summaryrefslogtreecommitdiffstats
path: root/src/crypto/elliptic/p256_s390x.go
blob: 91e613b6310e1d76857700adbe14b502bd9ac919 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

//go:build s390x
// +build s390x

package elliptic

import (
	"crypto/subtle"
	"internal/cpu"
	"math/big"
	"unsafe"
)

const (
	offsetS390xHasVX  = unsafe.Offsetof(cpu.S390X.HasVX)
	offsetS390xHasVE1 = unsafe.Offsetof(cpu.S390X.HasVXE)
)

type p256CurveFast struct {
	*CurveParams
}

type p256Point struct {
	x [32]byte
	y [32]byte
	z [32]byte
}

var (
	p256        Curve
	p256PreFast *[37][64]p256Point
)

//go:noescape
func p256MulInternalTrampolineSetup()

//go:noescape
func p256SqrInternalTrampolineSetup()

//go:noescape
func p256MulInternalVX()

//go:noescape
func p256MulInternalVMSL()

//go:noescape
func p256SqrInternalVX()

//go:noescape
func p256SqrInternalVMSL()

func initP256Arch() {
	if cpu.S390X.HasVX {
		p256 = p256CurveFast{p256Params}
		initTable()
		return
	}

	// No vector support, use pure Go implementation.
	p256 = p256Curve{p256Params}
	return
}

func (curve p256CurveFast) Params() *CurveParams {
	return curve.CurveParams
}

// Functions implemented in p256_asm_s390x.s
// Montgomery multiplication modulo P256
//
//go:noescape
func p256SqrAsm(res, in1 []byte)

//go:noescape
func p256MulAsm(res, in1, in2 []byte)

// Montgomery square modulo P256
func p256Sqr(res, in []byte) {
	p256SqrAsm(res, in)
}

// Montgomery multiplication by 1
//
//go:noescape
func p256FromMont(res, in []byte)

// iff cond == 1  val <- -val
//
//go:noescape
func p256NegCond(val *p256Point, cond int)

// if cond == 0 res <- b; else res <- a
//
//go:noescape
func p256MovCond(res, a, b *p256Point, cond int)

// Constant time table access
//
//go:noescape
func p256Select(point *p256Point, table []p256Point, idx int)

//go:noescape
func p256SelectBase(point *p256Point, table []p256Point, idx int)

// Montgomery multiplication modulo Ord(G)
//
//go:noescape
func p256OrdMul(res, in1, in2 []byte)

// Montgomery square modulo Ord(G), repeated n times
func p256OrdSqr(res, in []byte, n int) {
	copy(res, in)
	for i := 0; i < n; i += 1 {
		p256OrdMul(res, res, res)
	}
}

// Point add with P2 being affine point
// If sign == 1 -> P2 = -P2
// If sel == 0 -> P3 = P1
// if zero == 0 -> P3 = P2
//
//go:noescape
func p256PointAddAffineAsm(P3, P1, P2 *p256Point, sign, sel, zero int)

// Point add
//
//go:noescape
func p256PointAddAsm(P3, P1, P2 *p256Point) int

//go:noescape
func p256PointDoubleAsm(P3, P1 *p256Point)

func (curve p256CurveFast) Inverse(k *big.Int) *big.Int {
	if k.Cmp(p256Params.N) >= 0 {
		// This should never happen.
		reducedK := new(big.Int).Mod(k, p256Params.N)
		k = reducedK
	}

	// table will store precomputed powers of x. The 32 bytes at index
	// i store x^(i+1).
	var table [15][32]byte

	x := fromBig(k)
	// This code operates in the Montgomery domain where R = 2^256 mod n
	// and n is the order of the scalar field. (See initP256 for the
	// value.) Elements in the Montgomery domain take the form a×R and
	// multiplication of x and y in the calculates (x × y × R^-1) mod n. RR
	// is R×R mod n thus the Montgomery multiplication x and RR gives x×R,
	// i.e. converts x into the Montgomery domain. Stored in BigEndian form
	RR := []byte{0x66, 0xe1, 0x2d, 0x94, 0xf3, 0xd9, 0x56, 0x20, 0x28, 0x45, 0xb2, 0x39, 0x2b, 0x6b, 0xec, 0x59,
		0x46, 0x99, 0x79, 0x9c, 0x49, 0xbd, 0x6f, 0xa6, 0x83, 0x24, 0x4c, 0x95, 0xbe, 0x79, 0xee, 0xa2}

	p256OrdMul(table[0][:], x, RR)

	// Prepare the table, no need in constant time access, because the
	// power is not a secret. (Entry 0 is never used.)
	for i := 2; i < 16; i += 2 {
		p256OrdSqr(table[i-1][:], table[(i/2)-1][:], 1)
		p256OrdMul(table[i][:], table[i-1][:], table[0][:])
	}

	copy(x, table[14][:]) // f

	p256OrdSqr(x[0:32], x[0:32], 4)
	p256OrdMul(x[0:32], x[0:32], table[14][:]) // ff
	t := make([]byte, 32)
	copy(t, x)

	p256OrdSqr(x, x, 8)
	p256OrdMul(x, x, t) // ffff
	copy(t, x)

	p256OrdSqr(x, x, 16)
	p256OrdMul(x, x, t) // ffffffff
	copy(t, x)

	p256OrdSqr(x, x, 64) // ffffffff0000000000000000
	p256OrdMul(x, x, t)  // ffffffff00000000ffffffff
	p256OrdSqr(x, x, 32) // ffffffff00000000ffffffff00000000
	p256OrdMul(x, x, t)  // ffffffff00000000ffffffffffffffff

	// Remaining 32 windows
	expLo := [32]byte{0xb, 0xc, 0xe, 0x6, 0xf, 0xa, 0xa, 0xd, 0xa, 0x7, 0x1, 0x7, 0x9, 0xe, 0x8, 0x4,
		0xf, 0x3, 0xb, 0x9, 0xc, 0xa, 0xc, 0x2, 0xf, 0xc, 0x6, 0x3, 0x2, 0x5, 0x4, 0xf}
	for i := 0; i < 32; i++ {
		p256OrdSqr(x, x, 4)
		p256OrdMul(x, x, table[expLo[i]-1][:])
	}

	// Multiplying by one in the Montgomery domain converts a Montgomery
	// value out of the domain.
	one := []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
	p256OrdMul(x, x, one)

	return new(big.Int).SetBytes(x)
}

// fromBig converts a *big.Int into a format used by this code.
func fromBig(big *big.Int) []byte {
	// This could be done a lot more efficiently...
	res := big.Bytes()
	if 32 == len(res) {
		return res
	}
	t := make([]byte, 32)
	offset := 32 - len(res)
	for i := len(res) - 1; i >= 0; i-- {
		t[i+offset] = res[i]
	}
	return t
}

// p256GetMultiplier makes sure byte array will have 32 byte elements, If the scalar
// is equal or greater than the order of the group, it's reduced modulo that order.
func p256GetMultiplier(in []byte) []byte {
	n := new(big.Int).SetBytes(in)

	if n.Cmp(p256Params.N) >= 0 {
		n.Mod(n, p256Params.N)
	}
	return fromBig(n)
}

// p256MulAsm operates in a Montgomery domain with R = 2^256 mod p, where p is the
// underlying field of the curve. (See initP256 for the value.) Thus rr here is
// R×R mod p. See comment in Inverse about how this is used.
var rr = []byte{0x00, 0x00, 0x00, 0x04, 0xff, 0xff, 0xff, 0xfd, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
	0xff, 0xff, 0xff, 0xfb, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03}

// (This is one, in the Montgomery domain.)
var one = []byte{0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}

func maybeReduceModP(in *big.Int) *big.Int {
	if in.Cmp(p256Params.P) < 0 {
		return in
	}
	return new(big.Int).Mod(in, p256Params.P)
}

func (curve p256CurveFast) CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int) {
	var r1, r2 p256Point
	scalarReduced := p256GetMultiplier(baseScalar)
	r1IsInfinity := scalarIsZero(scalarReduced)
	r1.p256BaseMult(scalarReduced)

	copy(r2.x[:], fromBig(maybeReduceModP(bigX)))
	copy(r2.y[:], fromBig(maybeReduceModP(bigY)))
	copy(r2.z[:], one)
	p256MulAsm(r2.x[:], r2.x[:], rr[:])
	p256MulAsm(r2.y[:], r2.y[:], rr[:])

	scalarReduced = p256GetMultiplier(scalar)
	r2IsInfinity := scalarIsZero(scalarReduced)
	r2.p256ScalarMult(p256GetMultiplier(scalar))

	var sum, double p256Point
	pointsEqual := p256PointAddAsm(&sum, &r1, &r2)
	p256PointDoubleAsm(&double, &r1)
	p256MovCond(&sum, &double, &sum, pointsEqual)
	p256MovCond(&sum, &r1, &sum, r2IsInfinity)
	p256MovCond(&sum, &r2, &sum, r1IsInfinity)
	return sum.p256PointToAffine()
}

func (curve p256CurveFast) ScalarBaseMult(scalar []byte) (x, y *big.Int) {
	var r p256Point
	r.p256BaseMult(p256GetMultiplier(scalar))
	return r.p256PointToAffine()
}

func (curve p256CurveFast) ScalarMult(bigX, bigY *big.Int, scalar []byte) (x, y *big.Int) {
	var r p256Point
	copy(r.x[:], fromBig(maybeReduceModP(bigX)))
	copy(r.y[:], fromBig(maybeReduceModP(bigY)))
	copy(r.z[:], one)
	p256MulAsm(r.x[:], r.x[:], rr[:])
	p256MulAsm(r.y[:], r.y[:], rr[:])
	r.p256ScalarMult(p256GetMultiplier(scalar))
	return r.p256PointToAffine()
}

// scalarIsZero returns 1 if scalar represents the zero value, and zero
// otherwise.
func scalarIsZero(scalar []byte) int {
	b := byte(0)
	for _, s := range scalar {
		b |= s
	}
	return subtle.ConstantTimeByteEq(b, 0)
}

func (p *p256Point) p256PointToAffine() (x, y *big.Int) {
	zInv := make([]byte, 32)
	zInvSq := make([]byte, 32)

	p256Inverse(zInv, p.z[:])
	p256Sqr(zInvSq, zInv)
	p256MulAsm(zInv, zInv, zInvSq)

	p256MulAsm(zInvSq, p.x[:], zInvSq)
	p256MulAsm(zInv, p.y[:], zInv)

	p256FromMont(zInvSq, zInvSq)
	p256FromMont(zInv, zInv)

	return new(big.Int).SetBytes(zInvSq), new(big.Int).SetBytes(zInv)
}

// p256Inverse sets out to in^-1 mod p.
func p256Inverse(out, in []byte) {
	var stack [6 * 32]byte
	p2 := stack[32*0 : 32*0+32]
	p4 := stack[32*1 : 32*1+32]
	p8 := stack[32*2 : 32*2+32]
	p16 := stack[32*3 : 32*3+32]
	p32 := stack[32*4 : 32*4+32]

	p256Sqr(out, in)
	p256MulAsm(p2, out, in) // 3*p

	p256Sqr(out, p2)
	p256Sqr(out, out)
	p256MulAsm(p4, out, p2) // f*p

	p256Sqr(out, p4)
	p256Sqr(out, out)
	p256Sqr(out, out)
	p256Sqr(out, out)
	p256MulAsm(p8, out, p4) // ff*p

	p256Sqr(out, p8)

	for i := 0; i < 7; i++ {
		p256Sqr(out, out)
	}
	p256MulAsm(p16, out, p8) // ffff*p

	p256Sqr(out, p16)
	for i := 0; i < 15; i++ {
		p256Sqr(out, out)
	}
	p256MulAsm(p32, out, p16) // ffffffff*p

	p256Sqr(out, p32)

	for i := 0; i < 31; i++ {
		p256Sqr(out, out)
	}
	p256MulAsm(out, out, in)

	for i := 0; i < 32*4; i++ {
		p256Sqr(out, out)
	}
	p256MulAsm(out, out, p32)

	for i := 0; i < 32; i++ {
		p256Sqr(out, out)
	}
	p256MulAsm(out, out, p32)

	for i := 0; i < 16; i++ {
		p256Sqr(out, out)
	}
	p256MulAsm(out, out, p16)

	for i := 0; i < 8; i++ {
		p256Sqr(out, out)
	}
	p256MulAsm(out, out, p8)

	p256Sqr(out, out)
	p256Sqr(out, out)
	p256Sqr(out, out)
	p256Sqr(out, out)
	p256MulAsm(out, out, p4)

	p256Sqr(out, out)
	p256Sqr(out, out)
	p256MulAsm(out, out, p2)

	p256Sqr(out, out)
	p256Sqr(out, out)
	p256MulAsm(out, out, in)
}

func boothW5(in uint) (int, int) {
	var s uint = ^((in >> 5) - 1)
	var d uint = (1 << 6) - in - 1
	d = (d & s) | (in & (^s))
	d = (d >> 1) + (d & 1)
	return int(d), int(s & 1)
}

func boothW7(in uint) (int, int) {
	var s uint = ^((in >> 7) - 1)
	var d uint = (1 << 8) - in - 1
	d = (d & s) | (in & (^s))
	d = (d >> 1) + (d & 1)
	return int(d), int(s & 1)
}

func initTable() {
	p256PreFast = new([37][64]p256Point) //z coordinate not used
	basePoint := p256Point{
		x: [32]byte{0x18, 0x90, 0x5f, 0x76, 0xa5, 0x37, 0x55, 0xc6, 0x79, 0xfb, 0x73, 0x2b, 0x77, 0x62, 0x25, 0x10,
			0x75, 0xba, 0x95, 0xfc, 0x5f, 0xed, 0xb6, 0x01, 0x79, 0xe7, 0x30, 0xd4, 0x18, 0xa9, 0x14, 0x3c}, //(p256.x*2^256)%p
		y: [32]byte{0x85, 0x71, 0xff, 0x18, 0x25, 0x88, 0x5d, 0x85, 0xd2, 0xe8, 0x86, 0x88, 0xdd, 0x21, 0xf3, 0x25,
			0x8b, 0x4a, 0xb8, 0xe4, 0xba, 0x19, 0xe4, 0x5c, 0xdd, 0xf2, 0x53, 0x57, 0xce, 0x95, 0x56, 0x0a}, //(p256.y*2^256)%p
		z: [32]byte{0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
			0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, //(p256.z*2^256)%p
	}

	t1 := new(p256Point)
	t2 := new(p256Point)
	*t2 = basePoint

	zInv := make([]byte, 32)
	zInvSq := make([]byte, 32)
	for j := 0; j < 64; j++ {
		*t1 = *t2
		for i := 0; i < 37; i++ {
			// The window size is 7 so we need to double 7 times.
			if i != 0 {
				for k := 0; k < 7; k++ {
					p256PointDoubleAsm(t1, t1)
				}
			}
			// Convert the point to affine form. (Its values are
			// still in Montgomery form however.)
			p256Inverse(zInv, t1.z[:])
			p256Sqr(zInvSq, zInv)
			p256MulAsm(zInv, zInv, zInvSq)

			p256MulAsm(t1.x[:], t1.x[:], zInvSq)
			p256MulAsm(t1.y[:], t1.y[:], zInv)

			copy(t1.z[:], basePoint.z[:])
			// Update the table entry
			copy(p256PreFast[i][j].x[:], t1.x[:])
			copy(p256PreFast[i][j].y[:], t1.y[:])
		}
		if j == 0 {
			p256PointDoubleAsm(t2, &basePoint)
		} else {
			p256PointAddAsm(t2, t2, &basePoint)
		}
	}
}

func (p *p256Point) p256BaseMult(scalar []byte) {
	wvalue := (uint(scalar[31]) << 1) & 0xff
	sel, sign := boothW7(uint(wvalue))
	p256SelectBase(p, p256PreFast[0][:], sel)
	p256NegCond(p, sign)

	copy(p.z[:], one[:])
	var t0 p256Point

	copy(t0.z[:], one[:])

	index := uint(6)
	zero := sel

	for i := 1; i < 37; i++ {
		if index < 247 {
			wvalue = ((uint(scalar[31-index/8]) >> (index % 8)) + (uint(scalar[31-index/8-1]) << (8 - (index % 8)))) & 0xff
		} else {
			wvalue = (uint(scalar[31-index/8]) >> (index % 8)) & 0xff
		}
		index += 7
		sel, sign = boothW7(uint(wvalue))
		p256SelectBase(&t0, p256PreFast[i][:], sel)
		p256PointAddAffineAsm(p, p, &t0, sign, sel, zero)
		zero |= sel
	}
}

func (p *p256Point) p256ScalarMult(scalar []byte) {
	// precomp is a table of precomputed points that stores powers of p
	// from p^1 to p^16.
	var precomp [16]p256Point
	var t0, t1, t2, t3 p256Point

	// Prepare the table
	*&precomp[0] = *p

	p256PointDoubleAsm(&t0, p)
	p256PointDoubleAsm(&t1, &t0)
	p256PointDoubleAsm(&t2, &t1)
	p256PointDoubleAsm(&t3, &t2)
	*&precomp[1] = t0  // 2
	*&precomp[3] = t1  // 4
	*&precomp[7] = t2  // 8
	*&precomp[15] = t3 // 16

	p256PointAddAsm(&t0, &t0, p)
	p256PointAddAsm(&t1, &t1, p)
	p256PointAddAsm(&t2, &t2, p)
	*&precomp[2] = t0 // 3
	*&precomp[4] = t1 // 5
	*&precomp[8] = t2 // 9

	p256PointDoubleAsm(&t0, &t0)
	p256PointDoubleAsm(&t1, &t1)
	*&precomp[5] = t0 // 6
	*&precomp[9] = t1 // 10

	p256PointAddAsm(&t2, &t0, p)
	p256PointAddAsm(&t1, &t1, p)
	*&precomp[6] = t2  // 7
	*&precomp[10] = t1 // 11

	p256PointDoubleAsm(&t0, &t0)
	p256PointDoubleAsm(&t2, &t2)
	*&precomp[11] = t0 // 12
	*&precomp[13] = t2 // 14

	p256PointAddAsm(&t0, &t0, p)
	p256PointAddAsm(&t2, &t2, p)
	*&precomp[12] = t0 // 13
	*&precomp[14] = t2 // 15

	// Start scanning the window from top bit
	index := uint(254)
	var sel, sign int

	wvalue := (uint(scalar[31-index/8]) >> (index % 8)) & 0x3f
	sel, _ = boothW5(uint(wvalue))
	p256Select(p, precomp[:], sel)
	zero := sel

	for index > 4 {
		index -= 5
		p256PointDoubleAsm(p, p)
		p256PointDoubleAsm(p, p)
		p256PointDoubleAsm(p, p)
		p256PointDoubleAsm(p, p)
		p256PointDoubleAsm(p, p)

		if index < 247 {
			wvalue = ((uint(scalar[31-index/8]) >> (index % 8)) + (uint(scalar[31-index/8-1]) << (8 - (index % 8)))) & 0x3f
		} else {
			wvalue = (uint(scalar[31-index/8]) >> (index % 8)) & 0x3f
		}

		sel, sign = boothW5(uint(wvalue))

		p256Select(&t0, precomp[:], sel)
		p256NegCond(&t0, sign)
		p256PointAddAsm(&t1, p, &t0)
		p256MovCond(&t1, &t1, p, sel)
		p256MovCond(p, &t1, &t0, zero)
		zero |= sel
	}

	p256PointDoubleAsm(p, p)
	p256PointDoubleAsm(p, p)
	p256PointDoubleAsm(p, p)
	p256PointDoubleAsm(p, p)
	p256PointDoubleAsm(p, p)

	wvalue = (uint(scalar[31]) << 1) & 0x3f
	sel, sign = boothW5(uint(wvalue))

	p256Select(&t0, precomp[:], sel)
	p256NegCond(&t0, sign)
	p256PointAddAsm(&t1, p, &t0)
	p256MovCond(&t1, &t1, p, sel)
	p256MovCond(p, &t1, &t0, zero)
}