summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/ssa/func.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:16:40 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:16:40 +0000
commit47ab3d4a42e9ab51c465c4322d2ec233f6324e6b (patch)
treea61a0ffd83f4a3def4b36e5c8e99630c559aa723 /src/cmd/compile/internal/ssa/func.go
parentInitial commit. (diff)
downloadgolang-1.18-upstream.tar.xz
golang-1.18-upstream.zip
Adding upstream version 1.18.10.upstream/1.18.10upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/cmd/compile/internal/ssa/func.go')
-rw-r--r--src/cmd/compile/internal/ssa/func.go921
1 files changed, 921 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/ssa/func.go b/src/cmd/compile/internal/ssa/func.go
new file mode 100644
index 0000000..7728a39
--- /dev/null
+++ b/src/cmd/compile/internal/ssa/func.go
@@ -0,0 +1,921 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssa
+
+import (
+ "cmd/compile/internal/abi"
+ "cmd/compile/internal/base"
+ "cmd/compile/internal/types"
+ "cmd/internal/src"
+ "crypto/sha1"
+ "fmt"
+ "io"
+ "math"
+ "os"
+ "strings"
+)
+
+type writeSyncer interface {
+ io.Writer
+ Sync() error
+}
+
+// A Func represents a Go func declaration (or function literal) and its body.
+// This package compiles each Func independently.
+// Funcs are single-use; a new Func must be created for every compiled function.
+type Func struct {
+ Config *Config // architecture information
+ Cache *Cache // re-usable cache
+ fe Frontend // frontend state associated with this Func, callbacks into compiler frontend
+ pass *pass // current pass information (name, options, etc.)
+ Name string // e.g. NewFunc or (*Func).NumBlocks (no package prefix)
+ Type *types.Type // type signature of the function.
+ Blocks []*Block // unordered set of all basic blocks (note: not indexable by ID)
+ Entry *Block // the entry basic block
+
+ bid idAlloc // block ID allocator
+ vid idAlloc // value ID allocator
+
+ // Given an environment variable used for debug hash match,
+ // what file (if any) receives the yes/no logging?
+ logfiles map[string]writeSyncer
+ HTMLWriter *HTMLWriter // html writer, for debugging
+ DebugTest bool // default true unless $GOSSAHASH != ""; as a debugging aid, make new code conditional on this and use GOSSAHASH to binary search for failing cases
+ PrintOrHtmlSSA bool // true if GOSSAFUNC matches, true even if fe.Log() (spew phase results to stdout) is false. There's an odd dependence on this in debug.go for method logf.
+ ruleMatches map[string]int // number of times countRule was called during compilation for any given string
+ ABI0 *abi.ABIConfig // A copy, for no-sync access
+ ABI1 *abi.ABIConfig // A copy, for no-sync access
+ ABISelf *abi.ABIConfig // ABI for function being compiled
+ ABIDefault *abi.ABIConfig // ABI for rtcall and other no-parsed-signature/pragma functions.
+
+ scheduled bool // Values in Blocks are in final order
+ laidout bool // Blocks are ordered
+ NoSplit bool // true if function is marked as nosplit. Used by schedule check pass.
+ dumpFileSeq uint8 // the sequence numbers of dump file. (%s_%02d__%s.dump", funcname, dumpFileSeq, phaseName)
+
+ // when register allocation is done, maps value ids to locations
+ RegAlloc []Location
+
+ // map from LocalSlot to set of Values that we want to store in that slot.
+ NamedValues map[LocalSlot][]*Value
+ // Names is a copy of NamedValues.Keys. We keep a separate list
+ // of keys to make iteration order deterministic.
+ Names []*LocalSlot
+ // Canonicalize root/top-level local slots, and canonicalize their pieces.
+ // Because LocalSlot pieces refer to their parents with a pointer, this ensures that equivalent slots really are equal.
+ CanonicalLocalSlots map[LocalSlot]*LocalSlot
+ CanonicalLocalSplits map[LocalSlotSplitKey]*LocalSlot
+
+ // RegArgs is a slice of register-memory pairs that must be spilled and unspilled in the uncommon path of function entry.
+ RegArgs []Spill
+ // AuxCall describing parameters and results for this function.
+ OwnAux *AuxCall
+
+ // WBLoads is a list of Blocks that branch on the write
+ // barrier flag. Safe-points are disabled from the OpLoad that
+ // reads the write-barrier flag until the control flow rejoins
+ // below the two successors of this block.
+ WBLoads []*Block
+
+ freeValues *Value // free Values linked by argstorage[0]. All other fields except ID are 0/nil.
+ freeBlocks *Block // free Blocks linked by succstorage[0].b. All other fields except ID are 0/nil.
+
+ cachedPostorder []*Block // cached postorder traversal
+ cachedIdom []*Block // cached immediate dominators
+ cachedSdom SparseTree // cached dominator tree
+ cachedLoopnest *loopnest // cached loop nest information
+ cachedLineStarts *xposmap // cached map/set of xpos to integers
+
+ auxmap auxmap // map from aux values to opaque ids used by CSE
+ constants map[int64][]*Value // constants cache, keyed by constant value; users must check value's Op and Type
+}
+
+type LocalSlotSplitKey struct {
+ parent *LocalSlot
+ Off int64 // offset of slot in N
+ Type *types.Type // type of slot
+}
+
+// NewFunc returns a new, empty function object.
+// Caller must set f.Config and f.Cache before using f.
+func NewFunc(fe Frontend) *Func {
+ return &Func{fe: fe, NamedValues: make(map[LocalSlot][]*Value), CanonicalLocalSlots: make(map[LocalSlot]*LocalSlot), CanonicalLocalSplits: make(map[LocalSlotSplitKey]*LocalSlot)}
+}
+
+// NumBlocks returns an integer larger than the id of any Block in the Func.
+func (f *Func) NumBlocks() int {
+ return f.bid.num()
+}
+
+// NumValues returns an integer larger than the id of any Value in the Func.
+func (f *Func) NumValues() int {
+ return f.vid.num()
+}
+
+// newSparseSet returns a sparse set that can store at least up to n integers.
+func (f *Func) newSparseSet(n int) *sparseSet {
+ for i, scr := range f.Cache.scrSparseSet {
+ if scr != nil && scr.cap() >= n {
+ f.Cache.scrSparseSet[i] = nil
+ scr.clear()
+ return scr
+ }
+ }
+ return newSparseSet(n)
+}
+
+// retSparseSet returns a sparse set to the config's cache of sparse
+// sets to be reused by f.newSparseSet.
+func (f *Func) retSparseSet(ss *sparseSet) {
+ for i, scr := range f.Cache.scrSparseSet {
+ if scr == nil {
+ f.Cache.scrSparseSet[i] = ss
+ return
+ }
+ }
+ f.Cache.scrSparseSet = append(f.Cache.scrSparseSet, ss)
+}
+
+// newSparseMap returns a sparse map that can store at least up to n integers.
+func (f *Func) newSparseMap(n int) *sparseMap {
+ for i, scr := range f.Cache.scrSparseMap {
+ if scr != nil && scr.cap() >= n {
+ f.Cache.scrSparseMap[i] = nil
+ scr.clear()
+ return scr
+ }
+ }
+ return newSparseMap(n)
+}
+
+// retSparseMap returns a sparse map to the config's cache of sparse
+// sets to be reused by f.newSparseMap.
+func (f *Func) retSparseMap(ss *sparseMap) {
+ for i, scr := range f.Cache.scrSparseMap {
+ if scr == nil {
+ f.Cache.scrSparseMap[i] = ss
+ return
+ }
+ }
+ f.Cache.scrSparseMap = append(f.Cache.scrSparseMap, ss)
+}
+
+// newPoset returns a new poset from the internal cache
+func (f *Func) newPoset() *poset {
+ if len(f.Cache.scrPoset) > 0 {
+ po := f.Cache.scrPoset[len(f.Cache.scrPoset)-1]
+ f.Cache.scrPoset = f.Cache.scrPoset[:len(f.Cache.scrPoset)-1]
+ return po
+ }
+ return newPoset()
+}
+
+// retPoset returns a poset to the internal cache
+func (f *Func) retPoset(po *poset) {
+ f.Cache.scrPoset = append(f.Cache.scrPoset, po)
+}
+
+// newDeadcodeLive returns a slice for the
+// deadcode pass to use to indicate which values are live.
+func (f *Func) newDeadcodeLive() []bool {
+ r := f.Cache.deadcode.live
+ f.Cache.deadcode.live = nil
+ return r
+}
+
+// retDeadcodeLive returns a deadcode live value slice for re-use.
+func (f *Func) retDeadcodeLive(live []bool) {
+ f.Cache.deadcode.live = live
+}
+
+// newDeadcodeLiveOrderStmts returns a slice for the
+// deadcode pass to use to indicate which values
+// need special treatment for statement boundaries.
+func (f *Func) newDeadcodeLiveOrderStmts() []*Value {
+ r := f.Cache.deadcode.liveOrderStmts
+ f.Cache.deadcode.liveOrderStmts = nil
+ return r
+}
+
+// retDeadcodeLiveOrderStmts returns a deadcode liveOrderStmts slice for re-use.
+func (f *Func) retDeadcodeLiveOrderStmts(liveOrderStmts []*Value) {
+ f.Cache.deadcode.liveOrderStmts = liveOrderStmts
+}
+
+func (f *Func) localSlotAddr(slot LocalSlot) *LocalSlot {
+ a, ok := f.CanonicalLocalSlots[slot]
+ if !ok {
+ a = new(LocalSlot)
+ *a = slot // don't escape slot
+ f.CanonicalLocalSlots[slot] = a
+ }
+ return a
+}
+
+func (f *Func) SplitString(name *LocalSlot) (*LocalSlot, *LocalSlot) {
+ ptrType := types.NewPtr(types.Types[types.TUINT8])
+ lenType := types.Types[types.TINT]
+ // Split this string up into two separate variables.
+ p := f.SplitSlot(name, ".ptr", 0, ptrType)
+ l := f.SplitSlot(name, ".len", ptrType.Size(), lenType)
+ return p, l
+}
+
+func (f *Func) SplitInterface(name *LocalSlot) (*LocalSlot, *LocalSlot) {
+ n := name.N
+ u := types.Types[types.TUINTPTR]
+ t := types.NewPtr(types.Types[types.TUINT8])
+ // Split this interface up into two separate variables.
+ sfx := ".itab"
+ if n.Type().IsEmptyInterface() {
+ sfx = ".type"
+ }
+ c := f.SplitSlot(name, sfx, 0, u) // see comment in typebits.Set
+ d := f.SplitSlot(name, ".data", u.Size(), t)
+ return c, d
+}
+
+func (f *Func) SplitSlice(name *LocalSlot) (*LocalSlot, *LocalSlot, *LocalSlot) {
+ ptrType := types.NewPtr(name.Type.Elem())
+ lenType := types.Types[types.TINT]
+ p := f.SplitSlot(name, ".ptr", 0, ptrType)
+ l := f.SplitSlot(name, ".len", ptrType.Size(), lenType)
+ c := f.SplitSlot(name, ".cap", ptrType.Size()+lenType.Size(), lenType)
+ return p, l, c
+}
+
+func (f *Func) SplitComplex(name *LocalSlot) (*LocalSlot, *LocalSlot) {
+ s := name.Type.Size() / 2
+ var t *types.Type
+ if s == 8 {
+ t = types.Types[types.TFLOAT64]
+ } else {
+ t = types.Types[types.TFLOAT32]
+ }
+ r := f.SplitSlot(name, ".real", 0, t)
+ i := f.SplitSlot(name, ".imag", t.Size(), t)
+ return r, i
+}
+
+func (f *Func) SplitInt64(name *LocalSlot) (*LocalSlot, *LocalSlot) {
+ var t *types.Type
+ if name.Type.IsSigned() {
+ t = types.Types[types.TINT32]
+ } else {
+ t = types.Types[types.TUINT32]
+ }
+ if f.Config.BigEndian {
+ return f.SplitSlot(name, ".hi", 0, t), f.SplitSlot(name, ".lo", t.Size(), types.Types[types.TUINT32])
+ }
+ return f.SplitSlot(name, ".hi", t.Size(), t), f.SplitSlot(name, ".lo", 0, types.Types[types.TUINT32])
+}
+
+func (f *Func) SplitStruct(name *LocalSlot, i int) *LocalSlot {
+ st := name.Type
+ return f.SplitSlot(name, st.FieldName(i), st.FieldOff(i), st.FieldType(i))
+}
+func (f *Func) SplitArray(name *LocalSlot) *LocalSlot {
+ n := name.N
+ at := name.Type
+ if at.NumElem() != 1 {
+ base.FatalfAt(n.Pos(), "bad array size")
+ }
+ et := at.Elem()
+ return f.SplitSlot(name, "[0]", 0, et)
+}
+
+func (f *Func) SplitSlot(name *LocalSlot, sfx string, offset int64, t *types.Type) *LocalSlot {
+ lssk := LocalSlotSplitKey{name, offset, t}
+ if als, ok := f.CanonicalLocalSplits[lssk]; ok {
+ return als
+ }
+ // Note: the _ field may appear several times. But
+ // have no fear, identically-named but distinct Autos are
+ // ok, albeit maybe confusing for a debugger.
+ ls := f.fe.SplitSlot(name, sfx, offset, t)
+ f.CanonicalLocalSplits[lssk] = &ls
+ return &ls
+}
+
+// newValue allocates a new Value with the given fields and places it at the end of b.Values.
+func (f *Func) newValue(op Op, t *types.Type, b *Block, pos src.XPos) *Value {
+ var v *Value
+ if f.freeValues != nil {
+ v = f.freeValues
+ f.freeValues = v.argstorage[0]
+ v.argstorage[0] = nil
+ } else {
+ ID := f.vid.get()
+ if int(ID) < len(f.Cache.values) {
+ v = &f.Cache.values[ID]
+ v.ID = ID
+ } else {
+ v = &Value{ID: ID}
+ }
+ }
+ v.Op = op
+ v.Type = t
+ v.Block = b
+ if notStmtBoundary(op) {
+ pos = pos.WithNotStmt()
+ }
+ v.Pos = pos
+ b.Values = append(b.Values, v)
+ return v
+}
+
+// newValueNoBlock allocates a new Value with the given fields.
+// The returned value is not placed in any block. Once the caller
+// decides on a block b, it must set b.Block and append
+// the returned value to b.Values.
+func (f *Func) newValueNoBlock(op Op, t *types.Type, pos src.XPos) *Value {
+ var v *Value
+ if f.freeValues != nil {
+ v = f.freeValues
+ f.freeValues = v.argstorage[0]
+ v.argstorage[0] = nil
+ } else {
+ ID := f.vid.get()
+ if int(ID) < len(f.Cache.values) {
+ v = &f.Cache.values[ID]
+ v.ID = ID
+ } else {
+ v = &Value{ID: ID}
+ }
+ }
+ v.Op = op
+ v.Type = t
+ v.Block = nil // caller must fix this.
+ if notStmtBoundary(op) {
+ pos = pos.WithNotStmt()
+ }
+ v.Pos = pos
+ return v
+}
+
+// logPassStat writes a string key and int value as a warning in a
+// tab-separated format easily handled by spreadsheets or awk.
+// file names, lines, and function names are included to provide enough (?)
+// context to allow item-by-item comparisons across runs.
+// For example:
+// awk 'BEGIN {FS="\t"} $3~/TIME/{sum+=$4} END{print "t(ns)=",sum}' t.log
+func (f *Func) LogStat(key string, args ...interface{}) {
+ value := ""
+ for _, a := range args {
+ value += fmt.Sprintf("\t%v", a)
+ }
+ n := "missing_pass"
+ if f.pass != nil {
+ n = strings.Replace(f.pass.name, " ", "_", -1)
+ }
+ f.Warnl(f.Entry.Pos, "\t%s\t%s%s\t%s", n, key, value, f.Name)
+}
+
+// unCacheLine removes v from f's constant cache "line" for aux,
+// resets v.InCache when it is found (and removed),
+// and returns whether v was found in that line.
+func (f *Func) unCacheLine(v *Value, aux int64) bool {
+ vv := f.constants[aux]
+ for i, cv := range vv {
+ if v == cv {
+ vv[i] = vv[len(vv)-1]
+ vv[len(vv)-1] = nil
+ f.constants[aux] = vv[0 : len(vv)-1]
+ v.InCache = false
+ return true
+ }
+ }
+ return false
+}
+
+// unCache removes v from f's constant cache.
+func (f *Func) unCache(v *Value) {
+ if v.InCache {
+ aux := v.AuxInt
+ if f.unCacheLine(v, aux) {
+ return
+ }
+ if aux == 0 {
+ switch v.Op {
+ case OpConstNil:
+ aux = constNilMagic
+ case OpConstSlice:
+ aux = constSliceMagic
+ case OpConstString:
+ aux = constEmptyStringMagic
+ case OpConstInterface:
+ aux = constInterfaceMagic
+ }
+ if aux != 0 && f.unCacheLine(v, aux) {
+ return
+ }
+ }
+ f.Fatalf("unCached value %s not found in cache, auxInt=0x%x, adjusted aux=0x%x", v.LongString(), v.AuxInt, aux)
+ }
+}
+
+// freeValue frees a value. It must no longer be referenced or have any args.
+func (f *Func) freeValue(v *Value) {
+ if v.Block == nil {
+ f.Fatalf("trying to free an already freed value")
+ }
+ if v.Uses != 0 {
+ f.Fatalf("value %s still has %d uses", v, v.Uses)
+ }
+ if len(v.Args) != 0 {
+ f.Fatalf("value %s still has %d args", v, len(v.Args))
+ }
+ // Clear everything but ID (which we reuse).
+ id := v.ID
+ if v.InCache {
+ f.unCache(v)
+ }
+ *v = Value{}
+ v.ID = id
+ v.argstorage[0] = f.freeValues
+ f.freeValues = v
+}
+
+// newBlock allocates a new Block of the given kind and places it at the end of f.Blocks.
+func (f *Func) NewBlock(kind BlockKind) *Block {
+ var b *Block
+ if f.freeBlocks != nil {
+ b = f.freeBlocks
+ f.freeBlocks = b.succstorage[0].b
+ b.succstorage[0].b = nil
+ } else {
+ ID := f.bid.get()
+ if int(ID) < len(f.Cache.blocks) {
+ b = &f.Cache.blocks[ID]
+ b.ID = ID
+ } else {
+ b = &Block{ID: ID}
+ }
+ }
+ b.Kind = kind
+ b.Func = f
+ b.Preds = b.predstorage[:0]
+ b.Succs = b.succstorage[:0]
+ b.Values = b.valstorage[:0]
+ f.Blocks = append(f.Blocks, b)
+ f.invalidateCFG()
+ return b
+}
+
+func (f *Func) freeBlock(b *Block) {
+ if b.Func == nil {
+ f.Fatalf("trying to free an already freed block")
+ }
+ // Clear everything but ID (which we reuse).
+ id := b.ID
+ *b = Block{}
+ b.ID = id
+ b.succstorage[0].b = f.freeBlocks
+ f.freeBlocks = b
+}
+
+// NewValue0 returns a new value in the block with no arguments and zero aux values.
+func (b *Block) NewValue0(pos src.XPos, op Op, t *types.Type) *Value {
+ v := b.Func.newValue(op, t, b, pos)
+ v.AuxInt = 0
+ v.Args = v.argstorage[:0]
+ return v
+}
+
+// NewValue returns a new value in the block with no arguments and an auxint value.
+func (b *Block) NewValue0I(pos src.XPos, op Op, t *types.Type, auxint int64) *Value {
+ v := b.Func.newValue(op, t, b, pos)
+ v.AuxInt = auxint
+ v.Args = v.argstorage[:0]
+ return v
+}
+
+// NewValue returns a new value in the block with no arguments and an aux value.
+func (b *Block) NewValue0A(pos src.XPos, op Op, t *types.Type, aux Aux) *Value {
+ v := b.Func.newValue(op, t, b, pos)
+ v.AuxInt = 0
+ v.Aux = aux
+ v.Args = v.argstorage[:0]
+ return v
+}
+
+// NewValue returns a new value in the block with no arguments and both an auxint and aux values.
+func (b *Block) NewValue0IA(pos src.XPos, op Op, t *types.Type, auxint int64, aux Aux) *Value {
+ v := b.Func.newValue(op, t, b, pos)
+ v.AuxInt = auxint
+ v.Aux = aux
+ v.Args = v.argstorage[:0]
+ return v
+}
+
+// NewValue1 returns a new value in the block with one argument and zero aux values.
+func (b *Block) NewValue1(pos src.XPos, op Op, t *types.Type, arg *Value) *Value {
+ v := b.Func.newValue(op, t, b, pos)
+ v.AuxInt = 0
+ v.Args = v.argstorage[:1]
+ v.argstorage[0] = arg
+ arg.Uses++
+ return v
+}
+
+// NewValue1I returns a new value in the block with one argument and an auxint value.
+func (b *Block) NewValue1I(pos src.XPos, op Op, t *types.Type, auxint int64, arg *Value) *Value {
+ v := b.Func.newValue(op, t, b, pos)
+ v.AuxInt = auxint
+ v.Args = v.argstorage[:1]
+ v.argstorage[0] = arg
+ arg.Uses++
+ return v
+}
+
+// NewValue1A returns a new value in the block with one argument and an aux value.
+func (b *Block) NewValue1A(pos src.XPos, op Op, t *types.Type, aux Aux, arg *Value) *Value {
+ v := b.Func.newValue(op, t, b, pos)
+ v.AuxInt = 0
+ v.Aux = aux
+ v.Args = v.argstorage[:1]
+ v.argstorage[0] = arg
+ arg.Uses++
+ return v
+}
+
+// NewValue1IA returns a new value in the block with one argument and both an auxint and aux values.
+func (b *Block) NewValue1IA(pos src.XPos, op Op, t *types.Type, auxint int64, aux Aux, arg *Value) *Value {
+ v := b.Func.newValue(op, t, b, pos)
+ v.AuxInt = auxint
+ v.Aux = aux
+ v.Args = v.argstorage[:1]
+ v.argstorage[0] = arg
+ arg.Uses++
+ return v
+}
+
+// NewValue2 returns a new value in the block with two arguments and zero aux values.
+func (b *Block) NewValue2(pos src.XPos, op Op, t *types.Type, arg0, arg1 *Value) *Value {
+ v := b.Func.newValue(op, t, b, pos)
+ v.AuxInt = 0
+ v.Args = v.argstorage[:2]
+ v.argstorage[0] = arg0
+ v.argstorage[1] = arg1
+ arg0.Uses++
+ arg1.Uses++
+ return v
+}
+
+// NewValue2A returns a new value in the block with two arguments and one aux values.
+func (b *Block) NewValue2A(pos src.XPos, op Op, t *types.Type, aux Aux, arg0, arg1 *Value) *Value {
+ v := b.Func.newValue(op, t, b, pos)
+ v.AuxInt = 0
+ v.Aux = aux
+ v.Args = v.argstorage[:2]
+ v.argstorage[0] = arg0
+ v.argstorage[1] = arg1
+ arg0.Uses++
+ arg1.Uses++
+ return v
+}
+
+// NewValue2I returns a new value in the block with two arguments and an auxint value.
+func (b *Block) NewValue2I(pos src.XPos, op Op, t *types.Type, auxint int64, arg0, arg1 *Value) *Value {
+ v := b.Func.newValue(op, t, b, pos)
+ v.AuxInt = auxint
+ v.Args = v.argstorage[:2]
+ v.argstorage[0] = arg0
+ v.argstorage[1] = arg1
+ arg0.Uses++
+ arg1.Uses++
+ return v
+}
+
+// NewValue2IA returns a new value in the block with two arguments and both an auxint and aux values.
+func (b *Block) NewValue2IA(pos src.XPos, op Op, t *types.Type, auxint int64, aux Aux, arg0, arg1 *Value) *Value {
+ v := b.Func.newValue(op, t, b, pos)
+ v.AuxInt = auxint
+ v.Aux = aux
+ v.Args = v.argstorage[:2]
+ v.argstorage[0] = arg0
+ v.argstorage[1] = arg1
+ arg0.Uses++
+ arg1.Uses++
+ return v
+}
+
+// NewValue3 returns a new value in the block with three arguments and zero aux values.
+func (b *Block) NewValue3(pos src.XPos, op Op, t *types.Type, arg0, arg1, arg2 *Value) *Value {
+ v := b.Func.newValue(op, t, b, pos)
+ v.AuxInt = 0
+ v.Args = v.argstorage[:3]
+ v.argstorage[0] = arg0
+ v.argstorage[1] = arg1
+ v.argstorage[2] = arg2
+ arg0.Uses++
+ arg1.Uses++
+ arg2.Uses++
+ return v
+}
+
+// NewValue3I returns a new value in the block with three arguments and an auxint value.
+func (b *Block) NewValue3I(pos src.XPos, op Op, t *types.Type, auxint int64, arg0, arg1, arg2 *Value) *Value {
+ v := b.Func.newValue(op, t, b, pos)
+ v.AuxInt = auxint
+ v.Args = v.argstorage[:3]
+ v.argstorage[0] = arg0
+ v.argstorage[1] = arg1
+ v.argstorage[2] = arg2
+ arg0.Uses++
+ arg1.Uses++
+ arg2.Uses++
+ return v
+}
+
+// NewValue3A returns a new value in the block with three argument and an aux value.
+func (b *Block) NewValue3A(pos src.XPos, op Op, t *types.Type, aux Aux, arg0, arg1, arg2 *Value) *Value {
+ v := b.Func.newValue(op, t, b, pos)
+ v.AuxInt = 0
+ v.Aux = aux
+ v.Args = v.argstorage[:3]
+ v.argstorage[0] = arg0
+ v.argstorage[1] = arg1
+ v.argstorage[2] = arg2
+ arg0.Uses++
+ arg1.Uses++
+ arg2.Uses++
+ return v
+}
+
+// NewValue4 returns a new value in the block with four arguments and zero aux values.
+func (b *Block) NewValue4(pos src.XPos, op Op, t *types.Type, arg0, arg1, arg2, arg3 *Value) *Value {
+ v := b.Func.newValue(op, t, b, pos)
+ v.AuxInt = 0
+ v.Args = []*Value{arg0, arg1, arg2, arg3}
+ arg0.Uses++
+ arg1.Uses++
+ arg2.Uses++
+ arg3.Uses++
+ return v
+}
+
+// NewValue4I returns a new value in the block with four arguments and auxint value.
+func (b *Block) NewValue4I(pos src.XPos, op Op, t *types.Type, auxint int64, arg0, arg1, arg2, arg3 *Value) *Value {
+ v := b.Func.newValue(op, t, b, pos)
+ v.AuxInt = auxint
+ v.Args = []*Value{arg0, arg1, arg2, arg3}
+ arg0.Uses++
+ arg1.Uses++
+ arg2.Uses++
+ arg3.Uses++
+ return v
+}
+
+// constVal returns a constant value for c.
+func (f *Func) constVal(op Op, t *types.Type, c int64, setAuxInt bool) *Value {
+ if f.constants == nil {
+ f.constants = make(map[int64][]*Value)
+ }
+ vv := f.constants[c]
+ for _, v := range vv {
+ if v.Op == op && v.Type.Compare(t) == types.CMPeq {
+ if setAuxInt && v.AuxInt != c {
+ panic(fmt.Sprintf("cached const %s should have AuxInt of %d", v.LongString(), c))
+ }
+ return v
+ }
+ }
+ var v *Value
+ if setAuxInt {
+ v = f.Entry.NewValue0I(src.NoXPos, op, t, c)
+ } else {
+ v = f.Entry.NewValue0(src.NoXPos, op, t)
+ }
+ f.constants[c] = append(vv, v)
+ v.InCache = true
+ return v
+}
+
+// These magic auxint values let us easily cache non-numeric constants
+// using the same constants map while making collisions unlikely.
+// These values are unlikely to occur in regular code and
+// are easy to grep for in case of bugs.
+const (
+ constSliceMagic = 1122334455
+ constInterfaceMagic = 2233445566
+ constNilMagic = 3344556677
+ constEmptyStringMagic = 4455667788
+)
+
+// ConstInt returns an int constant representing its argument.
+func (f *Func) ConstBool(t *types.Type, c bool) *Value {
+ i := int64(0)
+ if c {
+ i = 1
+ }
+ return f.constVal(OpConstBool, t, i, true)
+}
+func (f *Func) ConstInt8(t *types.Type, c int8) *Value {
+ return f.constVal(OpConst8, t, int64(c), true)
+}
+func (f *Func) ConstInt16(t *types.Type, c int16) *Value {
+ return f.constVal(OpConst16, t, int64(c), true)
+}
+func (f *Func) ConstInt32(t *types.Type, c int32) *Value {
+ return f.constVal(OpConst32, t, int64(c), true)
+}
+func (f *Func) ConstInt64(t *types.Type, c int64) *Value {
+ return f.constVal(OpConst64, t, c, true)
+}
+func (f *Func) ConstFloat32(t *types.Type, c float64) *Value {
+ return f.constVal(OpConst32F, t, int64(math.Float64bits(float64(float32(c)))), true)
+}
+func (f *Func) ConstFloat64(t *types.Type, c float64) *Value {
+ return f.constVal(OpConst64F, t, int64(math.Float64bits(c)), true)
+}
+
+func (f *Func) ConstSlice(t *types.Type) *Value {
+ return f.constVal(OpConstSlice, t, constSliceMagic, false)
+}
+func (f *Func) ConstInterface(t *types.Type) *Value {
+ return f.constVal(OpConstInterface, t, constInterfaceMagic, false)
+}
+func (f *Func) ConstNil(t *types.Type) *Value {
+ return f.constVal(OpConstNil, t, constNilMagic, false)
+}
+func (f *Func) ConstEmptyString(t *types.Type) *Value {
+ v := f.constVal(OpConstString, t, constEmptyStringMagic, false)
+ v.Aux = StringToAux("")
+ return v
+}
+func (f *Func) ConstOffPtrSP(t *types.Type, c int64, sp *Value) *Value {
+ v := f.constVal(OpOffPtr, t, c, true)
+ if len(v.Args) == 0 {
+ v.AddArg(sp)
+ }
+ return v
+
+}
+
+func (f *Func) Frontend() Frontend { return f.fe }
+func (f *Func) Warnl(pos src.XPos, msg string, args ...interface{}) { f.fe.Warnl(pos, msg, args...) }
+func (f *Func) Logf(msg string, args ...interface{}) { f.fe.Logf(msg, args...) }
+func (f *Func) Log() bool { return f.fe.Log() }
+
+func (f *Func) Fatalf(msg string, args ...interface{}) {
+ stats := "crashed"
+ if f.Log() {
+ f.Logf(" pass %s end %s\n", f.pass.name, stats)
+ printFunc(f)
+ }
+ if f.HTMLWriter != nil {
+ f.HTMLWriter.WritePhase(f.pass.name, fmt.Sprintf("%s <span class=\"stats\">%s</span>", f.pass.name, stats))
+ f.HTMLWriter.flushPhases()
+ }
+ f.fe.Fatalf(f.Entry.Pos, msg, args...)
+}
+
+// postorder returns the reachable blocks in f in a postorder traversal.
+func (f *Func) postorder() []*Block {
+ if f.cachedPostorder == nil {
+ f.cachedPostorder = postorder(f)
+ }
+ return f.cachedPostorder
+}
+
+func (f *Func) Postorder() []*Block {
+ return f.postorder()
+}
+
+// Idom returns a map from block ID to the immediate dominator of that block.
+// f.Entry.ID maps to nil. Unreachable blocks map to nil as well.
+func (f *Func) Idom() []*Block {
+ if f.cachedIdom == nil {
+ f.cachedIdom = dominators(f)
+ }
+ return f.cachedIdom
+}
+
+// Sdom returns a sparse tree representing the dominator relationships
+// among the blocks of f.
+func (f *Func) Sdom() SparseTree {
+ if f.cachedSdom == nil {
+ f.cachedSdom = newSparseTree(f, f.Idom())
+ }
+ return f.cachedSdom
+}
+
+// loopnest returns the loop nest information for f.
+func (f *Func) loopnest() *loopnest {
+ if f.cachedLoopnest == nil {
+ f.cachedLoopnest = loopnestfor(f)
+ }
+ return f.cachedLoopnest
+}
+
+// invalidateCFG tells f that its CFG has changed.
+func (f *Func) invalidateCFG() {
+ f.cachedPostorder = nil
+ f.cachedIdom = nil
+ f.cachedSdom = nil
+ f.cachedLoopnest = nil
+}
+
+// DebugHashMatch reports whether environment variable evname
+// 1) is empty (this is a special more-quickly implemented case of 3)
+// 2) is "y" or "Y"
+// 3) is a suffix of the sha1 hash of name
+// 4) is a suffix of the environment variable
+// fmt.Sprintf("%s%d", evname, n)
+// provided that all such variables are nonempty for 0 <= i <= n
+// Otherwise it returns false.
+// When true is returned the message
+// "%s triggered %s\n", evname, name
+// is printed on the file named in environment variable
+// GSHS_LOGFILE
+// or standard out if that is empty or there is an error
+// opening the file.
+func (f *Func) DebugHashMatch(evname string) bool {
+ name := f.fe.MyImportPath() + "." + f.Name
+ evhash := os.Getenv(evname)
+ switch evhash {
+ case "":
+ return true // default behavior with no EV is "on"
+ case "y", "Y":
+ f.logDebugHashMatch(evname, name)
+ return true
+ case "n", "N":
+ return false
+ }
+ // Check the hash of the name against a partial input hash.
+ // We use this feature to do a binary search to
+ // find a function that is incorrectly compiled.
+ hstr := ""
+ for _, b := range sha1.Sum([]byte(name)) {
+ hstr += fmt.Sprintf("%08b", b)
+ }
+
+ if strings.HasSuffix(hstr, evhash) {
+ f.logDebugHashMatch(evname, name)
+ return true
+ }
+
+ // Iteratively try additional hashes to allow tests for multi-point
+ // failure.
+ for i := 0; true; i++ {
+ ev := fmt.Sprintf("%s%d", evname, i)
+ evv := os.Getenv(ev)
+ if evv == "" {
+ break
+ }
+ if strings.HasSuffix(hstr, evv) {
+ f.logDebugHashMatch(ev, name)
+ return true
+ }
+ }
+ return false
+}
+
+func (f *Func) logDebugHashMatch(evname, name string) {
+ if f.logfiles == nil {
+ f.logfiles = make(map[string]writeSyncer)
+ }
+ file := f.logfiles[evname]
+ if file == nil {
+ file = os.Stdout
+ if tmpfile := os.Getenv("GSHS_LOGFILE"); tmpfile != "" {
+ var err error
+ file, err = os.OpenFile(tmpfile, os.O_RDWR|os.O_CREATE|os.O_APPEND, 0666)
+ if err != nil {
+ f.Fatalf("could not open hash-testing logfile %s", tmpfile)
+ }
+ }
+ f.logfiles[evname] = file
+ }
+ fmt.Fprintf(file, "%s triggered %s\n", evname, name)
+ file.Sync()
+}
+
+func DebugNameMatch(evname, name string) bool {
+ return os.Getenv(evname) == name
+}
+
+func (f *Func) spSb() (sp, sb *Value) {
+ initpos := src.NoXPos // These are originally created with no position in ssa.go; if they are optimized out then recreated, should be the same.
+ for _, v := range f.Entry.Values {
+ if v.Op == OpSB {
+ sb = v
+ }
+ if v.Op == OpSP {
+ sp = v
+ }
+ if sb != nil && sp != nil {
+ return
+ }
+ }
+ if sb == nil {
+ sb = f.Entry.NewValue0(initpos.WithNotStmt(), OpSB, f.Config.Types.Uintptr)
+ }
+ if sp == nil {
+ sp = f.Entry.NewValue0(initpos.WithNotStmt(), OpSP, f.Config.Types.Uintptr)
+ }
+ return
+}