add(s1, s1) y.Sub(y, s1) z := new(fiat.P521Element).Add(p1.z, p2.z) z.Square(z) z.Sub(z, z1z1) z.Sub(z, z2z2) z.Mul(z, h) x.Select(p2.x, x, z1IsZero) x.Select(p1.x, x, z2IsZero) y.Select(p2.y, y, z1IsZero) y.Select(p1.y, y, z2IsZero) z.Select(p2.z, z, z1IsZero) z.Select(p1.z, z, z2IsZero) q.x.Set(x) q.y.Set(y) q.z.Set(z) return q } func (curve p521Curve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { p := curve.jacobianFromAffine(x1, y1) return curve.affineFromJacobian(p.doubleJacobian(p)) } // doubleJacobian sets q = p + p, and returns q. The points may overlap. func (q *p521Point) doubleJacobian(p *p521Point) *p521Point { // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b delta := new(fiat.P521Element).Square(p.z) gamma := new(fiat.P521Element).Square(p.y) alpha := new(fiat.P521Element).Sub(p.x, delta) alpha2 := new(fiat.P521Element).Add(p.x, delta) alpha.Mul(alpha, alpha2) alpha2.Set(alpha) alpha.Add(alpha, alpha) alpha.Add(alpha, alpha2) beta := alpha2.Mul(p.x, gamma) q.x.Square(alpha) beta8 := new(fiat.P521Element).Add(beta, beta) beta8.Add(beta8, beta8) beta8.Add(beta8, beta8) q.x.Sub(q.x, beta8) q.z.Add(p.y, p.z) q.z.Square(q.z) q.z.Sub(q.z, gamma) q.z.Sub(q.z, delta) beta.Add(beta, beta) beta.Add(beta, beta) beta.Sub(beta, q.x) q.y.Mul(alpha, beta) gamma.Square(gamma) gamma.Add(gamma, gamma) gamma.Add(gamma, gamma) gamma.Add(gamma, gamma) q.y.Sub(q.y, gamma) return q } func (curve p521Curve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) { B := curve.jacobianFromAffine(Bx, By) p, t := &p521Point{ x: new(fiat.P521Element), y: new(fiat.P521Element), z: new(fiat.P521Element), }, &p521Point{ x: new(fiat.P521Element), y: new(fiat.P521Element), z: new(fiat.P521Element), } for _, byte := range scalar { for bitNum := 0; bitNum < 8; bitNum++ { p.doubleJacobian(p) bit := (byte >> (7 - bitNum)) & 1 t.addJacobian(p, B) p.x.Select(t.x, p.x, int(bit)) p.y.Select(t.y, p.y, int(bit)) p.z.Select(t.z, p.z, int(bit)) } } return curve.affineFromJacobian(p) } func (curve p521Curve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) { return curve.ScalarMult(curve.Gx, curve.Gy, k) }