summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/ssagen/ssa.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:16:40 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:16:40 +0000
commit47ab3d4a42e9ab51c465c4322d2ec233f6324e6b (patch)
treea61a0ffd83f4a3def4b36e5c8e99630c559aa723 /src/cmd/compile/internal/ssagen/ssa.go
parentInitial commit. (diff)
downloadgolang-1.18-upstream.tar.xz
golang-1.18-upstream.zip
Adding upstream version 1.18.10.upstream/1.18.10upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/cmd/compile/internal/ssagen/ssa.go')
-rw-r--r--src/cmd/compile/internal/ssagen/ssa.go7943
1 files changed, 7943 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/ssagen/ssa.go b/src/cmd/compile/internal/ssagen/ssa.go
new file mode 100644
index 0000000..b19f3c8
--- /dev/null
+++ b/src/cmd/compile/internal/ssagen/ssa.go
@@ -0,0 +1,7943 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssagen
+
+import (
+ "bufio"
+ "bytes"
+ "cmd/compile/internal/abi"
+ "fmt"
+ "go/constant"
+ "html"
+ "internal/buildcfg"
+ "os"
+ "path/filepath"
+ "sort"
+ "strings"
+
+ "cmd/compile/internal/base"
+ "cmd/compile/internal/ir"
+ "cmd/compile/internal/liveness"
+ "cmd/compile/internal/objw"
+ "cmd/compile/internal/reflectdata"
+ "cmd/compile/internal/ssa"
+ "cmd/compile/internal/staticdata"
+ "cmd/compile/internal/typecheck"
+ "cmd/compile/internal/types"
+ "cmd/internal/obj"
+ "cmd/internal/obj/x86"
+ "cmd/internal/objabi"
+ "cmd/internal/src"
+ "cmd/internal/sys"
+)
+
+var ssaConfig *ssa.Config
+var ssaCaches []ssa.Cache
+
+var ssaDump string // early copy of $GOSSAFUNC; the func name to dump output for
+var ssaDir string // optional destination for ssa dump file
+var ssaDumpStdout bool // whether to dump to stdout
+var ssaDumpCFG string // generate CFGs for these phases
+const ssaDumpFile = "ssa.html"
+
+// ssaDumpInlined holds all inlined functions when ssaDump contains a function name.
+var ssaDumpInlined []*ir.Func
+
+func DumpInline(fn *ir.Func) {
+ if ssaDump != "" && ssaDump == ir.FuncName(fn) {
+ ssaDumpInlined = append(ssaDumpInlined, fn)
+ }
+}
+
+func InitEnv() {
+ ssaDump = os.Getenv("GOSSAFUNC")
+ ssaDir = os.Getenv("GOSSADIR")
+ if ssaDump != "" {
+ if strings.HasSuffix(ssaDump, "+") {
+ ssaDump = ssaDump[:len(ssaDump)-1]
+ ssaDumpStdout = true
+ }
+ spl := strings.Split(ssaDump, ":")
+ if len(spl) > 1 {
+ ssaDump = spl[0]
+ ssaDumpCFG = spl[1]
+ }
+ }
+}
+
+func InitConfig() {
+ types_ := ssa.NewTypes()
+
+ if Arch.SoftFloat {
+ softfloatInit()
+ }
+
+ // Generate a few pointer types that are uncommon in the frontend but common in the backend.
+ // Caching is disabled in the backend, so generating these here avoids allocations.
+ _ = types.NewPtr(types.Types[types.TINTER]) // *interface{}
+ _ = types.NewPtr(types.NewPtr(types.Types[types.TSTRING])) // **string
+ _ = types.NewPtr(types.NewSlice(types.Types[types.TINTER])) // *[]interface{}
+ _ = types.NewPtr(types.NewPtr(types.ByteType)) // **byte
+ _ = types.NewPtr(types.NewSlice(types.ByteType)) // *[]byte
+ _ = types.NewPtr(types.NewSlice(types.Types[types.TSTRING])) // *[]string
+ _ = types.NewPtr(types.NewPtr(types.NewPtr(types.Types[types.TUINT8]))) // ***uint8
+ _ = types.NewPtr(types.Types[types.TINT16]) // *int16
+ _ = types.NewPtr(types.Types[types.TINT64]) // *int64
+ _ = types.NewPtr(types.ErrorType) // *error
+ types.NewPtrCacheEnabled = false
+ ssaConfig = ssa.NewConfig(base.Ctxt.Arch.Name, *types_, base.Ctxt, base.Flag.N == 0, Arch.SoftFloat)
+ ssaConfig.Race = base.Flag.Race
+ ssaCaches = make([]ssa.Cache, base.Flag.LowerC)
+
+ // Set up some runtime functions we'll need to call.
+ ir.Syms.AssertE2I = typecheck.LookupRuntimeFunc("assertE2I")
+ ir.Syms.AssertE2I2 = typecheck.LookupRuntimeFunc("assertE2I2")
+ ir.Syms.AssertI2I = typecheck.LookupRuntimeFunc("assertI2I")
+ ir.Syms.AssertI2I2 = typecheck.LookupRuntimeFunc("assertI2I2")
+ ir.Syms.CheckPtrAlignment = typecheck.LookupRuntimeFunc("checkptrAlignment")
+ ir.Syms.Deferproc = typecheck.LookupRuntimeFunc("deferproc")
+ ir.Syms.DeferprocStack = typecheck.LookupRuntimeFunc("deferprocStack")
+ ir.Syms.Deferreturn = typecheck.LookupRuntimeFunc("deferreturn")
+ ir.Syms.Duffcopy = typecheck.LookupRuntimeFunc("duffcopy")
+ ir.Syms.Duffzero = typecheck.LookupRuntimeFunc("duffzero")
+ ir.Syms.GCWriteBarrier = typecheck.LookupRuntimeFunc("gcWriteBarrier")
+ ir.Syms.Goschedguarded = typecheck.LookupRuntimeFunc("goschedguarded")
+ ir.Syms.Growslice = typecheck.LookupRuntimeFunc("growslice")
+ ir.Syms.Memmove = typecheck.LookupRuntimeFunc("memmove")
+ ir.Syms.Msanread = typecheck.LookupRuntimeFunc("msanread")
+ ir.Syms.Msanwrite = typecheck.LookupRuntimeFunc("msanwrite")
+ ir.Syms.Msanmove = typecheck.LookupRuntimeFunc("msanmove")
+ ir.Syms.Asanread = typecheck.LookupRuntimeFunc("asanread")
+ ir.Syms.Asanwrite = typecheck.LookupRuntimeFunc("asanwrite")
+ ir.Syms.Newobject = typecheck.LookupRuntimeFunc("newobject")
+ ir.Syms.Newproc = typecheck.LookupRuntimeFunc("newproc")
+ ir.Syms.Panicdivide = typecheck.LookupRuntimeFunc("panicdivide")
+ ir.Syms.PanicdottypeE = typecheck.LookupRuntimeFunc("panicdottypeE")
+ ir.Syms.PanicdottypeI = typecheck.LookupRuntimeFunc("panicdottypeI")
+ ir.Syms.Panicnildottype = typecheck.LookupRuntimeFunc("panicnildottype")
+ ir.Syms.Panicoverflow = typecheck.LookupRuntimeFunc("panicoverflow")
+ ir.Syms.Panicshift = typecheck.LookupRuntimeFunc("panicshift")
+ ir.Syms.Raceread = typecheck.LookupRuntimeFunc("raceread")
+ ir.Syms.Racereadrange = typecheck.LookupRuntimeFunc("racereadrange")
+ ir.Syms.Racewrite = typecheck.LookupRuntimeFunc("racewrite")
+ ir.Syms.Racewriterange = typecheck.LookupRuntimeFunc("racewriterange")
+ ir.Syms.X86HasPOPCNT = typecheck.LookupRuntimeVar("x86HasPOPCNT") // bool
+ ir.Syms.X86HasSSE41 = typecheck.LookupRuntimeVar("x86HasSSE41") // bool
+ ir.Syms.X86HasFMA = typecheck.LookupRuntimeVar("x86HasFMA") // bool
+ ir.Syms.ARMHasVFPv4 = typecheck.LookupRuntimeVar("armHasVFPv4") // bool
+ ir.Syms.ARM64HasATOMICS = typecheck.LookupRuntimeVar("arm64HasATOMICS") // bool
+ ir.Syms.Staticuint64s = typecheck.LookupRuntimeVar("staticuint64s")
+ ir.Syms.Typedmemclr = typecheck.LookupRuntimeFunc("typedmemclr")
+ ir.Syms.Typedmemmove = typecheck.LookupRuntimeFunc("typedmemmove")
+ ir.Syms.Udiv = typecheck.LookupRuntimeVar("udiv") // asm func with special ABI
+ ir.Syms.WriteBarrier = typecheck.LookupRuntimeVar("writeBarrier") // struct { bool; ... }
+ ir.Syms.Zerobase = typecheck.LookupRuntimeVar("zerobase")
+
+ // asm funcs with special ABI
+ if base.Ctxt.Arch.Name == "amd64" {
+ GCWriteBarrierReg = map[int16]*obj.LSym{
+ x86.REG_AX: typecheck.LookupRuntimeFunc("gcWriteBarrier"),
+ x86.REG_CX: typecheck.LookupRuntimeFunc("gcWriteBarrierCX"),
+ x86.REG_DX: typecheck.LookupRuntimeFunc("gcWriteBarrierDX"),
+ x86.REG_BX: typecheck.LookupRuntimeFunc("gcWriteBarrierBX"),
+ x86.REG_BP: typecheck.LookupRuntimeFunc("gcWriteBarrierBP"),
+ x86.REG_SI: typecheck.LookupRuntimeFunc("gcWriteBarrierSI"),
+ x86.REG_R8: typecheck.LookupRuntimeFunc("gcWriteBarrierR8"),
+ x86.REG_R9: typecheck.LookupRuntimeFunc("gcWriteBarrierR9"),
+ }
+ }
+
+ if Arch.LinkArch.Family == sys.Wasm {
+ BoundsCheckFunc[ssa.BoundsIndex] = typecheck.LookupRuntimeFunc("goPanicIndex")
+ BoundsCheckFunc[ssa.BoundsIndexU] = typecheck.LookupRuntimeFunc("goPanicIndexU")
+ BoundsCheckFunc[ssa.BoundsSliceAlen] = typecheck.LookupRuntimeFunc("goPanicSliceAlen")
+ BoundsCheckFunc[ssa.BoundsSliceAlenU] = typecheck.LookupRuntimeFunc("goPanicSliceAlenU")
+ BoundsCheckFunc[ssa.BoundsSliceAcap] = typecheck.LookupRuntimeFunc("goPanicSliceAcap")
+ BoundsCheckFunc[ssa.BoundsSliceAcapU] = typecheck.LookupRuntimeFunc("goPanicSliceAcapU")
+ BoundsCheckFunc[ssa.BoundsSliceB] = typecheck.LookupRuntimeFunc("goPanicSliceB")
+ BoundsCheckFunc[ssa.BoundsSliceBU] = typecheck.LookupRuntimeFunc("goPanicSliceBU")
+ BoundsCheckFunc[ssa.BoundsSlice3Alen] = typecheck.LookupRuntimeFunc("goPanicSlice3Alen")
+ BoundsCheckFunc[ssa.BoundsSlice3AlenU] = typecheck.LookupRuntimeFunc("goPanicSlice3AlenU")
+ BoundsCheckFunc[ssa.BoundsSlice3Acap] = typecheck.LookupRuntimeFunc("goPanicSlice3Acap")
+ BoundsCheckFunc[ssa.BoundsSlice3AcapU] = typecheck.LookupRuntimeFunc("goPanicSlice3AcapU")
+ BoundsCheckFunc[ssa.BoundsSlice3B] = typecheck.LookupRuntimeFunc("goPanicSlice3B")
+ BoundsCheckFunc[ssa.BoundsSlice3BU] = typecheck.LookupRuntimeFunc("goPanicSlice3BU")
+ BoundsCheckFunc[ssa.BoundsSlice3C] = typecheck.LookupRuntimeFunc("goPanicSlice3C")
+ BoundsCheckFunc[ssa.BoundsSlice3CU] = typecheck.LookupRuntimeFunc("goPanicSlice3CU")
+ BoundsCheckFunc[ssa.BoundsConvert] = typecheck.LookupRuntimeFunc("goPanicSliceConvert")
+ } else {
+ BoundsCheckFunc[ssa.BoundsIndex] = typecheck.LookupRuntimeFunc("panicIndex")
+ BoundsCheckFunc[ssa.BoundsIndexU] = typecheck.LookupRuntimeFunc("panicIndexU")
+ BoundsCheckFunc[ssa.BoundsSliceAlen] = typecheck.LookupRuntimeFunc("panicSliceAlen")
+ BoundsCheckFunc[ssa.BoundsSliceAlenU] = typecheck.LookupRuntimeFunc("panicSliceAlenU")
+ BoundsCheckFunc[ssa.BoundsSliceAcap] = typecheck.LookupRuntimeFunc("panicSliceAcap")
+ BoundsCheckFunc[ssa.BoundsSliceAcapU] = typecheck.LookupRuntimeFunc("panicSliceAcapU")
+ BoundsCheckFunc[ssa.BoundsSliceB] = typecheck.LookupRuntimeFunc("panicSliceB")
+ BoundsCheckFunc[ssa.BoundsSliceBU] = typecheck.LookupRuntimeFunc("panicSliceBU")
+ BoundsCheckFunc[ssa.BoundsSlice3Alen] = typecheck.LookupRuntimeFunc("panicSlice3Alen")
+ BoundsCheckFunc[ssa.BoundsSlice3AlenU] = typecheck.LookupRuntimeFunc("panicSlice3AlenU")
+ BoundsCheckFunc[ssa.BoundsSlice3Acap] = typecheck.LookupRuntimeFunc("panicSlice3Acap")
+ BoundsCheckFunc[ssa.BoundsSlice3AcapU] = typecheck.LookupRuntimeFunc("panicSlice3AcapU")
+ BoundsCheckFunc[ssa.BoundsSlice3B] = typecheck.LookupRuntimeFunc("panicSlice3B")
+ BoundsCheckFunc[ssa.BoundsSlice3BU] = typecheck.LookupRuntimeFunc("panicSlice3BU")
+ BoundsCheckFunc[ssa.BoundsSlice3C] = typecheck.LookupRuntimeFunc("panicSlice3C")
+ BoundsCheckFunc[ssa.BoundsSlice3CU] = typecheck.LookupRuntimeFunc("panicSlice3CU")
+ BoundsCheckFunc[ssa.BoundsConvert] = typecheck.LookupRuntimeFunc("panicSliceConvert")
+ }
+ if Arch.LinkArch.PtrSize == 4 {
+ ExtendCheckFunc[ssa.BoundsIndex] = typecheck.LookupRuntimeVar("panicExtendIndex")
+ ExtendCheckFunc[ssa.BoundsIndexU] = typecheck.LookupRuntimeVar("panicExtendIndexU")
+ ExtendCheckFunc[ssa.BoundsSliceAlen] = typecheck.LookupRuntimeVar("panicExtendSliceAlen")
+ ExtendCheckFunc[ssa.BoundsSliceAlenU] = typecheck.LookupRuntimeVar("panicExtendSliceAlenU")
+ ExtendCheckFunc[ssa.BoundsSliceAcap] = typecheck.LookupRuntimeVar("panicExtendSliceAcap")
+ ExtendCheckFunc[ssa.BoundsSliceAcapU] = typecheck.LookupRuntimeVar("panicExtendSliceAcapU")
+ ExtendCheckFunc[ssa.BoundsSliceB] = typecheck.LookupRuntimeVar("panicExtendSliceB")
+ ExtendCheckFunc[ssa.BoundsSliceBU] = typecheck.LookupRuntimeVar("panicExtendSliceBU")
+ ExtendCheckFunc[ssa.BoundsSlice3Alen] = typecheck.LookupRuntimeVar("panicExtendSlice3Alen")
+ ExtendCheckFunc[ssa.BoundsSlice3AlenU] = typecheck.LookupRuntimeVar("panicExtendSlice3AlenU")
+ ExtendCheckFunc[ssa.BoundsSlice3Acap] = typecheck.LookupRuntimeVar("panicExtendSlice3Acap")
+ ExtendCheckFunc[ssa.BoundsSlice3AcapU] = typecheck.LookupRuntimeVar("panicExtendSlice3AcapU")
+ ExtendCheckFunc[ssa.BoundsSlice3B] = typecheck.LookupRuntimeVar("panicExtendSlice3B")
+ ExtendCheckFunc[ssa.BoundsSlice3BU] = typecheck.LookupRuntimeVar("panicExtendSlice3BU")
+ ExtendCheckFunc[ssa.BoundsSlice3C] = typecheck.LookupRuntimeVar("panicExtendSlice3C")
+ ExtendCheckFunc[ssa.BoundsSlice3CU] = typecheck.LookupRuntimeVar("panicExtendSlice3CU")
+ }
+
+ // Wasm (all asm funcs with special ABIs)
+ ir.Syms.WasmMove = typecheck.LookupRuntimeVar("wasmMove")
+ ir.Syms.WasmZero = typecheck.LookupRuntimeVar("wasmZero")
+ ir.Syms.WasmDiv = typecheck.LookupRuntimeVar("wasmDiv")
+ ir.Syms.WasmTruncS = typecheck.LookupRuntimeVar("wasmTruncS")
+ ir.Syms.WasmTruncU = typecheck.LookupRuntimeVar("wasmTruncU")
+ ir.Syms.SigPanic = typecheck.LookupRuntimeFunc("sigpanic")
+}
+
+// AbiForBodylessFuncStackMap returns the ABI for a bodyless function's stack map.
+// This is not necessarily the ABI used to call it.
+// Currently (1.17 dev) such a stack map is always ABI0;
+// any ABI wrapper that is present is nosplit, hence a precise
+// stack map is not needed there (the parameters survive only long
+// enough to call the wrapped assembly function).
+// This always returns a freshly copied ABI.
+func AbiForBodylessFuncStackMap(fn *ir.Func) *abi.ABIConfig {
+ return ssaConfig.ABI0.Copy() // No idea what races will result, be safe
+}
+
+// These are disabled but remain ready for use in case they are needed for the next regabi port.
+// TODO if they are not needed for 1.18 / next register abi port, delete them.
+const magicNameDotSuffix = ".*disabled*MagicMethodNameForTestingRegisterABI"
+const magicLastTypeName = "*disabled*MagicLastTypeNameForTestingRegisterABI"
+
+// abiForFunc implements ABI policy for a function, but does not return a copy of the ABI.
+// Passing a nil function returns the default ABI based on experiment configuration.
+func abiForFunc(fn *ir.Func, abi0, abi1 *abi.ABIConfig) *abi.ABIConfig {
+ if buildcfg.Experiment.RegabiArgs {
+ // Select the ABI based on the function's defining ABI.
+ if fn == nil {
+ return abi1
+ }
+ switch fn.ABI {
+ case obj.ABI0:
+ return abi0
+ case obj.ABIInternal:
+ // TODO(austin): Clean up the nomenclature here.
+ // It's not clear that "abi1" is ABIInternal.
+ return abi1
+ }
+ base.Fatalf("function %v has unknown ABI %v", fn, fn.ABI)
+ panic("not reachable")
+ }
+
+ a := abi0
+ if fn != nil {
+ name := ir.FuncName(fn)
+ magicName := strings.HasSuffix(name, magicNameDotSuffix)
+ if fn.Pragma&ir.RegisterParams != 0 { // TODO(register args) remove after register abi is working
+ if strings.Contains(name, ".") {
+ if !magicName {
+ base.ErrorfAt(fn.Pos(), "Calls to //go:registerparams method %s won't work, remove the pragma from the declaration.", name)
+ }
+ }
+ a = abi1
+ } else if magicName {
+ if base.FmtPos(fn.Pos()) == "<autogenerated>:1" {
+ // no way to put a pragma here, and it will error out in the real source code if they did not do it there.
+ a = abi1
+ } else {
+ base.ErrorfAt(fn.Pos(), "Methods with magic name %s (method %s) must also specify //go:registerparams", magicNameDotSuffix[1:], name)
+ }
+ }
+ if regAbiForFuncType(fn.Type().FuncType()) {
+ // fmt.Printf("Saw magic last type name for function %s\n", name)
+ a = abi1
+ }
+ }
+ return a
+}
+
+func regAbiForFuncType(ft *types.Func) bool {
+ np := ft.Params.NumFields()
+ return np > 0 && strings.Contains(ft.Params.FieldType(np-1).String(), magicLastTypeName)
+}
+
+// dvarint writes a varint v to the funcdata in symbol x and returns the new offset
+func dvarint(x *obj.LSym, off int, v int64) int {
+ if v < 0 || v > 1e9 {
+ panic(fmt.Sprintf("dvarint: bad offset for funcdata - %v", v))
+ }
+ if v < 1<<7 {
+ return objw.Uint8(x, off, uint8(v))
+ }
+ off = objw.Uint8(x, off, uint8((v&127)|128))
+ if v < 1<<14 {
+ return objw.Uint8(x, off, uint8(v>>7))
+ }
+ off = objw.Uint8(x, off, uint8(((v>>7)&127)|128))
+ if v < 1<<21 {
+ return objw.Uint8(x, off, uint8(v>>14))
+ }
+ off = objw.Uint8(x, off, uint8(((v>>14)&127)|128))
+ if v < 1<<28 {
+ return objw.Uint8(x, off, uint8(v>>21))
+ }
+ off = objw.Uint8(x, off, uint8(((v>>21)&127)|128))
+ return objw.Uint8(x, off, uint8(v>>28))
+}
+
+// emitOpenDeferInfo emits FUNCDATA information about the defers in a function
+// that is using open-coded defers. This funcdata is used to determine the active
+// defers in a function and execute those defers during panic processing.
+//
+// The funcdata is all encoded in varints (since values will almost always be less than
+// 128, but stack offsets could potentially be up to 2Gbyte). All "locations" (offsets)
+// for stack variables are specified as the number of bytes below varp (pointer to the
+// top of the local variables) for their starting address. The format is:
+//
+// - Offset of the deferBits variable
+// - Number of defers in the function
+// - Information about each defer call, in reverse order of appearance in the function:
+// - Offset of the closure value to call
+func (s *state) emitOpenDeferInfo() {
+ x := base.Ctxt.Lookup(s.curfn.LSym.Name + ".opendefer")
+ x.Set(obj.AttrContentAddressable, true)
+ s.curfn.LSym.Func().OpenCodedDeferInfo = x
+ off := 0
+ off = dvarint(x, off, -s.deferBitsTemp.FrameOffset())
+ off = dvarint(x, off, int64(len(s.openDefers)))
+
+ // Write in reverse-order, for ease of running in that order at runtime
+ for i := len(s.openDefers) - 1; i >= 0; i-- {
+ r := s.openDefers[i]
+ off = dvarint(x, off, -r.closureNode.FrameOffset())
+ }
+}
+
+func okOffset(offset int64) int64 {
+ if offset == types.BOGUS_FUNARG_OFFSET {
+ panic(fmt.Errorf("Bogus offset %d", offset))
+ }
+ return offset
+}
+
+// buildssa builds an SSA function for fn.
+// worker indicates which of the backend workers is doing the processing.
+func buildssa(fn *ir.Func, worker int) *ssa.Func {
+ name := ir.FuncName(fn)
+ printssa := false
+ if ssaDump != "" { // match either a simple name e.g. "(*Reader).Reset", package.name e.g. "compress/gzip.(*Reader).Reset", or subpackage name "gzip.(*Reader).Reset"
+ pkgDotName := base.Ctxt.Pkgpath + "." + name
+ printssa = name == ssaDump ||
+ strings.HasSuffix(pkgDotName, ssaDump) && (pkgDotName == ssaDump || strings.HasSuffix(pkgDotName, "/"+ssaDump))
+ }
+ var astBuf *bytes.Buffer
+ if printssa {
+ astBuf = &bytes.Buffer{}
+ ir.FDumpList(astBuf, "buildssa-enter", fn.Enter)
+ ir.FDumpList(astBuf, "buildssa-body", fn.Body)
+ ir.FDumpList(astBuf, "buildssa-exit", fn.Exit)
+ if ssaDumpStdout {
+ fmt.Println("generating SSA for", name)
+ fmt.Print(astBuf.String())
+ }
+ }
+
+ var s state
+ s.pushLine(fn.Pos())
+ defer s.popLine()
+
+ s.hasdefer = fn.HasDefer()
+ if fn.Pragma&ir.CgoUnsafeArgs != 0 {
+ s.cgoUnsafeArgs = true
+ }
+ s.checkPtrEnabled = ir.ShouldCheckPtr(fn, 1)
+
+ fe := ssafn{
+ curfn: fn,
+ log: printssa && ssaDumpStdout,
+ }
+ s.curfn = fn
+
+ s.f = ssa.NewFunc(&fe)
+ s.config = ssaConfig
+ s.f.Type = fn.Type()
+ s.f.Config = ssaConfig
+ s.f.Cache = &ssaCaches[worker]
+ s.f.Cache.Reset()
+ s.f.Name = name
+ s.f.DebugTest = s.f.DebugHashMatch("GOSSAHASH")
+ s.f.PrintOrHtmlSSA = printssa
+ if fn.Pragma&ir.Nosplit != 0 {
+ s.f.NoSplit = true
+ }
+ s.f.ABI0 = ssaConfig.ABI0.Copy() // Make a copy to avoid racy map operations in type-register-width cache.
+ s.f.ABI1 = ssaConfig.ABI1.Copy()
+ s.f.ABIDefault = abiForFunc(nil, s.f.ABI0, s.f.ABI1)
+ s.f.ABISelf = abiForFunc(fn, s.f.ABI0, s.f.ABI1)
+
+ s.panics = map[funcLine]*ssa.Block{}
+ s.softFloat = s.config.SoftFloat
+
+ // Allocate starting block
+ s.f.Entry = s.f.NewBlock(ssa.BlockPlain)
+ s.f.Entry.Pos = fn.Pos()
+
+ if printssa {
+ ssaDF := ssaDumpFile
+ if ssaDir != "" {
+ ssaDF = filepath.Join(ssaDir, base.Ctxt.Pkgpath+"."+name+".html")
+ ssaD := filepath.Dir(ssaDF)
+ os.MkdirAll(ssaD, 0755)
+ }
+ s.f.HTMLWriter = ssa.NewHTMLWriter(ssaDF, s.f, ssaDumpCFG)
+ // TODO: generate and print a mapping from nodes to values and blocks
+ dumpSourcesColumn(s.f.HTMLWriter, fn)
+ s.f.HTMLWriter.WriteAST("AST", astBuf)
+ }
+
+ // Allocate starting values
+ s.labels = map[string]*ssaLabel{}
+ s.fwdVars = map[ir.Node]*ssa.Value{}
+ s.startmem = s.entryNewValue0(ssa.OpInitMem, types.TypeMem)
+
+ s.hasOpenDefers = base.Flag.N == 0 && s.hasdefer && !s.curfn.OpenCodedDeferDisallowed()
+ switch {
+ case base.Debug.NoOpenDefer != 0:
+ s.hasOpenDefers = false
+ case s.hasOpenDefers && (base.Ctxt.Flag_shared || base.Ctxt.Flag_dynlink) && base.Ctxt.Arch.Name == "386":
+ // Don't support open-coded defers for 386 ONLY when using shared
+ // libraries, because there is extra code (added by rewriteToUseGot())
+ // preceding the deferreturn/ret code that we don't track correctly.
+ s.hasOpenDefers = false
+ }
+ if s.hasOpenDefers && len(s.curfn.Exit) > 0 {
+ // Skip doing open defers if there is any extra exit code (likely
+ // race detection), since we will not generate that code in the
+ // case of the extra deferreturn/ret segment.
+ s.hasOpenDefers = false
+ }
+ if s.hasOpenDefers {
+ // Similarly, skip if there are any heap-allocated result
+ // parameters that need to be copied back to their stack slots.
+ for _, f := range s.curfn.Type().Results().FieldSlice() {
+ if !f.Nname.(*ir.Name).OnStack() {
+ s.hasOpenDefers = false
+ break
+ }
+ }
+ }
+ if s.hasOpenDefers &&
+ s.curfn.NumReturns*s.curfn.NumDefers > 15 {
+ // Since we are generating defer calls at every exit for
+ // open-coded defers, skip doing open-coded defers if there are
+ // too many returns (especially if there are multiple defers).
+ // Open-coded defers are most important for improving performance
+ // for smaller functions (which don't have many returns).
+ s.hasOpenDefers = false
+ }
+
+ s.sp = s.entryNewValue0(ssa.OpSP, types.Types[types.TUINTPTR]) // TODO: use generic pointer type (unsafe.Pointer?) instead
+ s.sb = s.entryNewValue0(ssa.OpSB, types.Types[types.TUINTPTR])
+
+ s.startBlock(s.f.Entry)
+ s.vars[memVar] = s.startmem
+ if s.hasOpenDefers {
+ // Create the deferBits variable and stack slot. deferBits is a
+ // bitmask showing which of the open-coded defers in this function
+ // have been activated.
+ deferBitsTemp := typecheck.TempAt(src.NoXPos, s.curfn, types.Types[types.TUINT8])
+ deferBitsTemp.SetAddrtaken(true)
+ s.deferBitsTemp = deferBitsTemp
+ // For this value, AuxInt is initialized to zero by default
+ startDeferBits := s.entryNewValue0(ssa.OpConst8, types.Types[types.TUINT8])
+ s.vars[deferBitsVar] = startDeferBits
+ s.deferBitsAddr = s.addr(deferBitsTemp)
+ s.store(types.Types[types.TUINT8], s.deferBitsAddr, startDeferBits)
+ // Make sure that the deferBits stack slot is kept alive (for use
+ // by panics) and stores to deferBits are not eliminated, even if
+ // all checking code on deferBits in the function exit can be
+ // eliminated, because the defer statements were all
+ // unconditional.
+ s.vars[memVar] = s.newValue1Apos(ssa.OpVarLive, types.TypeMem, deferBitsTemp, s.mem(), false)
+ }
+
+ var params *abi.ABIParamResultInfo
+ params = s.f.ABISelf.ABIAnalyze(fn.Type(), true)
+
+ // The backend's stackframe pass prunes away entries from the fn's
+ // Dcl list, including PARAMOUT nodes that correspond to output
+ // params passed in registers. Walk the Dcl list and capture these
+ // nodes to a side list, so that we'll have them available during
+ // DWARF-gen later on. See issue 48573 for more details.
+ var debugInfo ssa.FuncDebug
+ for _, n := range fn.Dcl {
+ if n.Class == ir.PPARAMOUT && n.IsOutputParamInRegisters() {
+ debugInfo.RegOutputParams = append(debugInfo.RegOutputParams, n)
+ }
+ }
+ fn.DebugInfo = &debugInfo
+
+ // Generate addresses of local declarations
+ s.decladdrs = map[*ir.Name]*ssa.Value{}
+ for _, n := range fn.Dcl {
+ switch n.Class {
+ case ir.PPARAM:
+ // Be aware that blank and unnamed input parameters will not appear here, but do appear in the type
+ s.decladdrs[n] = s.entryNewValue2A(ssa.OpLocalAddr, types.NewPtr(n.Type()), n, s.sp, s.startmem)
+ case ir.PPARAMOUT:
+ s.decladdrs[n] = s.entryNewValue2A(ssa.OpLocalAddr, types.NewPtr(n.Type()), n, s.sp, s.startmem)
+ case ir.PAUTO:
+ // processed at each use, to prevent Addr coming
+ // before the decl.
+ default:
+ s.Fatalf("local variable with class %v unimplemented", n.Class)
+ }
+ }
+
+ s.f.OwnAux = ssa.OwnAuxCall(fn.LSym, params)
+
+ // Populate SSAable arguments.
+ for _, n := range fn.Dcl {
+ if n.Class == ir.PPARAM {
+ if s.canSSA(n) {
+ v := s.newValue0A(ssa.OpArg, n.Type(), n)
+ s.vars[n] = v
+ s.addNamedValue(n, v) // This helps with debugging information, not needed for compilation itself.
+ } else { // address was taken AND/OR too large for SSA
+ paramAssignment := ssa.ParamAssignmentForArgName(s.f, n)
+ if len(paramAssignment.Registers) > 0 {
+ if TypeOK(n.Type()) { // SSA-able type, so address was taken -- receive value in OpArg, DO NOT bind to var, store immediately to memory.
+ v := s.newValue0A(ssa.OpArg, n.Type(), n)
+ s.store(n.Type(), s.decladdrs[n], v)
+ } else { // Too big for SSA.
+ // Brute force, and early, do a bunch of stores from registers
+ // TODO fix the nasty storeArgOrLoad recursion in ssa/expand_calls.go so this Just Works with store of a big Arg.
+ s.storeParameterRegsToStack(s.f.ABISelf, paramAssignment, n, s.decladdrs[n], false)
+ }
+ }
+ }
+ }
+ }
+
+ // Populate closure variables.
+ if fn.Needctxt() {
+ clo := s.entryNewValue0(ssa.OpGetClosurePtr, s.f.Config.Types.BytePtr)
+ offset := int64(types.PtrSize) // PtrSize to skip past function entry PC field
+ for _, n := range fn.ClosureVars {
+ typ := n.Type()
+ if !n.Byval() {
+ typ = types.NewPtr(typ)
+ }
+
+ offset = types.Rnd(offset, typ.Alignment())
+ ptr := s.newValue1I(ssa.OpOffPtr, types.NewPtr(typ), offset, clo)
+ offset += typ.Size()
+
+ // If n is a small variable captured by value, promote
+ // it to PAUTO so it can be converted to SSA.
+ //
+ // Note: While we never capture a variable by value if
+ // the user took its address, we may have generated
+ // runtime calls that did (#43701). Since we don't
+ // convert Addrtaken variables to SSA anyway, no point
+ // in promoting them either.
+ if n.Byval() && !n.Addrtaken() && TypeOK(n.Type()) {
+ n.Class = ir.PAUTO
+ fn.Dcl = append(fn.Dcl, n)
+ s.assign(n, s.load(n.Type(), ptr), false, 0)
+ continue
+ }
+
+ if !n.Byval() {
+ ptr = s.load(typ, ptr)
+ }
+ s.setHeapaddr(fn.Pos(), n, ptr)
+ }
+ }
+
+ // Convert the AST-based IR to the SSA-based IR
+ s.stmtList(fn.Enter)
+ s.zeroResults()
+ s.paramsToHeap()
+ s.stmtList(fn.Body)
+
+ // fallthrough to exit
+ if s.curBlock != nil {
+ s.pushLine(fn.Endlineno)
+ s.exit()
+ s.popLine()
+ }
+
+ for _, b := range s.f.Blocks {
+ if b.Pos != src.NoXPos {
+ s.updateUnsetPredPos(b)
+ }
+ }
+
+ s.f.HTMLWriter.WritePhase("before insert phis", "before insert phis")
+
+ s.insertPhis()
+
+ // Main call to ssa package to compile function
+ ssa.Compile(s.f)
+
+ if s.hasOpenDefers {
+ s.emitOpenDeferInfo()
+ }
+
+ // Record incoming parameter spill information for morestack calls emitted in the assembler.
+ // This is done here, using all the parameters (used, partially used, and unused) because
+ // it mimics the behavior of the former ABI (everything stored) and because it's not 100%
+ // clear if naming conventions are respected in autogenerated code.
+ // TODO figure out exactly what's unused, don't spill it. Make liveness fine-grained, also.
+ for _, p := range params.InParams() {
+ typs, offs := p.RegisterTypesAndOffsets()
+ for i, t := range typs {
+ o := offs[i] // offset within parameter
+ fo := p.FrameOffset(params) // offset of parameter in frame
+ reg := ssa.ObjRegForAbiReg(p.Registers[i], s.f.Config)
+ s.f.RegArgs = append(s.f.RegArgs, ssa.Spill{Reg: reg, Offset: fo + o, Type: t})
+ }
+ }
+
+ return s.f
+}
+
+func (s *state) storeParameterRegsToStack(abi *abi.ABIConfig, paramAssignment *abi.ABIParamAssignment, n *ir.Name, addr *ssa.Value, pointersOnly bool) {
+ typs, offs := paramAssignment.RegisterTypesAndOffsets()
+ for i, t := range typs {
+ if pointersOnly && !t.IsPtrShaped() {
+ continue
+ }
+ r := paramAssignment.Registers[i]
+ o := offs[i]
+ op, reg := ssa.ArgOpAndRegisterFor(r, abi)
+ aux := &ssa.AuxNameOffset{Name: n, Offset: o}
+ v := s.newValue0I(op, t, reg)
+ v.Aux = aux
+ p := s.newValue1I(ssa.OpOffPtr, types.NewPtr(t), o, addr)
+ s.store(t, p, v)
+ }
+}
+
+// zeroResults zeros the return values at the start of the function.
+// We need to do this very early in the function. Defer might stop a
+// panic and show the return values as they exist at the time of
+// panic. For precise stacks, the garbage collector assumes results
+// are always live, so we need to zero them before any allocations,
+// even allocations to move params/results to the heap.
+func (s *state) zeroResults() {
+ for _, f := range s.curfn.Type().Results().FieldSlice() {
+ n := f.Nname.(*ir.Name)
+ if !n.OnStack() {
+ // The local which points to the return value is the
+ // thing that needs zeroing. This is already handled
+ // by a Needzero annotation in plive.go:(*liveness).epilogue.
+ continue
+ }
+ // Zero the stack location containing f.
+ if typ := n.Type(); TypeOK(typ) {
+ s.assign(n, s.zeroVal(typ), false, 0)
+ } else {
+ s.vars[memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, n, s.mem())
+ s.zero(n.Type(), s.decladdrs[n])
+ }
+ }
+}
+
+// paramsToHeap produces code to allocate memory for heap-escaped parameters
+// and to copy non-result parameters' values from the stack.
+func (s *state) paramsToHeap() {
+ do := func(params *types.Type) {
+ for _, f := range params.FieldSlice() {
+ if f.Nname == nil {
+ continue // anonymous or blank parameter
+ }
+ n := f.Nname.(*ir.Name)
+ if ir.IsBlank(n) || n.OnStack() {
+ continue
+ }
+ s.newHeapaddr(n)
+ if n.Class == ir.PPARAM {
+ s.move(n.Type(), s.expr(n.Heapaddr), s.decladdrs[n])
+ }
+ }
+ }
+
+ typ := s.curfn.Type()
+ do(typ.Recvs())
+ do(typ.Params())
+ do(typ.Results())
+}
+
+// newHeapaddr allocates heap memory for n and sets its heap address.
+func (s *state) newHeapaddr(n *ir.Name) {
+ s.setHeapaddr(n.Pos(), n, s.newObject(n.Type()))
+}
+
+// setHeapaddr allocates a new PAUTO variable to store ptr (which must be non-nil)
+// and then sets it as n's heap address.
+func (s *state) setHeapaddr(pos src.XPos, n *ir.Name, ptr *ssa.Value) {
+ if !ptr.Type.IsPtr() || !types.Identical(n.Type(), ptr.Type.Elem()) {
+ base.FatalfAt(n.Pos(), "setHeapaddr %L with type %v", n, ptr.Type)
+ }
+
+ // Declare variable to hold address.
+ addr := ir.NewNameAt(pos, &types.Sym{Name: "&" + n.Sym().Name, Pkg: types.LocalPkg})
+ addr.SetType(types.NewPtr(n.Type()))
+ addr.Class = ir.PAUTO
+ addr.SetUsed(true)
+ addr.Curfn = s.curfn
+ s.curfn.Dcl = append(s.curfn.Dcl, addr)
+ types.CalcSize(addr.Type())
+
+ if n.Class == ir.PPARAMOUT {
+ addr.SetIsOutputParamHeapAddr(true)
+ }
+
+ n.Heapaddr = addr
+ s.assign(addr, ptr, false, 0)
+}
+
+// newObject returns an SSA value denoting new(typ).
+func (s *state) newObject(typ *types.Type) *ssa.Value {
+ if typ.Size() == 0 {
+ return s.newValue1A(ssa.OpAddr, types.NewPtr(typ), ir.Syms.Zerobase, s.sb)
+ }
+ return s.rtcall(ir.Syms.Newobject, true, []*types.Type{types.NewPtr(typ)}, s.reflectType(typ))[0]
+}
+
+func (s *state) checkPtrAlignment(n *ir.ConvExpr, v *ssa.Value, count *ssa.Value) {
+ if !n.Type().IsPtr() {
+ s.Fatalf("expected pointer type: %v", n.Type())
+ }
+ elem := n.Type().Elem()
+ if count != nil {
+ if !elem.IsArray() {
+ s.Fatalf("expected array type: %v", elem)
+ }
+ elem = elem.Elem()
+ }
+ size := elem.Size()
+ // Casting from larger type to smaller one is ok, so for smallest type, do nothing.
+ if elem.Alignment() == 1 && (size == 0 || size == 1 || count == nil) {
+ return
+ }
+ if count == nil {
+ count = s.constInt(types.Types[types.TUINTPTR], 1)
+ }
+ if count.Type.Size() != s.config.PtrSize {
+ s.Fatalf("expected count fit to an uintptr size, have: %d, want: %d", count.Type.Size(), s.config.PtrSize)
+ }
+ s.rtcall(ir.Syms.CheckPtrAlignment, true, nil, v, s.reflectType(elem), count)
+}
+
+// reflectType returns an SSA value representing a pointer to typ's
+// reflection type descriptor.
+func (s *state) reflectType(typ *types.Type) *ssa.Value {
+ lsym := reflectdata.TypeLinksym(typ)
+ return s.entryNewValue1A(ssa.OpAddr, types.NewPtr(types.Types[types.TUINT8]), lsym, s.sb)
+}
+
+func dumpSourcesColumn(writer *ssa.HTMLWriter, fn *ir.Func) {
+ // Read sources of target function fn.
+ fname := base.Ctxt.PosTable.Pos(fn.Pos()).Filename()
+ targetFn, err := readFuncLines(fname, fn.Pos().Line(), fn.Endlineno.Line())
+ if err != nil {
+ writer.Logf("cannot read sources for function %v: %v", fn, err)
+ }
+
+ // Read sources of inlined functions.
+ var inlFns []*ssa.FuncLines
+ for _, fi := range ssaDumpInlined {
+ elno := fi.Endlineno
+ fname := base.Ctxt.PosTable.Pos(fi.Pos()).Filename()
+ fnLines, err := readFuncLines(fname, fi.Pos().Line(), elno.Line())
+ if err != nil {
+ writer.Logf("cannot read sources for inlined function %v: %v", fi, err)
+ continue
+ }
+ inlFns = append(inlFns, fnLines)
+ }
+
+ sort.Sort(ssa.ByTopo(inlFns))
+ if targetFn != nil {
+ inlFns = append([]*ssa.FuncLines{targetFn}, inlFns...)
+ }
+
+ writer.WriteSources("sources", inlFns)
+}
+
+func readFuncLines(file string, start, end uint) (*ssa.FuncLines, error) {
+ f, err := os.Open(os.ExpandEnv(file))
+ if err != nil {
+ return nil, err
+ }
+ defer f.Close()
+ var lines []string
+ ln := uint(1)
+ scanner := bufio.NewScanner(f)
+ for scanner.Scan() && ln <= end {
+ if ln >= start {
+ lines = append(lines, scanner.Text())
+ }
+ ln++
+ }
+ return &ssa.FuncLines{Filename: file, StartLineno: start, Lines: lines}, nil
+}
+
+// updateUnsetPredPos propagates the earliest-value position information for b
+// towards all of b's predecessors that need a position, and recurs on that
+// predecessor if its position is updated. B should have a non-empty position.
+func (s *state) updateUnsetPredPos(b *ssa.Block) {
+ if b.Pos == src.NoXPos {
+ s.Fatalf("Block %s should have a position", b)
+ }
+ bestPos := src.NoXPos
+ for _, e := range b.Preds {
+ p := e.Block()
+ if !p.LackingPos() {
+ continue
+ }
+ if bestPos == src.NoXPos {
+ bestPos = b.Pos
+ for _, v := range b.Values {
+ if v.LackingPos() {
+ continue
+ }
+ if v.Pos != src.NoXPos {
+ // Assume values are still in roughly textual order;
+ // TODO: could also seek minimum position?
+ bestPos = v.Pos
+ break
+ }
+ }
+ }
+ p.Pos = bestPos
+ s.updateUnsetPredPos(p) // We do not expect long chains of these, thus recursion is okay.
+ }
+}
+
+// Information about each open-coded defer.
+type openDeferInfo struct {
+ // The node representing the call of the defer
+ n *ir.CallExpr
+ // If defer call is closure call, the address of the argtmp where the
+ // closure is stored.
+ closure *ssa.Value
+ // The node representing the argtmp where the closure is stored - used for
+ // function, method, or interface call, to store a closure that panic
+ // processing can use for this defer.
+ closureNode *ir.Name
+}
+
+type state struct {
+ // configuration (arch) information
+ config *ssa.Config
+
+ // function we're building
+ f *ssa.Func
+
+ // Node for function
+ curfn *ir.Func
+
+ // labels in f
+ labels map[string]*ssaLabel
+
+ // unlabeled break and continue statement tracking
+ breakTo *ssa.Block // current target for plain break statement
+ continueTo *ssa.Block // current target for plain continue statement
+
+ // current location where we're interpreting the AST
+ curBlock *ssa.Block
+
+ // variable assignments in the current block (map from variable symbol to ssa value)
+ // *Node is the unique identifier (an ONAME Node) for the variable.
+ // TODO: keep a single varnum map, then make all of these maps slices instead?
+ vars map[ir.Node]*ssa.Value
+
+ // fwdVars are variables that are used before they are defined in the current block.
+ // This map exists just to coalesce multiple references into a single FwdRef op.
+ // *Node is the unique identifier (an ONAME Node) for the variable.
+ fwdVars map[ir.Node]*ssa.Value
+
+ // all defined variables at the end of each block. Indexed by block ID.
+ defvars []map[ir.Node]*ssa.Value
+
+ // addresses of PPARAM and PPARAMOUT variables on the stack.
+ decladdrs map[*ir.Name]*ssa.Value
+
+ // starting values. Memory, stack pointer, and globals pointer
+ startmem *ssa.Value
+ sp *ssa.Value
+ sb *ssa.Value
+ // value representing address of where deferBits autotmp is stored
+ deferBitsAddr *ssa.Value
+ deferBitsTemp *ir.Name
+
+ // line number stack. The current line number is top of stack
+ line []src.XPos
+ // the last line number processed; it may have been popped
+ lastPos src.XPos
+
+ // list of panic calls by function name and line number.
+ // Used to deduplicate panic calls.
+ panics map[funcLine]*ssa.Block
+
+ cgoUnsafeArgs bool
+ hasdefer bool // whether the function contains a defer statement
+ softFloat bool
+ hasOpenDefers bool // whether we are doing open-coded defers
+ checkPtrEnabled bool // whether to insert checkptr instrumentation
+
+ // If doing open-coded defers, list of info about the defer calls in
+ // scanning order. Hence, at exit we should run these defers in reverse
+ // order of this list
+ openDefers []*openDeferInfo
+ // For open-coded defers, this is the beginning and end blocks of the last
+ // defer exit code that we have generated so far. We use these to share
+ // code between exits if the shareDeferExits option (disabled by default)
+ // is on.
+ lastDeferExit *ssa.Block // Entry block of last defer exit code we generated
+ lastDeferFinalBlock *ssa.Block // Final block of last defer exit code we generated
+ lastDeferCount int // Number of defers encountered at that point
+
+ prevCall *ssa.Value // the previous call; use this to tie results to the call op.
+}
+
+type funcLine struct {
+ f *obj.LSym
+ base *src.PosBase
+ line uint
+}
+
+type ssaLabel struct {
+ target *ssa.Block // block identified by this label
+ breakTarget *ssa.Block // block to break to in control flow node identified by this label
+ continueTarget *ssa.Block // block to continue to in control flow node identified by this label
+}
+
+// label returns the label associated with sym, creating it if necessary.
+func (s *state) label(sym *types.Sym) *ssaLabel {
+ lab := s.labels[sym.Name]
+ if lab == nil {
+ lab = new(ssaLabel)
+ s.labels[sym.Name] = lab
+ }
+ return lab
+}
+
+func (s *state) Logf(msg string, args ...interface{}) { s.f.Logf(msg, args...) }
+func (s *state) Log() bool { return s.f.Log() }
+func (s *state) Fatalf(msg string, args ...interface{}) {
+ s.f.Frontend().Fatalf(s.peekPos(), msg, args...)
+}
+func (s *state) Warnl(pos src.XPos, msg string, args ...interface{}) { s.f.Warnl(pos, msg, args...) }
+func (s *state) Debug_checknil() bool { return s.f.Frontend().Debug_checknil() }
+
+func ssaMarker(name string) *ir.Name {
+ return typecheck.NewName(&types.Sym{Name: name})
+}
+
+var (
+ // marker node for the memory variable
+ memVar = ssaMarker("mem")
+
+ // marker nodes for temporary variables
+ ptrVar = ssaMarker("ptr")
+ lenVar = ssaMarker("len")
+ newlenVar = ssaMarker("newlen")
+ capVar = ssaMarker("cap")
+ typVar = ssaMarker("typ")
+ okVar = ssaMarker("ok")
+ deferBitsVar = ssaMarker("deferBits")
+)
+
+// startBlock sets the current block we're generating code in to b.
+func (s *state) startBlock(b *ssa.Block) {
+ if s.curBlock != nil {
+ s.Fatalf("starting block %v when block %v has not ended", b, s.curBlock)
+ }
+ s.curBlock = b
+ s.vars = map[ir.Node]*ssa.Value{}
+ for n := range s.fwdVars {
+ delete(s.fwdVars, n)
+ }
+}
+
+// endBlock marks the end of generating code for the current block.
+// Returns the (former) current block. Returns nil if there is no current
+// block, i.e. if no code flows to the current execution point.
+func (s *state) endBlock() *ssa.Block {
+ b := s.curBlock
+ if b == nil {
+ return nil
+ }
+ for len(s.defvars) <= int(b.ID) {
+ s.defvars = append(s.defvars, nil)
+ }
+ s.defvars[b.ID] = s.vars
+ s.curBlock = nil
+ s.vars = nil
+ if b.LackingPos() {
+ // Empty plain blocks get the line of their successor (handled after all blocks created),
+ // except for increment blocks in For statements (handled in ssa conversion of OFOR),
+ // and for blocks ending in GOTO/BREAK/CONTINUE.
+ b.Pos = src.NoXPos
+ } else {
+ b.Pos = s.lastPos
+ }
+ return b
+}
+
+// pushLine pushes a line number on the line number stack.
+func (s *state) pushLine(line src.XPos) {
+ if !line.IsKnown() {
+ // the frontend may emit node with line number missing,
+ // use the parent line number in this case.
+ line = s.peekPos()
+ if base.Flag.K != 0 {
+ base.Warn("buildssa: unknown position (line 0)")
+ }
+ } else {
+ s.lastPos = line
+ }
+
+ s.line = append(s.line, line)
+}
+
+// popLine pops the top of the line number stack.
+func (s *state) popLine() {
+ s.line = s.line[:len(s.line)-1]
+}
+
+// peekPos peeks the top of the line number stack.
+func (s *state) peekPos() src.XPos {
+ return s.line[len(s.line)-1]
+}
+
+// newValue0 adds a new value with no arguments to the current block.
+func (s *state) newValue0(op ssa.Op, t *types.Type) *ssa.Value {
+ return s.curBlock.NewValue0(s.peekPos(), op, t)
+}
+
+// newValue0A adds a new value with no arguments and an aux value to the current block.
+func (s *state) newValue0A(op ssa.Op, t *types.Type, aux ssa.Aux) *ssa.Value {
+ return s.curBlock.NewValue0A(s.peekPos(), op, t, aux)
+}
+
+// newValue0I adds a new value with no arguments and an auxint value to the current block.
+func (s *state) newValue0I(op ssa.Op, t *types.Type, auxint int64) *ssa.Value {
+ return s.curBlock.NewValue0I(s.peekPos(), op, t, auxint)
+}
+
+// newValue1 adds a new value with one argument to the current block.
+func (s *state) newValue1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value {
+ return s.curBlock.NewValue1(s.peekPos(), op, t, arg)
+}
+
+// newValue1A adds a new value with one argument and an aux value to the current block.
+func (s *state) newValue1A(op ssa.Op, t *types.Type, aux ssa.Aux, arg *ssa.Value) *ssa.Value {
+ return s.curBlock.NewValue1A(s.peekPos(), op, t, aux, arg)
+}
+
+// newValue1Apos adds a new value with one argument and an aux value to the current block.
+// isStmt determines whether the created values may be a statement or not
+// (i.e., false means never, yes means maybe).
+func (s *state) newValue1Apos(op ssa.Op, t *types.Type, aux ssa.Aux, arg *ssa.Value, isStmt bool) *ssa.Value {
+ if isStmt {
+ return s.curBlock.NewValue1A(s.peekPos(), op, t, aux, arg)
+ }
+ return s.curBlock.NewValue1A(s.peekPos().WithNotStmt(), op, t, aux, arg)
+}
+
+// newValue1I adds a new value with one argument and an auxint value to the current block.
+func (s *state) newValue1I(op ssa.Op, t *types.Type, aux int64, arg *ssa.Value) *ssa.Value {
+ return s.curBlock.NewValue1I(s.peekPos(), op, t, aux, arg)
+}
+
+// newValue2 adds a new value with two arguments to the current block.
+func (s *state) newValue2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value {
+ return s.curBlock.NewValue2(s.peekPos(), op, t, arg0, arg1)
+}
+
+// newValue2A adds a new value with two arguments and an aux value to the current block.
+func (s *state) newValue2A(op ssa.Op, t *types.Type, aux ssa.Aux, arg0, arg1 *ssa.Value) *ssa.Value {
+ return s.curBlock.NewValue2A(s.peekPos(), op, t, aux, arg0, arg1)
+}
+
+// newValue2Apos adds a new value with two arguments and an aux value to the current block.
+// isStmt determines whether the created values may be a statement or not
+// (i.e., false means never, yes means maybe).
+func (s *state) newValue2Apos(op ssa.Op, t *types.Type, aux ssa.Aux, arg0, arg1 *ssa.Value, isStmt bool) *ssa.Value {
+ if isStmt {
+ return s.curBlock.NewValue2A(s.peekPos(), op, t, aux, arg0, arg1)
+ }
+ return s.curBlock.NewValue2A(s.peekPos().WithNotStmt(), op, t, aux, arg0, arg1)
+}
+
+// newValue2I adds a new value with two arguments and an auxint value to the current block.
+func (s *state) newValue2I(op ssa.Op, t *types.Type, aux int64, arg0, arg1 *ssa.Value) *ssa.Value {
+ return s.curBlock.NewValue2I(s.peekPos(), op, t, aux, arg0, arg1)
+}
+
+// newValue3 adds a new value with three arguments to the current block.
+func (s *state) newValue3(op ssa.Op, t *types.Type, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
+ return s.curBlock.NewValue3(s.peekPos(), op, t, arg0, arg1, arg2)
+}
+
+// newValue3I adds a new value with three arguments and an auxint value to the current block.
+func (s *state) newValue3I(op ssa.Op, t *types.Type, aux int64, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
+ return s.curBlock.NewValue3I(s.peekPos(), op, t, aux, arg0, arg1, arg2)
+}
+
+// newValue3A adds a new value with three arguments and an aux value to the current block.
+func (s *state) newValue3A(op ssa.Op, t *types.Type, aux ssa.Aux, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
+ return s.curBlock.NewValue3A(s.peekPos(), op, t, aux, arg0, arg1, arg2)
+}
+
+// newValue3Apos adds a new value with three arguments and an aux value to the current block.
+// isStmt determines whether the created values may be a statement or not
+// (i.e., false means never, yes means maybe).
+func (s *state) newValue3Apos(op ssa.Op, t *types.Type, aux ssa.Aux, arg0, arg1, arg2 *ssa.Value, isStmt bool) *ssa.Value {
+ if isStmt {
+ return s.curBlock.NewValue3A(s.peekPos(), op, t, aux, arg0, arg1, arg2)
+ }
+ return s.curBlock.NewValue3A(s.peekPos().WithNotStmt(), op, t, aux, arg0, arg1, arg2)
+}
+
+// newValue4 adds a new value with four arguments to the current block.
+func (s *state) newValue4(op ssa.Op, t *types.Type, arg0, arg1, arg2, arg3 *ssa.Value) *ssa.Value {
+ return s.curBlock.NewValue4(s.peekPos(), op, t, arg0, arg1, arg2, arg3)
+}
+
+// newValue4 adds a new value with four arguments and an auxint value to the current block.
+func (s *state) newValue4I(op ssa.Op, t *types.Type, aux int64, arg0, arg1, arg2, arg3 *ssa.Value) *ssa.Value {
+ return s.curBlock.NewValue4I(s.peekPos(), op, t, aux, arg0, arg1, arg2, arg3)
+}
+
+func (s *state) entryBlock() *ssa.Block {
+ b := s.f.Entry
+ if base.Flag.N > 0 && s.curBlock != nil {
+ // If optimizations are off, allocate in current block instead. Since with -N
+ // we're not doing the CSE or tighten passes, putting lots of stuff in the
+ // entry block leads to O(n^2) entries in the live value map during regalloc.
+ // See issue 45897.
+ b = s.curBlock
+ }
+ return b
+}
+
+// entryNewValue0 adds a new value with no arguments to the entry block.
+func (s *state) entryNewValue0(op ssa.Op, t *types.Type) *ssa.Value {
+ return s.entryBlock().NewValue0(src.NoXPos, op, t)
+}
+
+// entryNewValue0A adds a new value with no arguments and an aux value to the entry block.
+func (s *state) entryNewValue0A(op ssa.Op, t *types.Type, aux ssa.Aux) *ssa.Value {
+ return s.entryBlock().NewValue0A(src.NoXPos, op, t, aux)
+}
+
+// entryNewValue1 adds a new value with one argument to the entry block.
+func (s *state) entryNewValue1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value {
+ return s.entryBlock().NewValue1(src.NoXPos, op, t, arg)
+}
+
+// entryNewValue1 adds a new value with one argument and an auxint value to the entry block.
+func (s *state) entryNewValue1I(op ssa.Op, t *types.Type, auxint int64, arg *ssa.Value) *ssa.Value {
+ return s.entryBlock().NewValue1I(src.NoXPos, op, t, auxint, arg)
+}
+
+// entryNewValue1A adds a new value with one argument and an aux value to the entry block.
+func (s *state) entryNewValue1A(op ssa.Op, t *types.Type, aux ssa.Aux, arg *ssa.Value) *ssa.Value {
+ return s.entryBlock().NewValue1A(src.NoXPos, op, t, aux, arg)
+}
+
+// entryNewValue2 adds a new value with two arguments to the entry block.
+func (s *state) entryNewValue2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value {
+ return s.entryBlock().NewValue2(src.NoXPos, op, t, arg0, arg1)
+}
+
+// entryNewValue2A adds a new value with two arguments and an aux value to the entry block.
+func (s *state) entryNewValue2A(op ssa.Op, t *types.Type, aux ssa.Aux, arg0, arg1 *ssa.Value) *ssa.Value {
+ return s.entryBlock().NewValue2A(src.NoXPos, op, t, aux, arg0, arg1)
+}
+
+// const* routines add a new const value to the entry block.
+func (s *state) constSlice(t *types.Type) *ssa.Value {
+ return s.f.ConstSlice(t)
+}
+func (s *state) constInterface(t *types.Type) *ssa.Value {
+ return s.f.ConstInterface(t)
+}
+func (s *state) constNil(t *types.Type) *ssa.Value { return s.f.ConstNil(t) }
+func (s *state) constEmptyString(t *types.Type) *ssa.Value {
+ return s.f.ConstEmptyString(t)
+}
+func (s *state) constBool(c bool) *ssa.Value {
+ return s.f.ConstBool(types.Types[types.TBOOL], c)
+}
+func (s *state) constInt8(t *types.Type, c int8) *ssa.Value {
+ return s.f.ConstInt8(t, c)
+}
+func (s *state) constInt16(t *types.Type, c int16) *ssa.Value {
+ return s.f.ConstInt16(t, c)
+}
+func (s *state) constInt32(t *types.Type, c int32) *ssa.Value {
+ return s.f.ConstInt32(t, c)
+}
+func (s *state) constInt64(t *types.Type, c int64) *ssa.Value {
+ return s.f.ConstInt64(t, c)
+}
+func (s *state) constFloat32(t *types.Type, c float64) *ssa.Value {
+ return s.f.ConstFloat32(t, c)
+}
+func (s *state) constFloat64(t *types.Type, c float64) *ssa.Value {
+ return s.f.ConstFloat64(t, c)
+}
+func (s *state) constInt(t *types.Type, c int64) *ssa.Value {
+ if s.config.PtrSize == 8 {
+ return s.constInt64(t, c)
+ }
+ if int64(int32(c)) != c {
+ s.Fatalf("integer constant too big %d", c)
+ }
+ return s.constInt32(t, int32(c))
+}
+func (s *state) constOffPtrSP(t *types.Type, c int64) *ssa.Value {
+ return s.f.ConstOffPtrSP(t, c, s.sp)
+}
+
+// newValueOrSfCall* are wrappers around newValue*, which may create a call to a
+// soft-float runtime function instead (when emitting soft-float code).
+func (s *state) newValueOrSfCall1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value {
+ if s.softFloat {
+ if c, ok := s.sfcall(op, arg); ok {
+ return c
+ }
+ }
+ return s.newValue1(op, t, arg)
+}
+func (s *state) newValueOrSfCall2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value {
+ if s.softFloat {
+ if c, ok := s.sfcall(op, arg0, arg1); ok {
+ return c
+ }
+ }
+ return s.newValue2(op, t, arg0, arg1)
+}
+
+type instrumentKind uint8
+
+const (
+ instrumentRead = iota
+ instrumentWrite
+ instrumentMove
+)
+
+func (s *state) instrument(t *types.Type, addr *ssa.Value, kind instrumentKind) {
+ s.instrument2(t, addr, nil, kind)
+}
+
+// instrumentFields instruments a read/write operation on addr.
+// If it is instrumenting for MSAN or ASAN and t is a struct type, it instruments
+// operation for each field, instead of for the whole struct.
+func (s *state) instrumentFields(t *types.Type, addr *ssa.Value, kind instrumentKind) {
+ if !(base.Flag.MSan || base.Flag.ASan) || !t.IsStruct() {
+ s.instrument(t, addr, kind)
+ return
+ }
+ for _, f := range t.Fields().Slice() {
+ if f.Sym.IsBlank() {
+ continue
+ }
+ offptr := s.newValue1I(ssa.OpOffPtr, types.NewPtr(f.Type), f.Offset, addr)
+ s.instrumentFields(f.Type, offptr, kind)
+ }
+}
+
+func (s *state) instrumentMove(t *types.Type, dst, src *ssa.Value) {
+ if base.Flag.MSan {
+ s.instrument2(t, dst, src, instrumentMove)
+ } else {
+ s.instrument(t, src, instrumentRead)
+ s.instrument(t, dst, instrumentWrite)
+ }
+}
+
+func (s *state) instrument2(t *types.Type, addr, addr2 *ssa.Value, kind instrumentKind) {
+ if !s.curfn.InstrumentBody() {
+ return
+ }
+
+ w := t.Size()
+ if w == 0 {
+ return // can't race on zero-sized things
+ }
+
+ if ssa.IsSanitizerSafeAddr(addr) {
+ return
+ }
+
+ var fn *obj.LSym
+ needWidth := false
+
+ if addr2 != nil && kind != instrumentMove {
+ panic("instrument2: non-nil addr2 for non-move instrumentation")
+ }
+
+ if base.Flag.MSan {
+ switch kind {
+ case instrumentRead:
+ fn = ir.Syms.Msanread
+ case instrumentWrite:
+ fn = ir.Syms.Msanwrite
+ case instrumentMove:
+ fn = ir.Syms.Msanmove
+ default:
+ panic("unreachable")
+ }
+ needWidth = true
+ } else if base.Flag.Race && t.NumComponents(types.CountBlankFields) > 1 {
+ // for composite objects we have to write every address
+ // because a write might happen to any subobject.
+ // composites with only one element don't have subobjects, though.
+ switch kind {
+ case instrumentRead:
+ fn = ir.Syms.Racereadrange
+ case instrumentWrite:
+ fn = ir.Syms.Racewriterange
+ default:
+ panic("unreachable")
+ }
+ needWidth = true
+ } else if base.Flag.Race {
+ // for non-composite objects we can write just the start
+ // address, as any write must write the first byte.
+ switch kind {
+ case instrumentRead:
+ fn = ir.Syms.Raceread
+ case instrumentWrite:
+ fn = ir.Syms.Racewrite
+ default:
+ panic("unreachable")
+ }
+ } else if base.Flag.ASan {
+ switch kind {
+ case instrumentRead:
+ fn = ir.Syms.Asanread
+ case instrumentWrite:
+ fn = ir.Syms.Asanwrite
+ default:
+ panic("unreachable")
+ }
+ needWidth = true
+ } else {
+ panic("unreachable")
+ }
+
+ args := []*ssa.Value{addr}
+ if addr2 != nil {
+ args = append(args, addr2)
+ }
+ if needWidth {
+ args = append(args, s.constInt(types.Types[types.TUINTPTR], w))
+ }
+ s.rtcall(fn, true, nil, args...)
+}
+
+func (s *state) load(t *types.Type, src *ssa.Value) *ssa.Value {
+ s.instrumentFields(t, src, instrumentRead)
+ return s.rawLoad(t, src)
+}
+
+func (s *state) rawLoad(t *types.Type, src *ssa.Value) *ssa.Value {
+ return s.newValue2(ssa.OpLoad, t, src, s.mem())
+}
+
+func (s *state) store(t *types.Type, dst, val *ssa.Value) {
+ s.vars[memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, t, dst, val, s.mem())
+}
+
+func (s *state) zero(t *types.Type, dst *ssa.Value) {
+ s.instrument(t, dst, instrumentWrite)
+ store := s.newValue2I(ssa.OpZero, types.TypeMem, t.Size(), dst, s.mem())
+ store.Aux = t
+ s.vars[memVar] = store
+}
+
+func (s *state) move(t *types.Type, dst, src *ssa.Value) {
+ s.moveWhichMayOverlap(t, dst, src, false)
+}
+func (s *state) moveWhichMayOverlap(t *types.Type, dst, src *ssa.Value, mayOverlap bool) {
+ s.instrumentMove(t, dst, src)
+ if mayOverlap && t.IsArray() && t.NumElem() > 1 && !ssa.IsInlinableMemmove(dst, src, t.Size(), s.f.Config) {
+ // Normally, when moving Go values of type T from one location to another,
+ // we don't need to worry about partial overlaps. The two Ts must either be
+ // in disjoint (nonoverlapping) memory or in exactly the same location.
+ // There are 2 cases where this isn't true:
+ // 1) Using unsafe you can arrange partial overlaps.
+ // 2) Since Go 1.17, you can use a cast from a slice to a ptr-to-array.
+ // https://go.dev/ref/spec#Conversions_from_slice_to_array_pointer
+ // This feature can be used to construct partial overlaps of array types.
+ // var a [3]int
+ // p := (*[2]int)(a[:])
+ // q := (*[2]int)(a[1:])
+ // *p = *q
+ // We don't care about solving 1. Or at least, we haven't historically
+ // and no one has complained.
+ // For 2, we need to ensure that if there might be partial overlap,
+ // then we can't use OpMove; we must use memmove instead.
+ // (memmove handles partial overlap by copying in the correct
+ // direction. OpMove does not.)
+ //
+ // Note that we have to be careful here not to introduce a call when
+ // we're marshaling arguments to a call or unmarshaling results from a call.
+ // Cases where this is happening must pass mayOverlap to false.
+ // (Currently this only happens when unmarshaling results of a call.)
+ if t.HasPointers() {
+ s.rtcall(ir.Syms.Typedmemmove, true, nil, s.reflectType(t), dst, src)
+ // We would have otherwise implemented this move with straightline code,
+ // including a write barrier. Pretend we issue a write barrier here,
+ // so that the write barrier tests work. (Otherwise they'd need to know
+ // the details of IsInlineableMemmove.)
+ s.curfn.SetWBPos(s.peekPos())
+ } else {
+ s.rtcall(ir.Syms.Memmove, true, nil, dst, src, s.constInt(types.Types[types.TUINTPTR], t.Size()))
+ }
+ ssa.LogLargeCopy(s.f.Name, s.peekPos(), t.Size())
+ return
+ }
+ store := s.newValue3I(ssa.OpMove, types.TypeMem, t.Size(), dst, src, s.mem())
+ store.Aux = t
+ s.vars[memVar] = store
+}
+
+// stmtList converts the statement list n to SSA and adds it to s.
+func (s *state) stmtList(l ir.Nodes) {
+ for _, n := range l {
+ s.stmt(n)
+ }
+}
+
+// stmt converts the statement n to SSA and adds it to s.
+func (s *state) stmt(n ir.Node) {
+ if !(n.Op() == ir.OVARKILL || n.Op() == ir.OVARLIVE || n.Op() == ir.OVARDEF) {
+ // OVARKILL, OVARLIVE, and OVARDEF are invisible to the programmer, so we don't use their line numbers to avoid confusion in debugging.
+ s.pushLine(n.Pos())
+ defer s.popLine()
+ }
+
+ // If s.curBlock is nil, and n isn't a label (which might have an associated goto somewhere),
+ // then this code is dead. Stop here.
+ if s.curBlock == nil && n.Op() != ir.OLABEL {
+ return
+ }
+
+ s.stmtList(n.Init())
+ switch n.Op() {
+
+ case ir.OBLOCK:
+ n := n.(*ir.BlockStmt)
+ s.stmtList(n.List)
+
+ // No-ops
+ case ir.ODCLCONST, ir.ODCLTYPE, ir.OFALL:
+
+ // Expression statements
+ case ir.OCALLFUNC:
+ n := n.(*ir.CallExpr)
+ if ir.IsIntrinsicCall(n) {
+ s.intrinsicCall(n)
+ return
+ }
+ fallthrough
+
+ case ir.OCALLINTER:
+ n := n.(*ir.CallExpr)
+ s.callResult(n, callNormal)
+ if n.Op() == ir.OCALLFUNC && n.X.Op() == ir.ONAME && n.X.(*ir.Name).Class == ir.PFUNC {
+ if fn := n.X.Sym().Name; base.Flag.CompilingRuntime && fn == "throw" ||
+ n.X.Sym().Pkg == ir.Pkgs.Runtime && (fn == "throwinit" || fn == "gopanic" || fn == "panicwrap" || fn == "block" || fn == "panicmakeslicelen" || fn == "panicmakeslicecap") {
+ m := s.mem()
+ b := s.endBlock()
+ b.Kind = ssa.BlockExit
+ b.SetControl(m)
+ // TODO: never rewrite OPANIC to OCALLFUNC in the
+ // first place. Need to wait until all backends
+ // go through SSA.
+ }
+ }
+ case ir.ODEFER:
+ n := n.(*ir.GoDeferStmt)
+ if base.Debug.Defer > 0 {
+ var defertype string
+ if s.hasOpenDefers {
+ defertype = "open-coded"
+ } else if n.Esc() == ir.EscNever {
+ defertype = "stack-allocated"
+ } else {
+ defertype = "heap-allocated"
+ }
+ base.WarnfAt(n.Pos(), "%s defer", defertype)
+ }
+ if s.hasOpenDefers {
+ s.openDeferRecord(n.Call.(*ir.CallExpr))
+ } else {
+ d := callDefer
+ if n.Esc() == ir.EscNever {
+ d = callDeferStack
+ }
+ s.callResult(n.Call.(*ir.CallExpr), d)
+ }
+ case ir.OGO:
+ n := n.(*ir.GoDeferStmt)
+ s.callResult(n.Call.(*ir.CallExpr), callGo)
+
+ case ir.OAS2DOTTYPE:
+ n := n.(*ir.AssignListStmt)
+ var res, resok *ssa.Value
+ if n.Rhs[0].Op() == ir.ODOTTYPE2 {
+ res, resok = s.dottype(n.Rhs[0].(*ir.TypeAssertExpr), true)
+ } else {
+ res, resok = s.dynamicDottype(n.Rhs[0].(*ir.DynamicTypeAssertExpr), true)
+ }
+ deref := false
+ if !TypeOK(n.Rhs[0].Type()) {
+ if res.Op != ssa.OpLoad {
+ s.Fatalf("dottype of non-load")
+ }
+ mem := s.mem()
+ if mem.Op == ssa.OpVarKill {
+ mem = mem.Args[0]
+ }
+ if res.Args[1] != mem {
+ s.Fatalf("memory no longer live from 2-result dottype load")
+ }
+ deref = true
+ res = res.Args[0]
+ }
+ s.assign(n.Lhs[0], res, deref, 0)
+ s.assign(n.Lhs[1], resok, false, 0)
+ return
+
+ case ir.OAS2FUNC:
+ // We come here only when it is an intrinsic call returning two values.
+ n := n.(*ir.AssignListStmt)
+ call := n.Rhs[0].(*ir.CallExpr)
+ if !ir.IsIntrinsicCall(call) {
+ s.Fatalf("non-intrinsic AS2FUNC not expanded %v", call)
+ }
+ v := s.intrinsicCall(call)
+ v1 := s.newValue1(ssa.OpSelect0, n.Lhs[0].Type(), v)
+ v2 := s.newValue1(ssa.OpSelect1, n.Lhs[1].Type(), v)
+ s.assign(n.Lhs[0], v1, false, 0)
+ s.assign(n.Lhs[1], v2, false, 0)
+ return
+
+ case ir.ODCL:
+ n := n.(*ir.Decl)
+ if v := n.X; v.Esc() == ir.EscHeap {
+ s.newHeapaddr(v)
+ }
+
+ case ir.OLABEL:
+ n := n.(*ir.LabelStmt)
+ sym := n.Label
+ lab := s.label(sym)
+
+ // The label might already have a target block via a goto.
+ if lab.target == nil {
+ lab.target = s.f.NewBlock(ssa.BlockPlain)
+ }
+
+ // Go to that label.
+ // (We pretend "label:" is preceded by "goto label", unless the predecessor is unreachable.)
+ if s.curBlock != nil {
+ b := s.endBlock()
+ b.AddEdgeTo(lab.target)
+ }
+ s.startBlock(lab.target)
+
+ case ir.OGOTO:
+ n := n.(*ir.BranchStmt)
+ sym := n.Label
+
+ lab := s.label(sym)
+ if lab.target == nil {
+ lab.target = s.f.NewBlock(ssa.BlockPlain)
+ }
+
+ b := s.endBlock()
+ b.Pos = s.lastPos.WithIsStmt() // Do this even if b is an empty block.
+ b.AddEdgeTo(lab.target)
+
+ case ir.OAS:
+ n := n.(*ir.AssignStmt)
+ if n.X == n.Y && n.X.Op() == ir.ONAME {
+ // An x=x assignment. No point in doing anything
+ // here. In addition, skipping this assignment
+ // prevents generating:
+ // VARDEF x
+ // COPY x -> x
+ // which is bad because x is incorrectly considered
+ // dead before the vardef. See issue #14904.
+ return
+ }
+
+ // mayOverlap keeps track of whether the LHS and RHS might
+ // refer to overlapping memory.
+ mayOverlap := true
+ if n.Y == nil {
+ // Not a move at all, mayOverlap is not relevant.
+ } else if n.Def {
+ // A variable being defined cannot overlap anything else.
+ mayOverlap = false
+ } else if n.X.Op() == ir.ONAME && n.Y.Op() == ir.ONAME {
+ // Two named things never overlap.
+ // (Or they are identical, which we treat as nonoverlapping.)
+ mayOverlap = false
+ } else if n.Y.Op() == ir.ODEREF {
+ p := n.Y.(*ir.StarExpr).X
+ for p.Op() == ir.OCONVNOP {
+ p = p.(*ir.ConvExpr).X
+ }
+ if p.Op() == ir.OSPTR && p.(*ir.UnaryExpr).X.Type().IsString() {
+ // Pointer fields of strings point to unmodifiable memory.
+ // That memory can't overlap with the memory being written.
+ mayOverlap = false
+ }
+ } else if n.Y.Op() == ir.ORESULT || n.Y.Op() == ir.OCALLFUNC || n.Y.Op() == ir.OCALLINTER {
+ // When copying values out of the return area of a call, we know
+ // the source and destination don't overlap. Importantly, we must
+ // set mayOverlap so we don't introduce a call to memmove while
+ // we still have live data in the argument area.
+ mayOverlap = false
+ }
+
+ // Evaluate RHS.
+ rhs := n.Y
+ if rhs != nil {
+ switch rhs.Op() {
+ case ir.OSTRUCTLIT, ir.OARRAYLIT, ir.OSLICELIT:
+ // All literals with nonzero fields have already been
+ // rewritten during walk. Any that remain are just T{}
+ // or equivalents. Use the zero value.
+ if !ir.IsZero(rhs) {
+ s.Fatalf("literal with nonzero value in SSA: %v", rhs)
+ }
+ rhs = nil
+ case ir.OAPPEND:
+ rhs := rhs.(*ir.CallExpr)
+ // Check whether we're writing the result of an append back to the same slice.
+ // If so, we handle it specially to avoid write barriers on the fast
+ // (non-growth) path.
+ if !ir.SameSafeExpr(n.X, rhs.Args[0]) || base.Flag.N != 0 {
+ break
+ }
+ // If the slice can be SSA'd, it'll be on the stack,
+ // so there will be no write barriers,
+ // so there's no need to attempt to prevent them.
+ if s.canSSA(n.X) {
+ if base.Debug.Append > 0 { // replicating old diagnostic message
+ base.WarnfAt(n.Pos(), "append: len-only update (in local slice)")
+ }
+ break
+ }
+ if base.Debug.Append > 0 {
+ base.WarnfAt(n.Pos(), "append: len-only update")
+ }
+ s.append(rhs, true)
+ return
+ }
+ }
+
+ if ir.IsBlank(n.X) {
+ // _ = rhs
+ // Just evaluate rhs for side-effects.
+ if rhs != nil {
+ s.expr(rhs)
+ }
+ return
+ }
+
+ var t *types.Type
+ if n.Y != nil {
+ t = n.Y.Type()
+ } else {
+ t = n.X.Type()
+ }
+
+ var r *ssa.Value
+ deref := !TypeOK(t)
+ if deref {
+ if rhs == nil {
+ r = nil // Signal assign to use OpZero.
+ } else {
+ r = s.addr(rhs)
+ }
+ } else {
+ if rhs == nil {
+ r = s.zeroVal(t)
+ } else {
+ r = s.expr(rhs)
+ }
+ }
+
+ var skip skipMask
+ if rhs != nil && (rhs.Op() == ir.OSLICE || rhs.Op() == ir.OSLICE3 || rhs.Op() == ir.OSLICESTR) && ir.SameSafeExpr(rhs.(*ir.SliceExpr).X, n.X) {
+ // We're assigning a slicing operation back to its source.
+ // Don't write back fields we aren't changing. See issue #14855.
+ rhs := rhs.(*ir.SliceExpr)
+ i, j, k := rhs.Low, rhs.High, rhs.Max
+ if i != nil && (i.Op() == ir.OLITERAL && i.Val().Kind() == constant.Int && ir.Int64Val(i) == 0) {
+ // [0:...] is the same as [:...]
+ i = nil
+ }
+ // TODO: detect defaults for len/cap also.
+ // Currently doesn't really work because (*p)[:len(*p)] appears here as:
+ // tmp = len(*p)
+ // (*p)[:tmp]
+ //if j != nil && (j.Op == OLEN && SameSafeExpr(j.Left, n.Left)) {
+ // j = nil
+ //}
+ //if k != nil && (k.Op == OCAP && SameSafeExpr(k.Left, n.Left)) {
+ // k = nil
+ //}
+ if i == nil {
+ skip |= skipPtr
+ if j == nil {
+ skip |= skipLen
+ }
+ if k == nil {
+ skip |= skipCap
+ }
+ }
+ }
+
+ s.assignWhichMayOverlap(n.X, r, deref, skip, mayOverlap)
+
+ case ir.OIF:
+ n := n.(*ir.IfStmt)
+ if ir.IsConst(n.Cond, constant.Bool) {
+ s.stmtList(n.Cond.Init())
+ if ir.BoolVal(n.Cond) {
+ s.stmtList(n.Body)
+ } else {
+ s.stmtList(n.Else)
+ }
+ break
+ }
+
+ bEnd := s.f.NewBlock(ssa.BlockPlain)
+ var likely int8
+ if n.Likely {
+ likely = 1
+ }
+ var bThen *ssa.Block
+ if len(n.Body) != 0 {
+ bThen = s.f.NewBlock(ssa.BlockPlain)
+ } else {
+ bThen = bEnd
+ }
+ var bElse *ssa.Block
+ if len(n.Else) != 0 {
+ bElse = s.f.NewBlock(ssa.BlockPlain)
+ } else {
+ bElse = bEnd
+ }
+ s.condBranch(n.Cond, bThen, bElse, likely)
+
+ if len(n.Body) != 0 {
+ s.startBlock(bThen)
+ s.stmtList(n.Body)
+ if b := s.endBlock(); b != nil {
+ b.AddEdgeTo(bEnd)
+ }
+ }
+ if len(n.Else) != 0 {
+ s.startBlock(bElse)
+ s.stmtList(n.Else)
+ if b := s.endBlock(); b != nil {
+ b.AddEdgeTo(bEnd)
+ }
+ }
+ s.startBlock(bEnd)
+
+ case ir.ORETURN:
+ n := n.(*ir.ReturnStmt)
+ s.stmtList(n.Results)
+ b := s.exit()
+ b.Pos = s.lastPos.WithIsStmt()
+
+ case ir.OTAILCALL:
+ n := n.(*ir.TailCallStmt)
+ s.callResult(n.Call, callTail)
+ call := s.mem()
+ b := s.endBlock()
+ b.Kind = ssa.BlockRetJmp // could use BlockExit. BlockRetJmp is mostly for clarity.
+ b.SetControl(call)
+
+ case ir.OCONTINUE, ir.OBREAK:
+ n := n.(*ir.BranchStmt)
+ var to *ssa.Block
+ if n.Label == nil {
+ // plain break/continue
+ switch n.Op() {
+ case ir.OCONTINUE:
+ to = s.continueTo
+ case ir.OBREAK:
+ to = s.breakTo
+ }
+ } else {
+ // labeled break/continue; look up the target
+ sym := n.Label
+ lab := s.label(sym)
+ switch n.Op() {
+ case ir.OCONTINUE:
+ to = lab.continueTarget
+ case ir.OBREAK:
+ to = lab.breakTarget
+ }
+ }
+
+ b := s.endBlock()
+ b.Pos = s.lastPos.WithIsStmt() // Do this even if b is an empty block.
+ b.AddEdgeTo(to)
+
+ case ir.OFOR, ir.OFORUNTIL:
+ // OFOR: for Ninit; Left; Right { Nbody }
+ // cond (Left); body (Nbody); incr (Right)
+ //
+ // OFORUNTIL: for Ninit; Left; Right; List { Nbody }
+ // => body: { Nbody }; incr: Right; if Left { lateincr: List; goto body }; end:
+ n := n.(*ir.ForStmt)
+ bCond := s.f.NewBlock(ssa.BlockPlain)
+ bBody := s.f.NewBlock(ssa.BlockPlain)
+ bIncr := s.f.NewBlock(ssa.BlockPlain)
+ bEnd := s.f.NewBlock(ssa.BlockPlain)
+
+ // ensure empty for loops have correct position; issue #30167
+ bBody.Pos = n.Pos()
+
+ // first, jump to condition test (OFOR) or body (OFORUNTIL)
+ b := s.endBlock()
+ if n.Op() == ir.OFOR {
+ b.AddEdgeTo(bCond)
+ // generate code to test condition
+ s.startBlock(bCond)
+ if n.Cond != nil {
+ s.condBranch(n.Cond, bBody, bEnd, 1)
+ } else {
+ b := s.endBlock()
+ b.Kind = ssa.BlockPlain
+ b.AddEdgeTo(bBody)
+ }
+
+ } else {
+ b.AddEdgeTo(bBody)
+ }
+
+ // set up for continue/break in body
+ prevContinue := s.continueTo
+ prevBreak := s.breakTo
+ s.continueTo = bIncr
+ s.breakTo = bEnd
+ var lab *ssaLabel
+ if sym := n.Label; sym != nil {
+ // labeled for loop
+ lab = s.label(sym)
+ lab.continueTarget = bIncr
+ lab.breakTarget = bEnd
+ }
+
+ // generate body
+ s.startBlock(bBody)
+ s.stmtList(n.Body)
+
+ // tear down continue/break
+ s.continueTo = prevContinue
+ s.breakTo = prevBreak
+ if lab != nil {
+ lab.continueTarget = nil
+ lab.breakTarget = nil
+ }
+
+ // done with body, goto incr
+ if b := s.endBlock(); b != nil {
+ b.AddEdgeTo(bIncr)
+ }
+
+ // generate incr (and, for OFORUNTIL, condition)
+ s.startBlock(bIncr)
+ if n.Post != nil {
+ s.stmt(n.Post)
+ }
+ if n.Op() == ir.OFOR {
+ if b := s.endBlock(); b != nil {
+ b.AddEdgeTo(bCond)
+ // It can happen that bIncr ends in a block containing only VARKILL,
+ // and that muddles the debugging experience.
+ if b.Pos == src.NoXPos {
+ b.Pos = bCond.Pos
+ }
+ }
+ } else {
+ // bCond is unused in OFORUNTIL, so repurpose it.
+ bLateIncr := bCond
+ // test condition
+ s.condBranch(n.Cond, bLateIncr, bEnd, 1)
+ // generate late increment
+ s.startBlock(bLateIncr)
+ s.stmtList(n.Late)
+ s.endBlock().AddEdgeTo(bBody)
+ }
+
+ s.startBlock(bEnd)
+
+ case ir.OSWITCH, ir.OSELECT:
+ // These have been mostly rewritten by the front end into their Nbody fields.
+ // Our main task is to correctly hook up any break statements.
+ bEnd := s.f.NewBlock(ssa.BlockPlain)
+
+ prevBreak := s.breakTo
+ s.breakTo = bEnd
+ var sym *types.Sym
+ var body ir.Nodes
+ if n.Op() == ir.OSWITCH {
+ n := n.(*ir.SwitchStmt)
+ sym = n.Label
+ body = n.Compiled
+ } else {
+ n := n.(*ir.SelectStmt)
+ sym = n.Label
+ body = n.Compiled
+ }
+
+ var lab *ssaLabel
+ if sym != nil {
+ // labeled
+ lab = s.label(sym)
+ lab.breakTarget = bEnd
+ }
+
+ // generate body code
+ s.stmtList(body)
+
+ s.breakTo = prevBreak
+ if lab != nil {
+ lab.breakTarget = nil
+ }
+
+ // walk adds explicit OBREAK nodes to the end of all reachable code paths.
+ // If we still have a current block here, then mark it unreachable.
+ if s.curBlock != nil {
+ m := s.mem()
+ b := s.endBlock()
+ b.Kind = ssa.BlockExit
+ b.SetControl(m)
+ }
+ s.startBlock(bEnd)
+
+ case ir.OVARDEF:
+ n := n.(*ir.UnaryExpr)
+ if !s.canSSA(n.X) {
+ s.vars[memVar] = s.newValue1Apos(ssa.OpVarDef, types.TypeMem, n.X.(*ir.Name), s.mem(), false)
+ }
+ case ir.OVARKILL:
+ // Insert a varkill op to record that a variable is no longer live.
+ // We only care about liveness info at call sites, so putting the
+ // varkill in the store chain is enough to keep it correctly ordered
+ // with respect to call ops.
+ n := n.(*ir.UnaryExpr)
+ if !s.canSSA(n.X) {
+ s.vars[memVar] = s.newValue1Apos(ssa.OpVarKill, types.TypeMem, n.X.(*ir.Name), s.mem(), false)
+ }
+
+ case ir.OVARLIVE:
+ // Insert a varlive op to record that a variable is still live.
+ n := n.(*ir.UnaryExpr)
+ v := n.X.(*ir.Name)
+ if !v.Addrtaken() {
+ s.Fatalf("VARLIVE variable %v must have Addrtaken set", v)
+ }
+ switch v.Class {
+ case ir.PAUTO, ir.PPARAM, ir.PPARAMOUT:
+ default:
+ s.Fatalf("VARLIVE variable %v must be Auto or Arg", v)
+ }
+ s.vars[memVar] = s.newValue1A(ssa.OpVarLive, types.TypeMem, v, s.mem())
+
+ case ir.OCHECKNIL:
+ n := n.(*ir.UnaryExpr)
+ p := s.expr(n.X)
+ s.nilCheck(p)
+
+ case ir.OINLMARK:
+ n := n.(*ir.InlineMarkStmt)
+ s.newValue1I(ssa.OpInlMark, types.TypeVoid, n.Index, s.mem())
+
+ default:
+ s.Fatalf("unhandled stmt %v", n.Op())
+ }
+}
+
+// If true, share as many open-coded defer exits as possible (with the downside of
+// worse line-number information)
+const shareDeferExits = false
+
+// exit processes any code that needs to be generated just before returning.
+// It returns a BlockRet block that ends the control flow. Its control value
+// will be set to the final memory state.
+func (s *state) exit() *ssa.Block {
+ if s.hasdefer {
+ if s.hasOpenDefers {
+ if shareDeferExits && s.lastDeferExit != nil && len(s.openDefers) == s.lastDeferCount {
+ if s.curBlock.Kind != ssa.BlockPlain {
+ panic("Block for an exit should be BlockPlain")
+ }
+ s.curBlock.AddEdgeTo(s.lastDeferExit)
+ s.endBlock()
+ return s.lastDeferFinalBlock
+ }
+ s.openDeferExit()
+ } else {
+ s.rtcall(ir.Syms.Deferreturn, true, nil)
+ }
+ }
+
+ var b *ssa.Block
+ var m *ssa.Value
+ // Do actual return.
+ // These currently turn into self-copies (in many cases).
+ resultFields := s.curfn.Type().Results().FieldSlice()
+ results := make([]*ssa.Value, len(resultFields)+1, len(resultFields)+1)
+ m = s.newValue0(ssa.OpMakeResult, s.f.OwnAux.LateExpansionResultType())
+ // Store SSAable and heap-escaped PPARAMOUT variables back to stack locations.
+ for i, f := range resultFields {
+ n := f.Nname.(*ir.Name)
+ if s.canSSA(n) { // result is in some SSA variable
+ if !n.IsOutputParamInRegisters() {
+ // We are about to store to the result slot.
+ s.vars[memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, n, s.mem())
+ }
+ results[i] = s.variable(n, n.Type())
+ } else if !n.OnStack() { // result is actually heap allocated
+ // We are about to copy the in-heap result to the result slot.
+ s.vars[memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, n, s.mem())
+ ha := s.expr(n.Heapaddr)
+ s.instrumentFields(n.Type(), ha, instrumentRead)
+ results[i] = s.newValue2(ssa.OpDereference, n.Type(), ha, s.mem())
+ } else { // result is not SSA-able; not escaped, so not on heap, but too large for SSA.
+ // Before register ABI this ought to be a self-move, home=dest,
+ // With register ABI, it's still a self-move if parameter is on stack (i.e., too big or overflowed)
+ // No VarDef, as the result slot is already holding live value.
+ results[i] = s.newValue2(ssa.OpDereference, n.Type(), s.addr(n), s.mem())
+ }
+ }
+
+ // Run exit code. Today, this is just racefuncexit, in -race mode.
+ // TODO(register args) this seems risky here with a register-ABI, but not clear it is right to do it earlier either.
+ // Spills in register allocation might just fix it.
+ s.stmtList(s.curfn.Exit)
+
+ results[len(results)-1] = s.mem()
+ m.AddArgs(results...)
+
+ b = s.endBlock()
+ b.Kind = ssa.BlockRet
+ b.SetControl(m)
+ if s.hasdefer && s.hasOpenDefers {
+ s.lastDeferFinalBlock = b
+ }
+ return b
+}
+
+type opAndType struct {
+ op ir.Op
+ etype types.Kind
+}
+
+var opToSSA = map[opAndType]ssa.Op{
+ opAndType{ir.OADD, types.TINT8}: ssa.OpAdd8,
+ opAndType{ir.OADD, types.TUINT8}: ssa.OpAdd8,
+ opAndType{ir.OADD, types.TINT16}: ssa.OpAdd16,
+ opAndType{ir.OADD, types.TUINT16}: ssa.OpAdd16,
+ opAndType{ir.OADD, types.TINT32}: ssa.OpAdd32,
+ opAndType{ir.OADD, types.TUINT32}: ssa.OpAdd32,
+ opAndType{ir.OADD, types.TINT64}: ssa.OpAdd64,
+ opAndType{ir.OADD, types.TUINT64}: ssa.OpAdd64,
+ opAndType{ir.OADD, types.TFLOAT32}: ssa.OpAdd32F,
+ opAndType{ir.OADD, types.TFLOAT64}: ssa.OpAdd64F,
+
+ opAndType{ir.OSUB, types.TINT8}: ssa.OpSub8,
+ opAndType{ir.OSUB, types.TUINT8}: ssa.OpSub8,
+ opAndType{ir.OSUB, types.TINT16}: ssa.OpSub16,
+ opAndType{ir.OSUB, types.TUINT16}: ssa.OpSub16,
+ opAndType{ir.OSUB, types.TINT32}: ssa.OpSub32,
+ opAndType{ir.OSUB, types.TUINT32}: ssa.OpSub32,
+ opAndType{ir.OSUB, types.TINT64}: ssa.OpSub64,
+ opAndType{ir.OSUB, types.TUINT64}: ssa.OpSub64,
+ opAndType{ir.OSUB, types.TFLOAT32}: ssa.OpSub32F,
+ opAndType{ir.OSUB, types.TFLOAT64}: ssa.OpSub64F,
+
+ opAndType{ir.ONOT, types.TBOOL}: ssa.OpNot,
+
+ opAndType{ir.ONEG, types.TINT8}: ssa.OpNeg8,
+ opAndType{ir.ONEG, types.TUINT8}: ssa.OpNeg8,
+ opAndType{ir.ONEG, types.TINT16}: ssa.OpNeg16,
+ opAndType{ir.ONEG, types.TUINT16}: ssa.OpNeg16,
+ opAndType{ir.ONEG, types.TINT32}: ssa.OpNeg32,
+ opAndType{ir.ONEG, types.TUINT32}: ssa.OpNeg32,
+ opAndType{ir.ONEG, types.TINT64}: ssa.OpNeg64,
+ opAndType{ir.ONEG, types.TUINT64}: ssa.OpNeg64,
+ opAndType{ir.ONEG, types.TFLOAT32}: ssa.OpNeg32F,
+ opAndType{ir.ONEG, types.TFLOAT64}: ssa.OpNeg64F,
+
+ opAndType{ir.OBITNOT, types.TINT8}: ssa.OpCom8,
+ opAndType{ir.OBITNOT, types.TUINT8}: ssa.OpCom8,
+ opAndType{ir.OBITNOT, types.TINT16}: ssa.OpCom16,
+ opAndType{ir.OBITNOT, types.TUINT16}: ssa.OpCom16,
+ opAndType{ir.OBITNOT, types.TINT32}: ssa.OpCom32,
+ opAndType{ir.OBITNOT, types.TUINT32}: ssa.OpCom32,
+ opAndType{ir.OBITNOT, types.TINT64}: ssa.OpCom64,
+ opAndType{ir.OBITNOT, types.TUINT64}: ssa.OpCom64,
+
+ opAndType{ir.OIMAG, types.TCOMPLEX64}: ssa.OpComplexImag,
+ opAndType{ir.OIMAG, types.TCOMPLEX128}: ssa.OpComplexImag,
+ opAndType{ir.OREAL, types.TCOMPLEX64}: ssa.OpComplexReal,
+ opAndType{ir.OREAL, types.TCOMPLEX128}: ssa.OpComplexReal,
+
+ opAndType{ir.OMUL, types.TINT8}: ssa.OpMul8,
+ opAndType{ir.OMUL, types.TUINT8}: ssa.OpMul8,
+ opAndType{ir.OMUL, types.TINT16}: ssa.OpMul16,
+ opAndType{ir.OMUL, types.TUINT16}: ssa.OpMul16,
+ opAndType{ir.OMUL, types.TINT32}: ssa.OpMul32,
+ opAndType{ir.OMUL, types.TUINT32}: ssa.OpMul32,
+ opAndType{ir.OMUL, types.TINT64}: ssa.OpMul64,
+ opAndType{ir.OMUL, types.TUINT64}: ssa.OpMul64,
+ opAndType{ir.OMUL, types.TFLOAT32}: ssa.OpMul32F,
+ opAndType{ir.OMUL, types.TFLOAT64}: ssa.OpMul64F,
+
+ opAndType{ir.ODIV, types.TFLOAT32}: ssa.OpDiv32F,
+ opAndType{ir.ODIV, types.TFLOAT64}: ssa.OpDiv64F,
+
+ opAndType{ir.ODIV, types.TINT8}: ssa.OpDiv8,
+ opAndType{ir.ODIV, types.TUINT8}: ssa.OpDiv8u,
+ opAndType{ir.ODIV, types.TINT16}: ssa.OpDiv16,
+ opAndType{ir.ODIV, types.TUINT16}: ssa.OpDiv16u,
+ opAndType{ir.ODIV, types.TINT32}: ssa.OpDiv32,
+ opAndType{ir.ODIV, types.TUINT32}: ssa.OpDiv32u,
+ opAndType{ir.ODIV, types.TINT64}: ssa.OpDiv64,
+ opAndType{ir.ODIV, types.TUINT64}: ssa.OpDiv64u,
+
+ opAndType{ir.OMOD, types.TINT8}: ssa.OpMod8,
+ opAndType{ir.OMOD, types.TUINT8}: ssa.OpMod8u,
+ opAndType{ir.OMOD, types.TINT16}: ssa.OpMod16,
+ opAndType{ir.OMOD, types.TUINT16}: ssa.OpMod16u,
+ opAndType{ir.OMOD, types.TINT32}: ssa.OpMod32,
+ opAndType{ir.OMOD, types.TUINT32}: ssa.OpMod32u,
+ opAndType{ir.OMOD, types.TINT64}: ssa.OpMod64,
+ opAndType{ir.OMOD, types.TUINT64}: ssa.OpMod64u,
+
+ opAndType{ir.OAND, types.TINT8}: ssa.OpAnd8,
+ opAndType{ir.OAND, types.TUINT8}: ssa.OpAnd8,
+ opAndType{ir.OAND, types.TINT16}: ssa.OpAnd16,
+ opAndType{ir.OAND, types.TUINT16}: ssa.OpAnd16,
+ opAndType{ir.OAND, types.TINT32}: ssa.OpAnd32,
+ opAndType{ir.OAND, types.TUINT32}: ssa.OpAnd32,
+ opAndType{ir.OAND, types.TINT64}: ssa.OpAnd64,
+ opAndType{ir.OAND, types.TUINT64}: ssa.OpAnd64,
+
+ opAndType{ir.OOR, types.TINT8}: ssa.OpOr8,
+ opAndType{ir.OOR, types.TUINT8}: ssa.OpOr8,
+ opAndType{ir.OOR, types.TINT16}: ssa.OpOr16,
+ opAndType{ir.OOR, types.TUINT16}: ssa.OpOr16,
+ opAndType{ir.OOR, types.TINT32}: ssa.OpOr32,
+ opAndType{ir.OOR, types.TUINT32}: ssa.OpOr32,
+ opAndType{ir.OOR, types.TINT64}: ssa.OpOr64,
+ opAndType{ir.OOR, types.TUINT64}: ssa.OpOr64,
+
+ opAndType{ir.OXOR, types.TINT8}: ssa.OpXor8,
+ opAndType{ir.OXOR, types.TUINT8}: ssa.OpXor8,
+ opAndType{ir.OXOR, types.TINT16}: ssa.OpXor16,
+ opAndType{ir.OXOR, types.TUINT16}: ssa.OpXor16,
+ opAndType{ir.OXOR, types.TINT32}: ssa.OpXor32,
+ opAndType{ir.OXOR, types.TUINT32}: ssa.OpXor32,
+ opAndType{ir.OXOR, types.TINT64}: ssa.OpXor64,
+ opAndType{ir.OXOR, types.TUINT64}: ssa.OpXor64,
+
+ opAndType{ir.OEQ, types.TBOOL}: ssa.OpEqB,
+ opAndType{ir.OEQ, types.TINT8}: ssa.OpEq8,
+ opAndType{ir.OEQ, types.TUINT8}: ssa.OpEq8,
+ opAndType{ir.OEQ, types.TINT16}: ssa.OpEq16,
+ opAndType{ir.OEQ, types.TUINT16}: ssa.OpEq16,
+ opAndType{ir.OEQ, types.TINT32}: ssa.OpEq32,
+ opAndType{ir.OEQ, types.TUINT32}: ssa.OpEq32,
+ opAndType{ir.OEQ, types.TINT64}: ssa.OpEq64,
+ opAndType{ir.OEQ, types.TUINT64}: ssa.OpEq64,
+ opAndType{ir.OEQ, types.TINTER}: ssa.OpEqInter,
+ opAndType{ir.OEQ, types.TSLICE}: ssa.OpEqSlice,
+ opAndType{ir.OEQ, types.TFUNC}: ssa.OpEqPtr,
+ opAndType{ir.OEQ, types.TMAP}: ssa.OpEqPtr,
+ opAndType{ir.OEQ, types.TCHAN}: ssa.OpEqPtr,
+ opAndType{ir.OEQ, types.TPTR}: ssa.OpEqPtr,
+ opAndType{ir.OEQ, types.TUINTPTR}: ssa.OpEqPtr,
+ opAndType{ir.OEQ, types.TUNSAFEPTR}: ssa.OpEqPtr,
+ opAndType{ir.OEQ, types.TFLOAT64}: ssa.OpEq64F,
+ opAndType{ir.OEQ, types.TFLOAT32}: ssa.OpEq32F,
+
+ opAndType{ir.ONE, types.TBOOL}: ssa.OpNeqB,
+ opAndType{ir.ONE, types.TINT8}: ssa.OpNeq8,
+ opAndType{ir.ONE, types.TUINT8}: ssa.OpNeq8,
+ opAndType{ir.ONE, types.TINT16}: ssa.OpNeq16,
+ opAndType{ir.ONE, types.TUINT16}: ssa.OpNeq16,
+ opAndType{ir.ONE, types.TINT32}: ssa.OpNeq32,
+ opAndType{ir.ONE, types.TUINT32}: ssa.OpNeq32,
+ opAndType{ir.ONE, types.TINT64}: ssa.OpNeq64,
+ opAndType{ir.ONE, types.TUINT64}: ssa.OpNeq64,
+ opAndType{ir.ONE, types.TINTER}: ssa.OpNeqInter,
+ opAndType{ir.ONE, types.TSLICE}: ssa.OpNeqSlice,
+ opAndType{ir.ONE, types.TFUNC}: ssa.OpNeqPtr,
+ opAndType{ir.ONE, types.TMAP}: ssa.OpNeqPtr,
+ opAndType{ir.ONE, types.TCHAN}: ssa.OpNeqPtr,
+ opAndType{ir.ONE, types.TPTR}: ssa.OpNeqPtr,
+ opAndType{ir.ONE, types.TUINTPTR}: ssa.OpNeqPtr,
+ opAndType{ir.ONE, types.TUNSAFEPTR}: ssa.OpNeqPtr,
+ opAndType{ir.ONE, types.TFLOAT64}: ssa.OpNeq64F,
+ opAndType{ir.ONE, types.TFLOAT32}: ssa.OpNeq32F,
+
+ opAndType{ir.OLT, types.TINT8}: ssa.OpLess8,
+ opAndType{ir.OLT, types.TUINT8}: ssa.OpLess8U,
+ opAndType{ir.OLT, types.TINT16}: ssa.OpLess16,
+ opAndType{ir.OLT, types.TUINT16}: ssa.OpLess16U,
+ opAndType{ir.OLT, types.TINT32}: ssa.OpLess32,
+ opAndType{ir.OLT, types.TUINT32}: ssa.OpLess32U,
+ opAndType{ir.OLT, types.TINT64}: ssa.OpLess64,
+ opAndType{ir.OLT, types.TUINT64}: ssa.OpLess64U,
+ opAndType{ir.OLT, types.TFLOAT64}: ssa.OpLess64F,
+ opAndType{ir.OLT, types.TFLOAT32}: ssa.OpLess32F,
+
+ opAndType{ir.OLE, types.TINT8}: ssa.OpLeq8,
+ opAndType{ir.OLE, types.TUINT8}: ssa.OpLeq8U,
+ opAndType{ir.OLE, types.TINT16}: ssa.OpLeq16,
+ opAndType{ir.OLE, types.TUINT16}: ssa.OpLeq16U,
+ opAndType{ir.OLE, types.TINT32}: ssa.OpLeq32,
+ opAndType{ir.OLE, types.TUINT32}: ssa.OpLeq32U,
+ opAndType{ir.OLE, types.TINT64}: ssa.OpLeq64,
+ opAndType{ir.OLE, types.TUINT64}: ssa.OpLeq64U,
+ opAndType{ir.OLE, types.TFLOAT64}: ssa.OpLeq64F,
+ opAndType{ir.OLE, types.TFLOAT32}: ssa.OpLeq32F,
+}
+
+func (s *state) concreteEtype(t *types.Type) types.Kind {
+ e := t.Kind()
+ switch e {
+ default:
+ return e
+ case types.TINT:
+ if s.config.PtrSize == 8 {
+ return types.TINT64
+ }
+ return types.TINT32
+ case types.TUINT:
+ if s.config.PtrSize == 8 {
+ return types.TUINT64
+ }
+ return types.TUINT32
+ case types.TUINTPTR:
+ if s.config.PtrSize == 8 {
+ return types.TUINT64
+ }
+ return types.TUINT32
+ }
+}
+
+func (s *state) ssaOp(op ir.Op, t *types.Type) ssa.Op {
+ etype := s.concreteEtype(t)
+ x, ok := opToSSA[opAndType{op, etype}]
+ if !ok {
+ s.Fatalf("unhandled binary op %v %s", op, etype)
+ }
+ return x
+}
+
+type opAndTwoTypes struct {
+ op ir.Op
+ etype1 types.Kind
+ etype2 types.Kind
+}
+
+type twoTypes struct {
+ etype1 types.Kind
+ etype2 types.Kind
+}
+
+type twoOpsAndType struct {
+ op1 ssa.Op
+ op2 ssa.Op
+ intermediateType types.Kind
+}
+
+var fpConvOpToSSA = map[twoTypes]twoOpsAndType{
+
+ twoTypes{types.TINT8, types.TFLOAT32}: twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to32F, types.TINT32},
+ twoTypes{types.TINT16, types.TFLOAT32}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to32F, types.TINT32},
+ twoTypes{types.TINT32, types.TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to32F, types.TINT32},
+ twoTypes{types.TINT64, types.TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to32F, types.TINT64},
+
+ twoTypes{types.TINT8, types.TFLOAT64}: twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to64F, types.TINT32},
+ twoTypes{types.TINT16, types.TFLOAT64}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to64F, types.TINT32},
+ twoTypes{types.TINT32, types.TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to64F, types.TINT32},
+ twoTypes{types.TINT64, types.TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to64F, types.TINT64},
+
+ twoTypes{types.TFLOAT32, types.TINT8}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, types.TINT32},
+ twoTypes{types.TFLOAT32, types.TINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, types.TINT32},
+ twoTypes{types.TFLOAT32, types.TINT32}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpCopy, types.TINT32},
+ twoTypes{types.TFLOAT32, types.TINT64}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpCopy, types.TINT64},
+
+ twoTypes{types.TFLOAT64, types.TINT8}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, types.TINT32},
+ twoTypes{types.TFLOAT64, types.TINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, types.TINT32},
+ twoTypes{types.TFLOAT64, types.TINT32}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpCopy, types.TINT32},
+ twoTypes{types.TFLOAT64, types.TINT64}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpCopy, types.TINT64},
+ // unsigned
+ twoTypes{types.TUINT8, types.TFLOAT32}: twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to32F, types.TINT32},
+ twoTypes{types.TUINT16, types.TFLOAT32}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to32F, types.TINT32},
+ twoTypes{types.TUINT32, types.TFLOAT32}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to32F, types.TINT64}, // go wide to dodge unsigned
+ twoTypes{types.TUINT64, types.TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, types.TUINT64}, // Cvt64Uto32F, branchy code expansion instead
+
+ twoTypes{types.TUINT8, types.TFLOAT64}: twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to64F, types.TINT32},
+ twoTypes{types.TUINT16, types.TFLOAT64}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to64F, types.TINT32},
+ twoTypes{types.TUINT32, types.TFLOAT64}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to64F, types.TINT64}, // go wide to dodge unsigned
+ twoTypes{types.TUINT64, types.TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, types.TUINT64}, // Cvt64Uto64F, branchy code expansion instead
+
+ twoTypes{types.TFLOAT32, types.TUINT8}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, types.TINT32},
+ twoTypes{types.TFLOAT32, types.TUINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, types.TINT32},
+ twoTypes{types.TFLOAT32, types.TUINT32}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpTrunc64to32, types.TINT64}, // go wide to dodge unsigned
+ twoTypes{types.TFLOAT32, types.TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, types.TUINT64}, // Cvt32Fto64U, branchy code expansion instead
+
+ twoTypes{types.TFLOAT64, types.TUINT8}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, types.TINT32},
+ twoTypes{types.TFLOAT64, types.TUINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, types.TINT32},
+ twoTypes{types.TFLOAT64, types.TUINT32}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpTrunc64to32, types.TINT64}, // go wide to dodge unsigned
+ twoTypes{types.TFLOAT64, types.TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, types.TUINT64}, // Cvt64Fto64U, branchy code expansion instead
+
+ // float
+ twoTypes{types.TFLOAT64, types.TFLOAT32}: twoOpsAndType{ssa.OpCvt64Fto32F, ssa.OpCopy, types.TFLOAT32},
+ twoTypes{types.TFLOAT64, types.TFLOAT64}: twoOpsAndType{ssa.OpRound64F, ssa.OpCopy, types.TFLOAT64},
+ twoTypes{types.TFLOAT32, types.TFLOAT32}: twoOpsAndType{ssa.OpRound32F, ssa.OpCopy, types.TFLOAT32},
+ twoTypes{types.TFLOAT32, types.TFLOAT64}: twoOpsAndType{ssa.OpCvt32Fto64F, ssa.OpCopy, types.TFLOAT64},
+}
+
+// this map is used only for 32-bit arch, and only includes the difference
+// on 32-bit arch, don't use int64<->float conversion for uint32
+var fpConvOpToSSA32 = map[twoTypes]twoOpsAndType{
+ twoTypes{types.TUINT32, types.TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto32F, types.TUINT32},
+ twoTypes{types.TUINT32, types.TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto64F, types.TUINT32},
+ twoTypes{types.TFLOAT32, types.TUINT32}: twoOpsAndType{ssa.OpCvt32Fto32U, ssa.OpCopy, types.TUINT32},
+ twoTypes{types.TFLOAT64, types.TUINT32}: twoOpsAndType{ssa.OpCvt64Fto32U, ssa.OpCopy, types.TUINT32},
+}
+
+// uint64<->float conversions, only on machines that have instructions for that
+var uint64fpConvOpToSSA = map[twoTypes]twoOpsAndType{
+ twoTypes{types.TUINT64, types.TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto32F, types.TUINT64},
+ twoTypes{types.TUINT64, types.TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto64F, types.TUINT64},
+ twoTypes{types.TFLOAT32, types.TUINT64}: twoOpsAndType{ssa.OpCvt32Fto64U, ssa.OpCopy, types.TUINT64},
+ twoTypes{types.TFLOAT64, types.TUINT64}: twoOpsAndType{ssa.OpCvt64Fto64U, ssa.OpCopy, types.TUINT64},
+}
+
+var shiftOpToSSA = map[opAndTwoTypes]ssa.Op{
+ opAndTwoTypes{ir.OLSH, types.TINT8, types.TUINT8}: ssa.OpLsh8x8,
+ opAndTwoTypes{ir.OLSH, types.TUINT8, types.TUINT8}: ssa.OpLsh8x8,
+ opAndTwoTypes{ir.OLSH, types.TINT8, types.TUINT16}: ssa.OpLsh8x16,
+ opAndTwoTypes{ir.OLSH, types.TUINT8, types.TUINT16}: ssa.OpLsh8x16,
+ opAndTwoTypes{ir.OLSH, types.TINT8, types.TUINT32}: ssa.OpLsh8x32,
+ opAndTwoTypes{ir.OLSH, types.TUINT8, types.TUINT32}: ssa.OpLsh8x32,
+ opAndTwoTypes{ir.OLSH, types.TINT8, types.TUINT64}: ssa.OpLsh8x64,
+ opAndTwoTypes{ir.OLSH, types.TUINT8, types.TUINT64}: ssa.OpLsh8x64,
+
+ opAndTwoTypes{ir.OLSH, types.TINT16, types.TUINT8}: ssa.OpLsh16x8,
+ opAndTwoTypes{ir.OLSH, types.TUINT16, types.TUINT8}: ssa.OpLsh16x8,
+ opAndTwoTypes{ir.OLSH, types.TINT16, types.TUINT16}: ssa.OpLsh16x16,
+ opAndTwoTypes{ir.OLSH, types.TUINT16, types.TUINT16}: ssa.OpLsh16x16,
+ opAndTwoTypes{ir.OLSH, types.TINT16, types.TUINT32}: ssa.OpLsh16x32,
+ opAndTwoTypes{ir.OLSH, types.TUINT16, types.TUINT32}: ssa.OpLsh16x32,
+ opAndTwoTypes{ir.OLSH, types.TINT16, types.TUINT64}: ssa.OpLsh16x64,
+ opAndTwoTypes{ir.OLSH, types.TUINT16, types.TUINT64}: ssa.OpLsh16x64,
+
+ opAndTwoTypes{ir.OLSH, types.TINT32, types.TUINT8}: ssa.OpLsh32x8,
+ opAndTwoTypes{ir.OLSH, types.TUINT32, types.TUINT8}: ssa.OpLsh32x8,
+ opAndTwoTypes{ir.OLSH, types.TINT32, types.TUINT16}: ssa.OpLsh32x16,
+ opAndTwoTypes{ir.OLSH, types.TUINT32, types.TUINT16}: ssa.OpLsh32x16,
+ opAndTwoTypes{ir.OLSH, types.TINT32, types.TUINT32}: ssa.OpLsh32x32,
+ opAndTwoTypes{ir.OLSH, types.TUINT32, types.TUINT32}: ssa.OpLsh32x32,
+ opAndTwoTypes{ir.OLSH, types.TINT32, types.TUINT64}: ssa.OpLsh32x64,
+ opAndTwoTypes{ir.OLSH, types.TUINT32, types.TUINT64}: ssa.OpLsh32x64,
+
+ opAndTwoTypes{ir.OLSH, types.TINT64, types.TUINT8}: ssa.OpLsh64x8,
+ opAndTwoTypes{ir.OLSH, types.TUINT64, types.TUINT8}: ssa.OpLsh64x8,
+ opAndTwoTypes{ir.OLSH, types.TINT64, types.TUINT16}: ssa.OpLsh64x16,
+ opAndTwoTypes{ir.OLSH, types.TUINT64, types.TUINT16}: ssa.OpLsh64x16,
+ opAndTwoTypes{ir.OLSH, types.TINT64, types.TUINT32}: ssa.OpLsh64x32,
+ opAndTwoTypes{ir.OLSH, types.TUINT64, types.TUINT32}: ssa.OpLsh64x32,
+ opAndTwoTypes{ir.OLSH, types.TINT64, types.TUINT64}: ssa.OpLsh64x64,
+ opAndTwoTypes{ir.OLSH, types.TUINT64, types.TUINT64}: ssa.OpLsh64x64,
+
+ opAndTwoTypes{ir.ORSH, types.TINT8, types.TUINT8}: ssa.OpRsh8x8,
+ opAndTwoTypes{ir.ORSH, types.TUINT8, types.TUINT8}: ssa.OpRsh8Ux8,
+ opAndTwoTypes{ir.ORSH, types.TINT8, types.TUINT16}: ssa.OpRsh8x16,
+ opAndTwoTypes{ir.ORSH, types.TUINT8, types.TUINT16}: ssa.OpRsh8Ux16,
+ opAndTwoTypes{ir.ORSH, types.TINT8, types.TUINT32}: ssa.OpRsh8x32,
+ opAndTwoTypes{ir.ORSH, types.TUINT8, types.TUINT32}: ssa.OpRsh8Ux32,
+ opAndTwoTypes{ir.ORSH, types.TINT8, types.TUINT64}: ssa.OpRsh8x64,
+ opAndTwoTypes{ir.ORSH, types.TUINT8, types.TUINT64}: ssa.OpRsh8Ux64,
+
+ opAndTwoTypes{ir.ORSH, types.TINT16, types.TUINT8}: ssa.OpRsh16x8,
+ opAndTwoTypes{ir.ORSH, types.TUINT16, types.TUINT8}: ssa.OpRsh16Ux8,
+ opAndTwoTypes{ir.ORSH, types.TINT16, types.TUINT16}: ssa.OpRsh16x16,
+ opAndTwoTypes{ir.ORSH, types.TUINT16, types.TUINT16}: ssa.OpRsh16Ux16,
+ opAndTwoTypes{ir.ORSH, types.TINT16, types.TUINT32}: ssa.OpRsh16x32,
+ opAndTwoTypes{ir.ORSH, types.TUINT16, types.TUINT32}: ssa.OpRsh16Ux32,
+ opAndTwoTypes{ir.ORSH, types.TINT16, types.TUINT64}: ssa.OpRsh16x64,
+ opAndTwoTypes{ir.ORSH, types.TUINT16, types.TUINT64}: ssa.OpRsh16Ux64,
+
+ opAndTwoTypes{ir.ORSH, types.TINT32, types.TUINT8}: ssa.OpRsh32x8,
+ opAndTwoTypes{ir.ORSH, types.TUINT32, types.TUINT8}: ssa.OpRsh32Ux8,
+ opAndTwoTypes{ir.ORSH, types.TINT32, types.TUINT16}: ssa.OpRsh32x16,
+ opAndTwoTypes{ir.ORSH, types.TUINT32, types.TUINT16}: ssa.OpRsh32Ux16,
+ opAndTwoTypes{ir.ORSH, types.TINT32, types.TUINT32}: ssa.OpRsh32x32,
+ opAndTwoTypes{ir.ORSH, types.TUINT32, types.TUINT32}: ssa.OpRsh32Ux32,
+ opAndTwoTypes{ir.ORSH, types.TINT32, types.TUINT64}: ssa.OpRsh32x64,
+ opAndTwoTypes{ir.ORSH, types.TUINT32, types.TUINT64}: ssa.OpRsh32Ux64,
+
+ opAndTwoTypes{ir.ORSH, types.TINT64, types.TUINT8}: ssa.OpRsh64x8,
+ opAndTwoTypes{ir.ORSH, types.TUINT64, types.TUINT8}: ssa.OpRsh64Ux8,
+ opAndTwoTypes{ir.ORSH, types.TINT64, types.TUINT16}: ssa.OpRsh64x16,
+ opAndTwoTypes{ir.ORSH, types.TUINT64, types.TUINT16}: ssa.OpRsh64Ux16,
+ opAndTwoTypes{ir.ORSH, types.TINT64, types.TUINT32}: ssa.OpRsh64x32,
+ opAndTwoTypes{ir.ORSH, types.TUINT64, types.TUINT32}: ssa.OpRsh64Ux32,
+ opAndTwoTypes{ir.ORSH, types.TINT64, types.TUINT64}: ssa.OpRsh64x64,
+ opAndTwoTypes{ir.ORSH, types.TUINT64, types.TUINT64}: ssa.OpRsh64Ux64,
+}
+
+func (s *state) ssaShiftOp(op ir.Op, t *types.Type, u *types.Type) ssa.Op {
+ etype1 := s.concreteEtype(t)
+ etype2 := s.concreteEtype(u)
+ x, ok := shiftOpToSSA[opAndTwoTypes{op, etype1, etype2}]
+ if !ok {
+ s.Fatalf("unhandled shift op %v etype=%s/%s", op, etype1, etype2)
+ }
+ return x
+}
+
+func (s *state) conv(n ir.Node, v *ssa.Value, ft, tt *types.Type) *ssa.Value {
+ if ft.IsBoolean() && tt.IsKind(types.TUINT8) {
+ // Bool -> uint8 is generated internally when indexing into runtime.staticbyte.
+ return s.newValue1(ssa.OpCopy, tt, v)
+ }
+ if ft.IsInteger() && tt.IsInteger() {
+ var op ssa.Op
+ if tt.Size() == ft.Size() {
+ op = ssa.OpCopy
+ } else if tt.Size() < ft.Size() {
+ // truncation
+ switch 10*ft.Size() + tt.Size() {
+ case 21:
+ op = ssa.OpTrunc16to8
+ case 41:
+ op = ssa.OpTrunc32to8
+ case 42:
+ op = ssa.OpTrunc32to16
+ case 81:
+ op = ssa.OpTrunc64to8
+ case 82:
+ op = ssa.OpTrunc64to16
+ case 84:
+ op = ssa.OpTrunc64to32
+ default:
+ s.Fatalf("weird integer truncation %v -> %v", ft, tt)
+ }
+ } else if ft.IsSigned() {
+ // sign extension
+ switch 10*ft.Size() + tt.Size() {
+ case 12:
+ op = ssa.OpSignExt8to16
+ case 14:
+ op = ssa.OpSignExt8to32
+ case 18:
+ op = ssa.OpSignExt8to64
+ case 24:
+ op = ssa.OpSignExt16to32
+ case 28:
+ op = ssa.OpSignExt16to64
+ case 48:
+ op = ssa.OpSignExt32to64
+ default:
+ s.Fatalf("bad integer sign extension %v -> %v", ft, tt)
+ }
+ } else {
+ // zero extension
+ switch 10*ft.Size() + tt.Size() {
+ case 12:
+ op = ssa.OpZeroExt8to16
+ case 14:
+ op = ssa.OpZeroExt8to32
+ case 18:
+ op = ssa.OpZeroExt8to64
+ case 24:
+ op = ssa.OpZeroExt16to32
+ case 28:
+ op = ssa.OpZeroExt16to64
+ case 48:
+ op = ssa.OpZeroExt32to64
+ default:
+ s.Fatalf("weird integer sign extension %v -> %v", ft, tt)
+ }
+ }
+ return s.newValue1(op, tt, v)
+ }
+
+ if ft.IsComplex() && tt.IsComplex() {
+ var op ssa.Op
+ if ft.Size() == tt.Size() {
+ switch ft.Size() {
+ case 8:
+ op = ssa.OpRound32F
+ case 16:
+ op = ssa.OpRound64F
+ default:
+ s.Fatalf("weird complex conversion %v -> %v", ft, tt)
+ }
+ } else if ft.Size() == 8 && tt.Size() == 16 {
+ op = ssa.OpCvt32Fto64F
+ } else if ft.Size() == 16 && tt.Size() == 8 {
+ op = ssa.OpCvt64Fto32F
+ } else {
+ s.Fatalf("weird complex conversion %v -> %v", ft, tt)
+ }
+ ftp := types.FloatForComplex(ft)
+ ttp := types.FloatForComplex(tt)
+ return s.newValue2(ssa.OpComplexMake, tt,
+ s.newValueOrSfCall1(op, ttp, s.newValue1(ssa.OpComplexReal, ftp, v)),
+ s.newValueOrSfCall1(op, ttp, s.newValue1(ssa.OpComplexImag, ftp, v)))
+ }
+
+ if tt.IsComplex() { // and ft is not complex
+ // Needed for generics support - can't happen in normal Go code.
+ et := types.FloatForComplex(tt)
+ v = s.conv(n, v, ft, et)
+ return s.newValue2(ssa.OpComplexMake, tt, v, s.zeroVal(et))
+ }
+
+ if ft.IsFloat() || tt.IsFloat() {
+ conv, ok := fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]
+ if s.config.RegSize == 4 && Arch.LinkArch.Family != sys.MIPS && !s.softFloat {
+ if conv1, ok1 := fpConvOpToSSA32[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 {
+ conv = conv1
+ }
+ }
+ if Arch.LinkArch.Family == sys.ARM64 || Arch.LinkArch.Family == sys.Wasm || Arch.LinkArch.Family == sys.S390X || s.softFloat {
+ if conv1, ok1 := uint64fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 {
+ conv = conv1
+ }
+ }
+
+ if Arch.LinkArch.Family == sys.MIPS && !s.softFloat {
+ if ft.Size() == 4 && ft.IsInteger() && !ft.IsSigned() {
+ // tt is float32 or float64, and ft is also unsigned
+ if tt.Size() == 4 {
+ return s.uint32Tofloat32(n, v, ft, tt)
+ }
+ if tt.Size() == 8 {
+ return s.uint32Tofloat64(n, v, ft, tt)
+ }
+ } else if tt.Size() == 4 && tt.IsInteger() && !tt.IsSigned() {
+ // ft is float32 or float64, and tt is unsigned integer
+ if ft.Size() == 4 {
+ return s.float32ToUint32(n, v, ft, tt)
+ }
+ if ft.Size() == 8 {
+ return s.float64ToUint32(n, v, ft, tt)
+ }
+ }
+ }
+
+ if !ok {
+ s.Fatalf("weird float conversion %v -> %v", ft, tt)
+ }
+ op1, op2, it := conv.op1, conv.op2, conv.intermediateType
+
+ if op1 != ssa.OpInvalid && op2 != ssa.OpInvalid {
+ // normal case, not tripping over unsigned 64
+ if op1 == ssa.OpCopy {
+ if op2 == ssa.OpCopy {
+ return v
+ }
+ return s.newValueOrSfCall1(op2, tt, v)
+ }
+ if op2 == ssa.OpCopy {
+ return s.newValueOrSfCall1(op1, tt, v)
+ }
+ return s.newValueOrSfCall1(op2, tt, s.newValueOrSfCall1(op1, types.Types[it], v))
+ }
+ // Tricky 64-bit unsigned cases.
+ if ft.IsInteger() {
+ // tt is float32 or float64, and ft is also unsigned
+ if tt.Size() == 4 {
+ return s.uint64Tofloat32(n, v, ft, tt)
+ }
+ if tt.Size() == 8 {
+ return s.uint64Tofloat64(n, v, ft, tt)
+ }
+ s.Fatalf("weird unsigned integer to float conversion %v -> %v", ft, tt)
+ }
+ // ft is float32 or float64, and tt is unsigned integer
+ if ft.Size() == 4 {
+ return s.float32ToUint64(n, v, ft, tt)
+ }
+ if ft.Size() == 8 {
+ return s.float64ToUint64(n, v, ft, tt)
+ }
+ s.Fatalf("weird float to unsigned integer conversion %v -> %v", ft, tt)
+ return nil
+ }
+
+ s.Fatalf("unhandled OCONV %s -> %s", ft.Kind(), tt.Kind())
+ return nil
+}
+
+// expr converts the expression n to ssa, adds it to s and returns the ssa result.
+func (s *state) expr(n ir.Node) *ssa.Value {
+ return s.exprCheckPtr(n, true)
+}
+
+func (s *state) exprCheckPtr(n ir.Node, checkPtrOK bool) *ssa.Value {
+ if ir.HasUniquePos(n) {
+ // ONAMEs and named OLITERALs have the line number
+ // of the decl, not the use. See issue 14742.
+ s.pushLine(n.Pos())
+ defer s.popLine()
+ }
+
+ s.stmtList(n.Init())
+ switch n.Op() {
+ case ir.OBYTES2STRTMP:
+ n := n.(*ir.ConvExpr)
+ slice := s.expr(n.X)
+ ptr := s.newValue1(ssa.OpSlicePtr, s.f.Config.Types.BytePtr, slice)
+ len := s.newValue1(ssa.OpSliceLen, types.Types[types.TINT], slice)
+ return s.newValue2(ssa.OpStringMake, n.Type(), ptr, len)
+ case ir.OSTR2BYTESTMP:
+ n := n.(*ir.ConvExpr)
+ str := s.expr(n.X)
+ ptr := s.newValue1(ssa.OpStringPtr, s.f.Config.Types.BytePtr, str)
+ len := s.newValue1(ssa.OpStringLen, types.Types[types.TINT], str)
+ return s.newValue3(ssa.OpSliceMake, n.Type(), ptr, len, len)
+ case ir.OCFUNC:
+ n := n.(*ir.UnaryExpr)
+ aux := n.X.(*ir.Name).Linksym()
+ // OCFUNC is used to build function values, which must
+ // always reference ABIInternal entry points.
+ if aux.ABI() != obj.ABIInternal {
+ s.Fatalf("expected ABIInternal: %v", aux.ABI())
+ }
+ return s.entryNewValue1A(ssa.OpAddr, n.Type(), aux, s.sb)
+ case ir.ONAME:
+ n := n.(*ir.Name)
+ if n.Class == ir.PFUNC {
+ // "value" of a function is the address of the function's closure
+ sym := staticdata.FuncLinksym(n)
+ return s.entryNewValue1A(ssa.OpAddr, types.NewPtr(n.Type()), sym, s.sb)
+ }
+ if s.canSSA(n) {
+ return s.variable(n, n.Type())
+ }
+ return s.load(n.Type(), s.addr(n))
+ case ir.OLINKSYMOFFSET:
+ n := n.(*ir.LinksymOffsetExpr)
+ return s.load(n.Type(), s.addr(n))
+ case ir.ONIL:
+ n := n.(*ir.NilExpr)
+ t := n.Type()
+ switch {
+ case t.IsSlice():
+ return s.constSlice(t)
+ case t.IsInterface():
+ return s.constInterface(t)
+ default:
+ return s.constNil(t)
+ }
+ case ir.OLITERAL:
+ switch u := n.Val(); u.Kind() {
+ case constant.Int:
+ i := ir.IntVal(n.Type(), u)
+ switch n.Type().Size() {
+ case 1:
+ return s.constInt8(n.Type(), int8(i))
+ case 2:
+ return s.constInt16(n.Type(), int16(i))
+ case 4:
+ return s.constInt32(n.Type(), int32(i))
+ case 8:
+ return s.constInt64(n.Type(), i)
+ default:
+ s.Fatalf("bad integer size %d", n.Type().Size())
+ return nil
+ }
+ case constant.String:
+ i := constant.StringVal(u)
+ if i == "" {
+ return s.constEmptyString(n.Type())
+ }
+ return s.entryNewValue0A(ssa.OpConstString, n.Type(), ssa.StringToAux(i))
+ case constant.Bool:
+ return s.constBool(constant.BoolVal(u))
+ case constant.Float:
+ f, _ := constant.Float64Val(u)
+ switch n.Type().Size() {
+ case 4:
+ return s.constFloat32(n.Type(), f)
+ case 8:
+ return s.constFloat64(n.Type(), f)
+ default:
+ s.Fatalf("bad float size %d", n.Type().Size())
+ return nil
+ }
+ case constant.Complex:
+ re, _ := constant.Float64Val(constant.Real(u))
+ im, _ := constant.Float64Val(constant.Imag(u))
+ switch n.Type().Size() {
+ case 8:
+ pt := types.Types[types.TFLOAT32]
+ return s.newValue2(ssa.OpComplexMake, n.Type(),
+ s.constFloat32(pt, re),
+ s.constFloat32(pt, im))
+ case 16:
+ pt := types.Types[types.TFLOAT64]
+ return s.newValue2(ssa.OpComplexMake, n.Type(),
+ s.constFloat64(pt, re),
+ s.constFloat64(pt, im))
+ default:
+ s.Fatalf("bad complex size %d", n.Type().Size())
+ return nil
+ }
+ default:
+ s.Fatalf("unhandled OLITERAL %v", u.Kind())
+ return nil
+ }
+ case ir.OCONVNOP:
+ n := n.(*ir.ConvExpr)
+ to := n.Type()
+ from := n.X.Type()
+
+ // Assume everything will work out, so set up our return value.
+ // Anything interesting that happens from here is a fatal.
+ x := s.expr(n.X)
+ if to == from {
+ return x
+ }
+
+ // Special case for not confusing GC and liveness.
+ // We don't want pointers accidentally classified
+ // as not-pointers or vice-versa because of copy
+ // elision.
+ if to.IsPtrShaped() != from.IsPtrShaped() {
+ return s.newValue2(ssa.OpConvert, to, x, s.mem())
+ }
+
+ v := s.newValue1(ssa.OpCopy, to, x) // ensure that v has the right type
+
+ // CONVNOP closure
+ if to.Kind() == types.TFUNC && from.IsPtrShaped() {
+ return v
+ }
+
+ // named <--> unnamed type or typed <--> untyped const
+ if from.Kind() == to.Kind() {
+ return v
+ }
+
+ // unsafe.Pointer <--> *T
+ if to.IsUnsafePtr() && from.IsPtrShaped() || from.IsUnsafePtr() && to.IsPtrShaped() {
+ if s.checkPtrEnabled && checkPtrOK && to.IsPtr() && from.IsUnsafePtr() {
+ s.checkPtrAlignment(n, v, nil)
+ }
+ return v
+ }
+
+ // map <--> *hmap
+ if to.Kind() == types.TMAP && from.IsPtr() &&
+ to.MapType().Hmap == from.Elem() {
+ return v
+ }
+
+ types.CalcSize(from)
+ types.CalcSize(to)
+ if from.Size() != to.Size() {
+ s.Fatalf("CONVNOP width mismatch %v (%d) -> %v (%d)\n", from, from.Size(), to, to.Size())
+ return nil
+ }
+ if etypesign(from.Kind()) != etypesign(to.Kind()) {
+ s.Fatalf("CONVNOP sign mismatch %v (%s) -> %v (%s)\n", from, from.Kind(), to, to.Kind())
+ return nil
+ }
+
+ if base.Flag.Cfg.Instrumenting {
+ // These appear to be fine, but they fail the
+ // integer constraint below, so okay them here.
+ // Sample non-integer conversion: map[string]string -> *uint8
+ return v
+ }
+
+ if etypesign(from.Kind()) == 0 {
+ s.Fatalf("CONVNOP unrecognized non-integer %v -> %v\n", from, to)
+ return nil
+ }
+
+ // integer, same width, same sign
+ return v
+
+ case ir.OCONV:
+ n := n.(*ir.ConvExpr)
+ x := s.expr(n.X)
+ return s.conv(n, x, n.X.Type(), n.Type())
+
+ case ir.ODOTTYPE:
+ n := n.(*ir.TypeAssertExpr)
+ res, _ := s.dottype(n, false)
+ return res
+
+ case ir.ODYNAMICDOTTYPE:
+ n := n.(*ir.DynamicTypeAssertExpr)
+ res, _ := s.dynamicDottype(n, false)
+ return res
+
+ // binary ops
+ case ir.OLT, ir.OEQ, ir.ONE, ir.OLE, ir.OGE, ir.OGT:
+ n := n.(*ir.BinaryExpr)
+ a := s.expr(n.X)
+ b := s.expr(n.Y)
+ if n.X.Type().IsComplex() {
+ pt := types.FloatForComplex(n.X.Type())
+ op := s.ssaOp(ir.OEQ, pt)
+ r := s.newValueOrSfCall2(op, types.Types[types.TBOOL], s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b))
+ i := s.newValueOrSfCall2(op, types.Types[types.TBOOL], s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b))
+ c := s.newValue2(ssa.OpAndB, types.Types[types.TBOOL], r, i)
+ switch n.Op() {
+ case ir.OEQ:
+ return c
+ case ir.ONE:
+ return s.newValue1(ssa.OpNot, types.Types[types.TBOOL], c)
+ default:
+ s.Fatalf("ordered complex compare %v", n.Op())
+ }
+ }
+
+ // Convert OGE and OGT into OLE and OLT.
+ op := n.Op()
+ switch op {
+ case ir.OGE:
+ op, a, b = ir.OLE, b, a
+ case ir.OGT:
+ op, a, b = ir.OLT, b, a
+ }
+ if n.X.Type().IsFloat() {
+ // float comparison
+ return s.newValueOrSfCall2(s.ssaOp(op, n.X.Type()), types.Types[types.TBOOL], a, b)
+ }
+ // integer comparison
+ return s.newValue2(s.ssaOp(op, n.X.Type()), types.Types[types.TBOOL], a, b)
+ case ir.OMUL:
+ n := n.(*ir.BinaryExpr)
+ a := s.expr(n.X)
+ b := s.expr(n.Y)
+ if n.Type().IsComplex() {
+ mulop := ssa.OpMul64F
+ addop := ssa.OpAdd64F
+ subop := ssa.OpSub64F
+ pt := types.FloatForComplex(n.Type()) // Could be Float32 or Float64
+ wt := types.Types[types.TFLOAT64] // Compute in Float64 to minimize cancellation error
+
+ areal := s.newValue1(ssa.OpComplexReal, pt, a)
+ breal := s.newValue1(ssa.OpComplexReal, pt, b)
+ aimag := s.newValue1(ssa.OpComplexImag, pt, a)
+ bimag := s.newValue1(ssa.OpComplexImag, pt, b)
+
+ if pt != wt { // Widen for calculation
+ areal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, areal)
+ breal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, breal)
+ aimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, aimag)
+ bimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, bimag)
+ }
+
+ xreal := s.newValueOrSfCall2(subop, wt, s.newValueOrSfCall2(mulop, wt, areal, breal), s.newValueOrSfCall2(mulop, wt, aimag, bimag))
+ ximag := s.newValueOrSfCall2(addop, wt, s.newValueOrSfCall2(mulop, wt, areal, bimag), s.newValueOrSfCall2(mulop, wt, aimag, breal))
+
+ if pt != wt { // Narrow to store back
+ xreal = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, xreal)
+ ximag = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, ximag)
+ }
+
+ return s.newValue2(ssa.OpComplexMake, n.Type(), xreal, ximag)
+ }
+
+ if n.Type().IsFloat() {
+ return s.newValueOrSfCall2(s.ssaOp(n.Op(), n.Type()), a.Type, a, b)
+ }
+
+ return s.newValue2(s.ssaOp(n.Op(), n.Type()), a.Type, a, b)
+
+ case ir.ODIV:
+ n := n.(*ir.BinaryExpr)
+ a := s.expr(n.X)
+ b := s.expr(n.Y)
+ if n.Type().IsComplex() {
+ // TODO this is not executed because the front-end substitutes a runtime call.
+ // That probably ought to change; with modest optimization the widen/narrow
+ // conversions could all be elided in larger expression trees.
+ mulop := ssa.OpMul64F
+ addop := ssa.OpAdd64F
+ subop := ssa.OpSub64F
+ divop := ssa.OpDiv64F
+ pt := types.FloatForComplex(n.Type()) // Could be Float32 or Float64
+ wt := types.Types[types.TFLOAT64] // Compute in Float64 to minimize cancellation error
+
+ areal := s.newValue1(ssa.OpComplexReal, pt, a)
+ breal := s.newValue1(ssa.OpComplexReal, pt, b)
+ aimag := s.newValue1(ssa.OpComplexImag, pt, a)
+ bimag := s.newValue1(ssa.OpComplexImag, pt, b)
+
+ if pt != wt { // Widen for calculation
+ areal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, areal)
+ breal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, breal)
+ aimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, aimag)
+ bimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, bimag)
+ }
+
+ denom := s.newValueOrSfCall2(addop, wt, s.newValueOrSfCall2(mulop, wt, breal, breal), s.newValueOrSfCall2(mulop, wt, bimag, bimag))
+ xreal := s.newValueOrSfCall2(addop, wt, s.newValueOrSfCall2(mulop, wt, areal, breal), s.newValueOrSfCall2(mulop, wt, aimag, bimag))
+ ximag := s.newValueOrSfCall2(subop, wt, s.newValueOrSfCall2(mulop, wt, aimag, breal), s.newValueOrSfCall2(mulop, wt, areal, bimag))
+
+ // TODO not sure if this is best done in wide precision or narrow
+ // Double-rounding might be an issue.
+ // Note that the pre-SSA implementation does the entire calculation
+ // in wide format, so wide is compatible.
+ xreal = s.newValueOrSfCall2(divop, wt, xreal, denom)
+ ximag = s.newValueOrSfCall2(divop, wt, ximag, denom)
+
+ if pt != wt { // Narrow to store back
+ xreal = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, xreal)
+ ximag = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, ximag)
+ }
+ return s.newValue2(ssa.OpComplexMake, n.Type(), xreal, ximag)
+ }
+ if n.Type().IsFloat() {
+ return s.newValueOrSfCall2(s.ssaOp(n.Op(), n.Type()), a.Type, a, b)
+ }
+ return s.intDivide(n, a, b)
+ case ir.OMOD:
+ n := n.(*ir.BinaryExpr)
+ a := s.expr(n.X)
+ b := s.expr(n.Y)
+ return s.intDivide(n, a, b)
+ case ir.OADD, ir.OSUB:
+ n := n.(*ir.BinaryExpr)
+ a := s.expr(n.X)
+ b := s.expr(n.Y)
+ if n.Type().IsComplex() {
+ pt := types.FloatForComplex(n.Type())
+ op := s.ssaOp(n.Op(), pt)
+ return s.newValue2(ssa.OpComplexMake, n.Type(),
+ s.newValueOrSfCall2(op, pt, s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)),
+ s.newValueOrSfCall2(op, pt, s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b)))
+ }
+ if n.Type().IsFloat() {
+ return s.newValueOrSfCall2(s.ssaOp(n.Op(), n.Type()), a.Type, a, b)
+ }
+ return s.newValue2(s.ssaOp(n.Op(), n.Type()), a.Type, a, b)
+ case ir.OAND, ir.OOR, ir.OXOR:
+ n := n.(*ir.BinaryExpr)
+ a := s.expr(n.X)
+ b := s.expr(n.Y)
+ return s.newValue2(s.ssaOp(n.Op(), n.Type()), a.Type, a, b)
+ case ir.OANDNOT:
+ n := n.(*ir.BinaryExpr)
+ a := s.expr(n.X)
+ b := s.expr(n.Y)
+ b = s.newValue1(s.ssaOp(ir.OBITNOT, b.Type), b.Type, b)
+ return s.newValue2(s.ssaOp(ir.OAND, n.Type()), a.Type, a, b)
+ case ir.OLSH, ir.ORSH:
+ n := n.(*ir.BinaryExpr)
+ a := s.expr(n.X)
+ b := s.expr(n.Y)
+ bt := b.Type
+ if bt.IsSigned() {
+ cmp := s.newValue2(s.ssaOp(ir.OLE, bt), types.Types[types.TBOOL], s.zeroVal(bt), b)
+ s.check(cmp, ir.Syms.Panicshift)
+ bt = bt.ToUnsigned()
+ }
+ return s.newValue2(s.ssaShiftOp(n.Op(), n.Type(), bt), a.Type, a, b)
+ case ir.OANDAND, ir.OOROR:
+ // To implement OANDAND (and OOROR), we introduce a
+ // new temporary variable to hold the result. The
+ // variable is associated with the OANDAND node in the
+ // s.vars table (normally variables are only
+ // associated with ONAME nodes). We convert
+ // A && B
+ // to
+ // var = A
+ // if var {
+ // var = B
+ // }
+ // Using var in the subsequent block introduces the
+ // necessary phi variable.
+ n := n.(*ir.LogicalExpr)
+ el := s.expr(n.X)
+ s.vars[n] = el
+
+ b := s.endBlock()
+ b.Kind = ssa.BlockIf
+ b.SetControl(el)
+ // In theory, we should set b.Likely here based on context.
+ // However, gc only gives us likeliness hints
+ // in a single place, for plain OIF statements,
+ // and passing around context is finnicky, so don't bother for now.
+
+ bRight := s.f.NewBlock(ssa.BlockPlain)
+ bResult := s.f.NewBlock(ssa.BlockPlain)
+ if n.Op() == ir.OANDAND {
+ b.AddEdgeTo(bRight)
+ b.AddEdgeTo(bResult)
+ } else if n.Op() == ir.OOROR {
+ b.AddEdgeTo(bResult)
+ b.AddEdgeTo(bRight)
+ }
+
+ s.startBlock(bRight)
+ er := s.expr(n.Y)
+ s.vars[n] = er
+
+ b = s.endBlock()
+ b.AddEdgeTo(bResult)
+
+ s.startBlock(bResult)
+ return s.variable(n, types.Types[types.TBOOL])
+ case ir.OCOMPLEX:
+ n := n.(*ir.BinaryExpr)
+ r := s.expr(n.X)
+ i := s.expr(n.Y)
+ return s.newValue2(ssa.OpComplexMake, n.Type(), r, i)
+
+ // unary ops
+ case ir.ONEG:
+ n := n.(*ir.UnaryExpr)
+ a := s.expr(n.X)
+ if n.Type().IsComplex() {
+ tp := types.FloatForComplex(n.Type())
+ negop := s.ssaOp(n.Op(), tp)
+ return s.newValue2(ssa.OpComplexMake, n.Type(),
+ s.newValue1(negop, tp, s.newValue1(ssa.OpComplexReal, tp, a)),
+ s.newValue1(negop, tp, s.newValue1(ssa.OpComplexImag, tp, a)))
+ }
+ return s.newValue1(s.ssaOp(n.Op(), n.Type()), a.Type, a)
+ case ir.ONOT, ir.OBITNOT:
+ n := n.(*ir.UnaryExpr)
+ a := s.expr(n.X)
+ return s.newValue1(s.ssaOp(n.Op(), n.Type()), a.Type, a)
+ case ir.OIMAG, ir.OREAL:
+ n := n.(*ir.UnaryExpr)
+ a := s.expr(n.X)
+ return s.newValue1(s.ssaOp(n.Op(), n.X.Type()), n.Type(), a)
+ case ir.OPLUS:
+ n := n.(*ir.UnaryExpr)
+ return s.expr(n.X)
+
+ case ir.OADDR:
+ n := n.(*ir.AddrExpr)
+ return s.addr(n.X)
+
+ case ir.ORESULT:
+ n := n.(*ir.ResultExpr)
+ if s.prevCall == nil || s.prevCall.Op != ssa.OpStaticLECall && s.prevCall.Op != ssa.OpInterLECall && s.prevCall.Op != ssa.OpClosureLECall {
+ panic("Expected to see a previous call")
+ }
+ which := n.Index
+ if which == -1 {
+ panic(fmt.Errorf("ORESULT %v does not match call %s", n, s.prevCall))
+ }
+ return s.resultOfCall(s.prevCall, which, n.Type())
+
+ case ir.ODEREF:
+ n := n.(*ir.StarExpr)
+ p := s.exprPtr(n.X, n.Bounded(), n.Pos())
+ return s.load(n.Type(), p)
+
+ case ir.ODOT:
+ n := n.(*ir.SelectorExpr)
+ if n.X.Op() == ir.OSTRUCTLIT {
+ // All literals with nonzero fields have already been
+ // rewritten during walk. Any that remain are just T{}
+ // or equivalents. Use the zero value.
+ if !ir.IsZero(n.X) {
+ s.Fatalf("literal with nonzero value in SSA: %v", n.X)
+ }
+ return s.zeroVal(n.Type())
+ }
+ // If n is addressable and can't be represented in
+ // SSA, then load just the selected field. This
+ // prevents false memory dependencies in race/msan/asan
+ // instrumentation.
+ if ir.IsAddressable(n) && !s.canSSA(n) {
+ p := s.addr(n)
+ return s.load(n.Type(), p)
+ }
+ v := s.expr(n.X)
+ return s.newValue1I(ssa.OpStructSelect, n.Type(), int64(fieldIdx(n)), v)
+
+ case ir.ODOTPTR:
+ n := n.(*ir.SelectorExpr)
+ p := s.exprPtr(n.X, n.Bounded(), n.Pos())
+ p = s.newValue1I(ssa.OpOffPtr, types.NewPtr(n.Type()), n.Offset(), p)
+ return s.load(n.Type(), p)
+
+ case ir.OINDEX:
+ n := n.(*ir.IndexExpr)
+ switch {
+ case n.X.Type().IsString():
+ if n.Bounded() && ir.IsConst(n.X, constant.String) && ir.IsConst(n.Index, constant.Int) {
+ // Replace "abc"[1] with 'b'.
+ // Delayed until now because "abc"[1] is not an ideal constant.
+ // See test/fixedbugs/issue11370.go.
+ return s.newValue0I(ssa.OpConst8, types.Types[types.TUINT8], int64(int8(ir.StringVal(n.X)[ir.Int64Val(n.Index)])))
+ }
+ a := s.expr(n.X)
+ i := s.expr(n.Index)
+ len := s.newValue1(ssa.OpStringLen, types.Types[types.TINT], a)
+ i = s.boundsCheck(i, len, ssa.BoundsIndex, n.Bounded())
+ ptrtyp := s.f.Config.Types.BytePtr
+ ptr := s.newValue1(ssa.OpStringPtr, ptrtyp, a)
+ if ir.IsConst(n.Index, constant.Int) {
+ ptr = s.newValue1I(ssa.OpOffPtr, ptrtyp, ir.Int64Val(n.Index), ptr)
+ } else {
+ ptr = s.newValue2(ssa.OpAddPtr, ptrtyp, ptr, i)
+ }
+ return s.load(types.Types[types.TUINT8], ptr)
+ case n.X.Type().IsSlice():
+ p := s.addr(n)
+ return s.load(n.X.Type().Elem(), p)
+ case n.X.Type().IsArray():
+ if TypeOK(n.X.Type()) {
+ // SSA can handle arrays of length at most 1.
+ bound := n.X.Type().NumElem()
+ a := s.expr(n.X)
+ i := s.expr(n.Index)
+ if bound == 0 {
+ // Bounds check will never succeed. Might as well
+ // use constants for the bounds check.
+ z := s.constInt(types.Types[types.TINT], 0)
+ s.boundsCheck(z, z, ssa.BoundsIndex, false)
+ // The return value won't be live, return junk.
+ // But not quite junk, in case bounds checks are turned off. See issue 48092.
+ return s.zeroVal(n.Type())
+ }
+ len := s.constInt(types.Types[types.TINT], bound)
+ s.boundsCheck(i, len, ssa.BoundsIndex, n.Bounded()) // checks i == 0
+ return s.newValue1I(ssa.OpArraySelect, n.Type(), 0, a)
+ }
+ p := s.addr(n)
+ return s.load(n.X.Type().Elem(), p)
+ default:
+ s.Fatalf("bad type for index %v", n.X.Type())
+ return nil
+ }
+
+ case ir.OLEN, ir.OCAP:
+ n := n.(*ir.UnaryExpr)
+ switch {
+ case n.X.Type().IsSlice():
+ op := ssa.OpSliceLen
+ if n.Op() == ir.OCAP {
+ op = ssa.OpSliceCap
+ }
+ return s.newValue1(op, types.Types[types.TINT], s.expr(n.X))
+ case n.X.Type().IsString(): // string; not reachable for OCAP
+ return s.newValue1(ssa.OpStringLen, types.Types[types.TINT], s.expr(n.X))
+ case n.X.Type().IsMap(), n.X.Type().IsChan():
+ return s.referenceTypeBuiltin(n, s.expr(n.X))
+ default: // array
+ return s.constInt(types.Types[types.TINT], n.X.Type().NumElem())
+ }
+
+ case ir.OSPTR:
+ n := n.(*ir.UnaryExpr)
+ a := s.expr(n.X)
+ if n.X.Type().IsSlice() {
+ return s.newValue1(ssa.OpSlicePtr, n.Type(), a)
+ } else {
+ return s.newValue1(ssa.OpStringPtr, n.Type(), a)
+ }
+
+ case ir.OITAB:
+ n := n.(*ir.UnaryExpr)
+ a := s.expr(n.X)
+ return s.newValue1(ssa.OpITab, n.Type(), a)
+
+ case ir.OIDATA:
+ n := n.(*ir.UnaryExpr)
+ a := s.expr(n.X)
+ return s.newValue1(ssa.OpIData, n.Type(), a)
+
+ case ir.OEFACE:
+ n := n.(*ir.BinaryExpr)
+ tab := s.expr(n.X)
+ data := s.expr(n.Y)
+ return s.newValue2(ssa.OpIMake, n.Type(), tab, data)
+
+ case ir.OSLICEHEADER:
+ n := n.(*ir.SliceHeaderExpr)
+ p := s.expr(n.Ptr)
+ l := s.expr(n.Len)
+ c := s.expr(n.Cap)
+ return s.newValue3(ssa.OpSliceMake, n.Type(), p, l, c)
+
+ case ir.OSLICE, ir.OSLICEARR, ir.OSLICE3, ir.OSLICE3ARR:
+ n := n.(*ir.SliceExpr)
+ check := s.checkPtrEnabled && n.Op() == ir.OSLICE3ARR && n.X.Op() == ir.OCONVNOP && n.X.(*ir.ConvExpr).X.Type().IsUnsafePtr()
+ v := s.exprCheckPtr(n.X, !check)
+ var i, j, k *ssa.Value
+ if n.Low != nil {
+ i = s.expr(n.Low)
+ }
+ if n.High != nil {
+ j = s.expr(n.High)
+ }
+ if n.Max != nil {
+ k = s.expr(n.Max)
+ }
+ p, l, c := s.slice(v, i, j, k, n.Bounded())
+ if check {
+ // Emit checkptr instrumentation after bound check to prevent false positive, see #46938.
+ s.checkPtrAlignment(n.X.(*ir.ConvExpr), v, s.conv(n.Max, k, k.Type, types.Types[types.TUINTPTR]))
+ }
+ return s.newValue3(ssa.OpSliceMake, n.Type(), p, l, c)
+
+ case ir.OSLICESTR:
+ n := n.(*ir.SliceExpr)
+ v := s.expr(n.X)
+ var i, j *ssa.Value
+ if n.Low != nil {
+ i = s.expr(n.Low)
+ }
+ if n.High != nil {
+ j = s.expr(n.High)
+ }
+ p, l, _ := s.slice(v, i, j, nil, n.Bounded())
+ return s.newValue2(ssa.OpStringMake, n.Type(), p, l)
+
+ case ir.OSLICE2ARRPTR:
+ // if arrlen > slice.len {
+ // panic(...)
+ // }
+ // slice.ptr
+ n := n.(*ir.ConvExpr)
+ v := s.expr(n.X)
+ arrlen := s.constInt(types.Types[types.TINT], n.Type().Elem().NumElem())
+ cap := s.newValue1(ssa.OpSliceLen, types.Types[types.TINT], v)
+ s.boundsCheck(arrlen, cap, ssa.BoundsConvert, false)
+ return s.newValue1(ssa.OpSlicePtrUnchecked, n.Type(), v)
+
+ case ir.OCALLFUNC:
+ n := n.(*ir.CallExpr)
+ if ir.IsIntrinsicCall(n) {
+ return s.intrinsicCall(n)
+ }
+ fallthrough
+
+ case ir.OCALLINTER:
+ n := n.(*ir.CallExpr)
+ return s.callResult(n, callNormal)
+
+ case ir.OGETG:
+ n := n.(*ir.CallExpr)
+ return s.newValue1(ssa.OpGetG, n.Type(), s.mem())
+
+ case ir.OGETCALLERPC:
+ n := n.(*ir.CallExpr)
+ return s.newValue0(ssa.OpGetCallerPC, n.Type())
+
+ case ir.OGETCALLERSP:
+ n := n.(*ir.CallExpr)
+ return s.newValue0(ssa.OpGetCallerSP, n.Type())
+
+ case ir.OAPPEND:
+ return s.append(n.(*ir.CallExpr), false)
+
+ case ir.OSTRUCTLIT, ir.OARRAYLIT:
+ // All literals with nonzero fields have already been
+ // rewritten during walk. Any that remain are just T{}
+ // or equivalents. Use the zero value.
+ n := n.(*ir.CompLitExpr)
+ if !ir.IsZero(n) {
+ s.Fatalf("literal with nonzero value in SSA: %v", n)
+ }
+ return s.zeroVal(n.Type())
+
+ case ir.ONEW:
+ n := n.(*ir.UnaryExpr)
+ return s.newObject(n.Type().Elem())
+
+ case ir.OUNSAFEADD:
+ n := n.(*ir.BinaryExpr)
+ ptr := s.expr(n.X)
+ len := s.expr(n.Y)
+
+ // Force len to uintptr to prevent misuse of garbage bits in the
+ // upper part of the register (#48536).
+ len = s.conv(n, len, len.Type, types.Types[types.TUINTPTR])
+
+ return s.newValue2(ssa.OpAddPtr, n.Type(), ptr, len)
+
+ default:
+ s.Fatalf("unhandled expr %v", n.Op())
+ return nil
+ }
+}
+
+func (s *state) resultOfCall(c *ssa.Value, which int64, t *types.Type) *ssa.Value {
+ aux := c.Aux.(*ssa.AuxCall)
+ pa := aux.ParamAssignmentForResult(which)
+ // TODO(register args) determine if in-memory TypeOK is better loaded early from SelectNAddr or later when SelectN is expanded.
+ // SelectN is better for pattern-matching and possible call-aware analysis we might want to do in the future.
+ if len(pa.Registers) == 0 && !TypeOK(t) {
+ addr := s.newValue1I(ssa.OpSelectNAddr, types.NewPtr(t), which, c)
+ return s.rawLoad(t, addr)
+ }
+ return s.newValue1I(ssa.OpSelectN, t, which, c)
+}
+
+func (s *state) resultAddrOfCall(c *ssa.Value, which int64, t *types.Type) *ssa.Value {
+ aux := c.Aux.(*ssa.AuxCall)
+ pa := aux.ParamAssignmentForResult(which)
+ if len(pa.Registers) == 0 {
+ return s.newValue1I(ssa.OpSelectNAddr, types.NewPtr(t), which, c)
+ }
+ _, addr := s.temp(c.Pos, t)
+ rval := s.newValue1I(ssa.OpSelectN, t, which, c)
+ s.vars[memVar] = s.newValue3Apos(ssa.OpStore, types.TypeMem, t, addr, rval, s.mem(), false)
+ return addr
+}
+
+// append converts an OAPPEND node to SSA.
+// If inplace is false, it converts the OAPPEND expression n to an ssa.Value,
+// adds it to s, and returns the Value.
+// If inplace is true, it writes the result of the OAPPEND expression n
+// back to the slice being appended to, and returns nil.
+// inplace MUST be set to false if the slice can be SSA'd.
+func (s *state) append(n *ir.CallExpr, inplace bool) *ssa.Value {
+ // If inplace is false, process as expression "append(s, e1, e2, e3)":
+ //
+ // ptr, len, cap := s
+ // newlen := len + 3
+ // if newlen > cap {
+ // ptr, len, cap = growslice(s, newlen)
+ // newlen = len + 3 // recalculate to avoid a spill
+ // }
+ // // with write barriers, if needed:
+ // *(ptr+len) = e1
+ // *(ptr+len+1) = e2
+ // *(ptr+len+2) = e3
+ // return makeslice(ptr, newlen, cap)
+ //
+ //
+ // If inplace is true, process as statement "s = append(s, e1, e2, e3)":
+ //
+ // a := &s
+ // ptr, len, cap := s
+ // newlen := len + 3
+ // if uint(newlen) > uint(cap) {
+ // newptr, len, newcap = growslice(ptr, len, cap, newlen)
+ // vardef(a) // if necessary, advise liveness we are writing a new a
+ // *a.cap = newcap // write before ptr to avoid a spill
+ // *a.ptr = newptr // with write barrier
+ // }
+ // newlen = len + 3 // recalculate to avoid a spill
+ // *a.len = newlen
+ // // with write barriers, if needed:
+ // *(ptr+len) = e1
+ // *(ptr+len+1) = e2
+ // *(ptr+len+2) = e3
+
+ et := n.Type().Elem()
+ pt := types.NewPtr(et)
+
+ // Evaluate slice
+ sn := n.Args[0] // the slice node is the first in the list
+
+ var slice, addr *ssa.Value
+ if inplace {
+ addr = s.addr(sn)
+ slice = s.load(n.Type(), addr)
+ } else {
+ slice = s.expr(sn)
+ }
+
+ // Allocate new blocks
+ grow := s.f.NewBlock(ssa.BlockPlain)
+ assign := s.f.NewBlock(ssa.BlockPlain)
+
+ // Decide if we need to grow
+ nargs := int64(len(n.Args) - 1)
+ p := s.newValue1(ssa.OpSlicePtr, pt, slice)
+ l := s.newValue1(ssa.OpSliceLen, types.Types[types.TINT], slice)
+ c := s.newValue1(ssa.OpSliceCap, types.Types[types.TINT], slice)
+ nl := s.newValue2(s.ssaOp(ir.OADD, types.Types[types.TINT]), types.Types[types.TINT], l, s.constInt(types.Types[types.TINT], nargs))
+
+ cmp := s.newValue2(s.ssaOp(ir.OLT, types.Types[types.TUINT]), types.Types[types.TBOOL], c, nl)
+ s.vars[ptrVar] = p
+
+ if !inplace {
+ s.vars[newlenVar] = nl
+ s.vars[capVar] = c
+ } else {
+ s.vars[lenVar] = l
+ }
+
+ b := s.endBlock()
+ b.Kind = ssa.BlockIf
+ b.Likely = ssa.BranchUnlikely
+ b.SetControl(cmp)
+ b.AddEdgeTo(grow)
+ b.AddEdgeTo(assign)
+
+ // Call growslice
+ s.startBlock(grow)
+ taddr := s.expr(n.X)
+ r := s.rtcall(ir.Syms.Growslice, true, []*types.Type{pt, types.Types[types.TINT], types.Types[types.TINT]}, taddr, p, l, c, nl)
+
+ if inplace {
+ if sn.Op() == ir.ONAME {
+ sn := sn.(*ir.Name)
+ if sn.Class != ir.PEXTERN {
+ // Tell liveness we're about to build a new slice
+ s.vars[memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, sn, s.mem())
+ }
+ }
+ capaddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, types.SliceCapOffset, addr)
+ s.store(types.Types[types.TINT], capaddr, r[2])
+ s.store(pt, addr, r[0])
+ // load the value we just stored to avoid having to spill it
+ s.vars[ptrVar] = s.load(pt, addr)
+ s.vars[lenVar] = r[1] // avoid a spill in the fast path
+ } else {
+ s.vars[ptrVar] = r[0]
+ s.vars[newlenVar] = s.newValue2(s.ssaOp(ir.OADD, types.Types[types.TINT]), types.Types[types.TINT], r[1], s.constInt(types.Types[types.TINT], nargs))
+ s.vars[capVar] = r[2]
+ }
+
+ b = s.endBlock()
+ b.AddEdgeTo(assign)
+
+ // assign new elements to slots
+ s.startBlock(assign)
+
+ if inplace {
+ l = s.variable(lenVar, types.Types[types.TINT]) // generates phi for len
+ nl = s.newValue2(s.ssaOp(ir.OADD, types.Types[types.TINT]), types.Types[types.TINT], l, s.constInt(types.Types[types.TINT], nargs))
+ lenaddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, types.SliceLenOffset, addr)
+ s.store(types.Types[types.TINT], lenaddr, nl)
+ }
+
+ // Evaluate args
+ type argRec struct {
+ // if store is true, we're appending the value v. If false, we're appending the
+ // value at *v.
+ v *ssa.Value
+ store bool
+ }
+ args := make([]argRec, 0, nargs)
+ for _, n := range n.Args[1:] {
+ if TypeOK(n.Type()) {
+ args = append(args, argRec{v: s.expr(n), store: true})
+ } else {
+ v := s.addr(n)
+ args = append(args, argRec{v: v})
+ }
+ }
+
+ p = s.variable(ptrVar, pt) // generates phi for ptr
+ if !inplace {
+ nl = s.variable(newlenVar, types.Types[types.TINT]) // generates phi for nl
+ c = s.variable(capVar, types.Types[types.TINT]) // generates phi for cap
+ }
+ p2 := s.newValue2(ssa.OpPtrIndex, pt, p, l)
+ for i, arg := range args {
+ addr := s.newValue2(ssa.OpPtrIndex, pt, p2, s.constInt(types.Types[types.TINT], int64(i)))
+ if arg.store {
+ s.storeType(et, addr, arg.v, 0, true)
+ } else {
+ s.move(et, addr, arg.v)
+ }
+ }
+
+ delete(s.vars, ptrVar)
+ if inplace {
+ delete(s.vars, lenVar)
+ return nil
+ }
+ delete(s.vars, newlenVar)
+ delete(s.vars, capVar)
+ // make result
+ return s.newValue3(ssa.OpSliceMake, n.Type(), p, nl, c)
+}
+
+// condBranch evaluates the boolean expression cond and branches to yes
+// if cond is true and no if cond is false.
+// This function is intended to handle && and || better than just calling
+// s.expr(cond) and branching on the result.
+func (s *state) condBranch(cond ir.Node, yes, no *ssa.Block, likely int8) {
+ switch cond.Op() {
+ case ir.OANDAND:
+ cond := cond.(*ir.LogicalExpr)
+ mid := s.f.NewBlock(ssa.BlockPlain)
+ s.stmtList(cond.Init())
+ s.condBranch(cond.X, mid, no, max8(likely, 0))
+ s.startBlock(mid)
+ s.condBranch(cond.Y, yes, no, likely)
+ return
+ // Note: if likely==1, then both recursive calls pass 1.
+ // If likely==-1, then we don't have enough information to decide
+ // whether the first branch is likely or not. So we pass 0 for
+ // the likeliness of the first branch.
+ // TODO: have the frontend give us branch prediction hints for
+ // OANDAND and OOROR nodes (if it ever has such info).
+ case ir.OOROR:
+ cond := cond.(*ir.LogicalExpr)
+ mid := s.f.NewBlock(ssa.BlockPlain)
+ s.stmtList(cond.Init())
+ s.condBranch(cond.X, yes, mid, min8(likely, 0))
+ s.startBlock(mid)
+ s.condBranch(cond.Y, yes, no, likely)
+ return
+ // Note: if likely==-1, then both recursive calls pass -1.
+ // If likely==1, then we don't have enough info to decide
+ // the likelihood of the first branch.
+ case ir.ONOT:
+ cond := cond.(*ir.UnaryExpr)
+ s.stmtList(cond.Init())
+ s.condBranch(cond.X, no, yes, -likely)
+ return
+ case ir.OCONVNOP:
+ cond := cond.(*ir.ConvExpr)
+ s.stmtList(cond.Init())
+ s.condBranch(cond.X, yes, no, likely)
+ return
+ }
+ c := s.expr(cond)
+ b := s.endBlock()
+ b.Kind = ssa.BlockIf
+ b.SetControl(c)
+ b.Likely = ssa.BranchPrediction(likely) // gc and ssa both use -1/0/+1 for likeliness
+ b.AddEdgeTo(yes)
+ b.AddEdgeTo(no)
+}
+
+type skipMask uint8
+
+const (
+ skipPtr skipMask = 1 << iota
+ skipLen
+ skipCap
+)
+
+// assign does left = right.
+// Right has already been evaluated to ssa, left has not.
+// If deref is true, then we do left = *right instead (and right has already been nil-checked).
+// If deref is true and right == nil, just do left = 0.
+// skip indicates assignments (at the top level) that can be avoided.
+// mayOverlap indicates whether left&right might partially overlap in memory. Default is false.
+func (s *state) assign(left ir.Node, right *ssa.Value, deref bool, skip skipMask) {
+ s.assignWhichMayOverlap(left, right, deref, skip, false)
+}
+func (s *state) assignWhichMayOverlap(left ir.Node, right *ssa.Value, deref bool, skip skipMask, mayOverlap bool) {
+ if left.Op() == ir.ONAME && ir.IsBlank(left) {
+ return
+ }
+ t := left.Type()
+ types.CalcSize(t)
+ if s.canSSA(left) {
+ if deref {
+ s.Fatalf("can SSA LHS %v but not RHS %s", left, right)
+ }
+ if left.Op() == ir.ODOT {
+ // We're assigning to a field of an ssa-able value.
+ // We need to build a new structure with the new value for the
+ // field we're assigning and the old values for the other fields.
+ // For instance:
+ // type T struct {a, b, c int}
+ // var T x
+ // x.b = 5
+ // For the x.b = 5 assignment we want to generate x = T{x.a, 5, x.c}
+
+ // Grab information about the structure type.
+ left := left.(*ir.SelectorExpr)
+ t := left.X.Type()
+ nf := t.NumFields()
+ idx := fieldIdx(left)
+
+ // Grab old value of structure.
+ old := s.expr(left.X)
+
+ // Make new structure.
+ new := s.newValue0(ssa.StructMakeOp(t.NumFields()), t)
+
+ // Add fields as args.
+ for i := 0; i < nf; i++ {
+ if i == idx {
+ new.AddArg(right)
+ } else {
+ new.AddArg(s.newValue1I(ssa.OpStructSelect, t.FieldType(i), int64(i), old))
+ }
+ }
+
+ // Recursively assign the new value we've made to the base of the dot op.
+ s.assign(left.X, new, false, 0)
+ // TODO: do we need to update named values here?
+ return
+ }
+ if left.Op() == ir.OINDEX && left.(*ir.IndexExpr).X.Type().IsArray() {
+ left := left.(*ir.IndexExpr)
+ s.pushLine(left.Pos())
+ defer s.popLine()
+ // We're assigning to an element of an ssa-able array.
+ // a[i] = v
+ t := left.X.Type()
+ n := t.NumElem()
+
+ i := s.expr(left.Index) // index
+ if n == 0 {
+ // The bounds check must fail. Might as well
+ // ignore the actual index and just use zeros.
+ z := s.constInt(types.Types[types.TINT], 0)
+ s.boundsCheck(z, z, ssa.BoundsIndex, false)
+ return
+ }
+ if n != 1 {
+ s.Fatalf("assigning to non-1-length array")
+ }
+ // Rewrite to a = [1]{v}
+ len := s.constInt(types.Types[types.TINT], 1)
+ s.boundsCheck(i, len, ssa.BoundsIndex, false) // checks i == 0
+ v := s.newValue1(ssa.OpArrayMake1, t, right)
+ s.assign(left.X, v, false, 0)
+ return
+ }
+ left := left.(*ir.Name)
+ // Update variable assignment.
+ s.vars[left] = right
+ s.addNamedValue(left, right)
+ return
+ }
+
+ // If this assignment clobbers an entire local variable, then emit
+ // OpVarDef so liveness analysis knows the variable is redefined.
+ if base, ok := clobberBase(left).(*ir.Name); ok && base.OnStack() && skip == 0 {
+ s.vars[memVar] = s.newValue1Apos(ssa.OpVarDef, types.TypeMem, base, s.mem(), !ir.IsAutoTmp(base))
+ }
+
+ // Left is not ssa-able. Compute its address.
+ addr := s.addr(left)
+ if ir.IsReflectHeaderDataField(left) {
+ // Package unsafe's documentation says storing pointers into
+ // reflect.SliceHeader and reflect.StringHeader's Data fields
+ // is valid, even though they have type uintptr (#19168).
+ // Mark it pointer type to signal the writebarrier pass to
+ // insert a write barrier.
+ t = types.Types[types.TUNSAFEPTR]
+ }
+ if deref {
+ // Treat as a mem->mem move.
+ if right == nil {
+ s.zero(t, addr)
+ } else {
+ s.moveWhichMayOverlap(t, addr, right, mayOverlap)
+ }
+ return
+ }
+ // Treat as a store.
+ s.storeType(t, addr, right, skip, !ir.IsAutoTmp(left))
+}
+
+// zeroVal returns the zero value for type t.
+func (s *state) zeroVal(t *types.Type) *ssa.Value {
+ switch {
+ case t.IsInteger():
+ switch t.Size() {
+ case 1:
+ return s.constInt8(t, 0)
+ case 2:
+ return s.constInt16(t, 0)
+ case 4:
+ return s.constInt32(t, 0)
+ case 8:
+ return s.constInt64(t, 0)
+ default:
+ s.Fatalf("bad sized integer type %v", t)
+ }
+ case t.IsFloat():
+ switch t.Size() {
+ case 4:
+ return s.constFloat32(t, 0)
+ case 8:
+ return s.constFloat64(t, 0)
+ default:
+ s.Fatalf("bad sized float type %v", t)
+ }
+ case t.IsComplex():
+ switch t.Size() {
+ case 8:
+ z := s.constFloat32(types.Types[types.TFLOAT32], 0)
+ return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
+ case 16:
+ z := s.constFloat64(types.Types[types.TFLOAT64], 0)
+ return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
+ default:
+ s.Fatalf("bad sized complex type %v", t)
+ }
+
+ case t.IsString():
+ return s.constEmptyString(t)
+ case t.IsPtrShaped():
+ return s.constNil(t)
+ case t.IsBoolean():
+ return s.constBool(false)
+ case t.IsInterface():
+ return s.constInterface(t)
+ case t.IsSlice():
+ return s.constSlice(t)
+ case t.IsStruct():
+ n := t.NumFields()
+ v := s.entryNewValue0(ssa.StructMakeOp(t.NumFields()), t)
+ for i := 0; i < n; i++ {
+ v.AddArg(s.zeroVal(t.FieldType(i)))
+ }
+ return v
+ case t.IsArray():
+ switch t.NumElem() {
+ case 0:
+ return s.entryNewValue0(ssa.OpArrayMake0, t)
+ case 1:
+ return s.entryNewValue1(ssa.OpArrayMake1, t, s.zeroVal(t.Elem()))
+ }
+ }
+ s.Fatalf("zero for type %v not implemented", t)
+ return nil
+}
+
+type callKind int8
+
+const (
+ callNormal callKind = iota
+ callDefer
+ callDeferStack
+ callGo
+ callTail
+)
+
+type sfRtCallDef struct {
+ rtfn *obj.LSym
+ rtype types.Kind
+}
+
+var softFloatOps map[ssa.Op]sfRtCallDef
+
+func softfloatInit() {
+ // Some of these operations get transformed by sfcall.
+ softFloatOps = map[ssa.Op]sfRtCallDef{
+ ssa.OpAdd32F: sfRtCallDef{typecheck.LookupRuntimeFunc("fadd32"), types.TFLOAT32},
+ ssa.OpAdd64F: sfRtCallDef{typecheck.LookupRuntimeFunc("fadd64"), types.TFLOAT64},
+ ssa.OpSub32F: sfRtCallDef{typecheck.LookupRuntimeFunc("fadd32"), types.TFLOAT32},
+ ssa.OpSub64F: sfRtCallDef{typecheck.LookupRuntimeFunc("fadd64"), types.TFLOAT64},
+ ssa.OpMul32F: sfRtCallDef{typecheck.LookupRuntimeFunc("fmul32"), types.TFLOAT32},
+ ssa.OpMul64F: sfRtCallDef{typecheck.LookupRuntimeFunc("fmul64"), types.TFLOAT64},
+ ssa.OpDiv32F: sfRtCallDef{typecheck.LookupRuntimeFunc("fdiv32"), types.TFLOAT32},
+ ssa.OpDiv64F: sfRtCallDef{typecheck.LookupRuntimeFunc("fdiv64"), types.TFLOAT64},
+
+ ssa.OpEq64F: sfRtCallDef{typecheck.LookupRuntimeFunc("feq64"), types.TBOOL},
+ ssa.OpEq32F: sfRtCallDef{typecheck.LookupRuntimeFunc("feq32"), types.TBOOL},
+ ssa.OpNeq64F: sfRtCallDef{typecheck.LookupRuntimeFunc("feq64"), types.TBOOL},
+ ssa.OpNeq32F: sfRtCallDef{typecheck.LookupRuntimeFunc("feq32"), types.TBOOL},
+ ssa.OpLess64F: sfRtCallDef{typecheck.LookupRuntimeFunc("fgt64"), types.TBOOL},
+ ssa.OpLess32F: sfRtCallDef{typecheck.LookupRuntimeFunc("fgt32"), types.TBOOL},
+ ssa.OpLeq64F: sfRtCallDef{typecheck.LookupRuntimeFunc("fge64"), types.TBOOL},
+ ssa.OpLeq32F: sfRtCallDef{typecheck.LookupRuntimeFunc("fge32"), types.TBOOL},
+
+ ssa.OpCvt32to32F: sfRtCallDef{typecheck.LookupRuntimeFunc("fint32to32"), types.TFLOAT32},
+ ssa.OpCvt32Fto32: sfRtCallDef{typecheck.LookupRuntimeFunc("f32toint32"), types.TINT32},
+ ssa.OpCvt64to32F: sfRtCallDef{typecheck.LookupRuntimeFunc("fint64to32"), types.TFLOAT32},
+ ssa.OpCvt32Fto64: sfRtCallDef{typecheck.LookupRuntimeFunc("f32toint64"), types.TINT64},
+ ssa.OpCvt64Uto32F: sfRtCallDef{typecheck.LookupRuntimeFunc("fuint64to32"), types.TFLOAT32},
+ ssa.OpCvt32Fto64U: sfRtCallDef{typecheck.LookupRuntimeFunc("f32touint64"), types.TUINT64},
+ ssa.OpCvt32to64F: sfRtCallDef{typecheck.LookupRuntimeFunc("fint32to64"), types.TFLOAT64},
+ ssa.OpCvt64Fto32: sfRtCallDef{typecheck.LookupRuntimeFunc("f64toint32"), types.TINT32},
+ ssa.OpCvt64to64F: sfRtCallDef{typecheck.LookupRuntimeFunc("fint64to64"), types.TFLOAT64},
+ ssa.OpCvt64Fto64: sfRtCallDef{typecheck.LookupRuntimeFunc("f64toint64"), types.TINT64},
+ ssa.OpCvt64Uto64F: sfRtCallDef{typecheck.LookupRuntimeFunc("fuint64to64"), types.TFLOAT64},
+ ssa.OpCvt64Fto64U: sfRtCallDef{typecheck.LookupRuntimeFunc("f64touint64"), types.TUINT64},
+ ssa.OpCvt32Fto64F: sfRtCallDef{typecheck.LookupRuntimeFunc("f32to64"), types.TFLOAT64},
+ ssa.OpCvt64Fto32F: sfRtCallDef{typecheck.LookupRuntimeFunc("f64to32"), types.TFLOAT32},
+ }
+}
+
+// TODO: do not emit sfcall if operation can be optimized to constant in later
+// opt phase
+func (s *state) sfcall(op ssa.Op, args ...*ssa.Value) (*ssa.Value, bool) {
+ f2i := func(t *types.Type) *types.Type {
+ switch t.Kind() {
+ case types.TFLOAT32:
+ return types.Types[types.TUINT32]
+ case types.TFLOAT64:
+ return types.Types[types.TUINT64]
+ }
+ return t
+ }
+
+ if callDef, ok := softFloatOps[op]; ok {
+ switch op {
+ case ssa.OpLess32F,
+ ssa.OpLess64F,
+ ssa.OpLeq32F,
+ ssa.OpLeq64F:
+ args[0], args[1] = args[1], args[0]
+ case ssa.OpSub32F,
+ ssa.OpSub64F:
+ args[1] = s.newValue1(s.ssaOp(ir.ONEG, types.Types[callDef.rtype]), args[1].Type, args[1])
+ }
+
+ // runtime functions take uints for floats and returns uints.
+ // Convert to uints so we use the right calling convention.
+ for i, a := range args {
+ if a.Type.IsFloat() {
+ args[i] = s.newValue1(ssa.OpCopy, f2i(a.Type), a)
+ }
+ }
+
+ rt := types.Types[callDef.rtype]
+ result := s.rtcall(callDef.rtfn, true, []*types.Type{f2i(rt)}, args...)[0]
+ if rt.IsFloat() {
+ result = s.newValue1(ssa.OpCopy, rt, result)
+ }
+ if op == ssa.OpNeq32F || op == ssa.OpNeq64F {
+ result = s.newValue1(ssa.OpNot, result.Type, result)
+ }
+ return result, true
+ }
+ return nil, false
+}
+
+var intrinsics map[intrinsicKey]intrinsicBuilder
+
+// An intrinsicBuilder converts a call node n into an ssa value that
+// implements that call as an intrinsic. args is a list of arguments to the func.
+type intrinsicBuilder func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value
+
+type intrinsicKey struct {
+ arch *sys.Arch
+ pkg string
+ fn string
+}
+
+func InitTables() {
+ intrinsics = map[intrinsicKey]intrinsicBuilder{}
+
+ var all []*sys.Arch
+ var p4 []*sys.Arch
+ var p8 []*sys.Arch
+ var lwatomics []*sys.Arch
+ for _, a := range &sys.Archs {
+ all = append(all, a)
+ if a.PtrSize == 4 {
+ p4 = append(p4, a)
+ } else {
+ p8 = append(p8, a)
+ }
+ if a.Family != sys.PPC64 {
+ lwatomics = append(lwatomics, a)
+ }
+ }
+
+ // add adds the intrinsic b for pkg.fn for the given list of architectures.
+ add := func(pkg, fn string, b intrinsicBuilder, archs ...*sys.Arch) {
+ for _, a := range archs {
+ intrinsics[intrinsicKey{a, pkg, fn}] = b
+ }
+ }
+ // addF does the same as add but operates on architecture families.
+ addF := func(pkg, fn string, b intrinsicBuilder, archFamilies ...sys.ArchFamily) {
+ m := 0
+ for _, f := range archFamilies {
+ if f >= 32 {
+ panic("too many architecture families")
+ }
+ m |= 1 << uint(f)
+ }
+ for _, a := range all {
+ if m>>uint(a.Family)&1 != 0 {
+ intrinsics[intrinsicKey{a, pkg, fn}] = b
+ }
+ }
+ }
+ // alias defines pkg.fn = pkg2.fn2 for all architectures in archs for which pkg2.fn2 exists.
+ alias := func(pkg, fn, pkg2, fn2 string, archs ...*sys.Arch) {
+ aliased := false
+ for _, a := range archs {
+ if b, ok := intrinsics[intrinsicKey{a, pkg2, fn2}]; ok {
+ intrinsics[intrinsicKey{a, pkg, fn}] = b
+ aliased = true
+ }
+ }
+ if !aliased {
+ panic(fmt.Sprintf("attempted to alias undefined intrinsic: %s.%s", pkg, fn))
+ }
+ }
+
+ /******** runtime ********/
+ if !base.Flag.Cfg.Instrumenting {
+ add("runtime", "slicebytetostringtmp",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ // Compiler frontend optimizations emit OBYTES2STRTMP nodes
+ // for the backend instead of slicebytetostringtmp calls
+ // when not instrumenting.
+ return s.newValue2(ssa.OpStringMake, n.Type(), args[0], args[1])
+ },
+ all...)
+ }
+ addF("runtime/internal/math", "MulUintptr",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ if s.config.PtrSize == 4 {
+ return s.newValue2(ssa.OpMul32uover, types.NewTuple(types.Types[types.TUINT], types.Types[types.TUINT]), args[0], args[1])
+ }
+ return s.newValue2(ssa.OpMul64uover, types.NewTuple(types.Types[types.TUINT], types.Types[types.TUINT]), args[0], args[1])
+ },
+ sys.AMD64, sys.I386, sys.MIPS64, sys.RISCV64)
+ add("runtime", "KeepAlive",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ data := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, args[0])
+ s.vars[memVar] = s.newValue2(ssa.OpKeepAlive, types.TypeMem, data, s.mem())
+ return nil
+ },
+ all...)
+ add("runtime", "getclosureptr",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue0(ssa.OpGetClosurePtr, s.f.Config.Types.Uintptr)
+ },
+ all...)
+
+ add("runtime", "getcallerpc",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue0(ssa.OpGetCallerPC, s.f.Config.Types.Uintptr)
+ },
+ all...)
+
+ add("runtime", "getcallersp",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue0(ssa.OpGetCallerSP, s.f.Config.Types.Uintptr)
+ },
+ all...)
+
+ addF("runtime", "publicationBarrier",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ s.vars[memVar] = s.newValue1(ssa.OpPubBarrier, types.TypeMem, s.mem())
+ return nil
+ },
+ sys.ARM64)
+
+ /******** runtime/internal/sys ********/
+ addF("runtime/internal/sys", "Ctz32",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue1(ssa.OpCtz32, types.Types[types.TINT], args[0])
+ },
+ sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
+ addF("runtime/internal/sys", "Ctz64",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue1(ssa.OpCtz64, types.Types[types.TINT], args[0])
+ },
+ sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64)
+ addF("runtime/internal/sys", "Bswap32",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue1(ssa.OpBswap32, types.Types[types.TUINT32], args[0])
+ },
+ sys.AMD64, sys.ARM64, sys.ARM, sys.S390X)
+ addF("runtime/internal/sys", "Bswap64",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue1(ssa.OpBswap64, types.Types[types.TUINT64], args[0])
+ },
+ sys.AMD64, sys.ARM64, sys.ARM, sys.S390X)
+
+ /****** Prefetch ******/
+ makePrefetchFunc := func(op ssa.Op) func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ s.vars[memVar] = s.newValue2(op, types.TypeMem, args[0], s.mem())
+ return nil
+ }
+ }
+
+ // Make Prefetch intrinsics for supported platforms
+ // On the unsupported platforms stub function will be eliminated
+ addF("runtime/internal/sys", "Prefetch", makePrefetchFunc(ssa.OpPrefetchCache),
+ sys.AMD64, sys.ARM64, sys.PPC64)
+ addF("runtime/internal/sys", "PrefetchStreamed", makePrefetchFunc(ssa.OpPrefetchCacheStreamed),
+ sys.AMD64, sys.ARM64, sys.PPC64)
+
+ /******** runtime/internal/atomic ********/
+ addF("runtime/internal/atomic", "Load",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ v := s.newValue2(ssa.OpAtomicLoad32, types.NewTuple(types.Types[types.TUINT32], types.TypeMem), args[0], s.mem())
+ s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
+ return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT32], v)
+ },
+ sys.AMD64, sys.ARM64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
+ addF("runtime/internal/atomic", "Load8",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ v := s.newValue2(ssa.OpAtomicLoad8, types.NewTuple(types.Types[types.TUINT8], types.TypeMem), args[0], s.mem())
+ s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
+ return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT8], v)
+ },
+ sys.AMD64, sys.ARM64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
+ addF("runtime/internal/atomic", "Load64",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ v := s.newValue2(ssa.OpAtomicLoad64, types.NewTuple(types.Types[types.TUINT64], types.TypeMem), args[0], s.mem())
+ s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
+ return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT64], v)
+ },
+ sys.AMD64, sys.ARM64, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
+ addF("runtime/internal/atomic", "LoadAcq",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ v := s.newValue2(ssa.OpAtomicLoadAcq32, types.NewTuple(types.Types[types.TUINT32], types.TypeMem), args[0], s.mem())
+ s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
+ return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT32], v)
+ },
+ sys.PPC64, sys.S390X)
+ addF("runtime/internal/atomic", "LoadAcq64",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ v := s.newValue2(ssa.OpAtomicLoadAcq64, types.NewTuple(types.Types[types.TUINT64], types.TypeMem), args[0], s.mem())
+ s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
+ return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT64], v)
+ },
+ sys.PPC64)
+ addF("runtime/internal/atomic", "Loadp",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ v := s.newValue2(ssa.OpAtomicLoadPtr, types.NewTuple(s.f.Config.Types.BytePtr, types.TypeMem), args[0], s.mem())
+ s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
+ return s.newValue1(ssa.OpSelect0, s.f.Config.Types.BytePtr, v)
+ },
+ sys.AMD64, sys.ARM64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
+
+ addF("runtime/internal/atomic", "Store",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ s.vars[memVar] = s.newValue3(ssa.OpAtomicStore32, types.TypeMem, args[0], args[1], s.mem())
+ return nil
+ },
+ sys.AMD64, sys.ARM64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
+ addF("runtime/internal/atomic", "Store8",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ s.vars[memVar] = s.newValue3(ssa.OpAtomicStore8, types.TypeMem, args[0], args[1], s.mem())
+ return nil
+ },
+ sys.AMD64, sys.ARM64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
+ addF("runtime/internal/atomic", "Store64",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ s.vars[memVar] = s.newValue3(ssa.OpAtomicStore64, types.TypeMem, args[0], args[1], s.mem())
+ return nil
+ },
+ sys.AMD64, sys.ARM64, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
+ addF("runtime/internal/atomic", "StorepNoWB",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ s.vars[memVar] = s.newValue3(ssa.OpAtomicStorePtrNoWB, types.TypeMem, args[0], args[1], s.mem())
+ return nil
+ },
+ sys.AMD64, sys.ARM64, sys.MIPS, sys.MIPS64, sys.RISCV64, sys.S390X)
+ addF("runtime/internal/atomic", "StoreRel",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ s.vars[memVar] = s.newValue3(ssa.OpAtomicStoreRel32, types.TypeMem, args[0], args[1], s.mem())
+ return nil
+ },
+ sys.PPC64, sys.S390X)
+ addF("runtime/internal/atomic", "StoreRel64",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ s.vars[memVar] = s.newValue3(ssa.OpAtomicStoreRel64, types.TypeMem, args[0], args[1], s.mem())
+ return nil
+ },
+ sys.PPC64)
+
+ addF("runtime/internal/atomic", "Xchg",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ v := s.newValue3(ssa.OpAtomicExchange32, types.NewTuple(types.Types[types.TUINT32], types.TypeMem), args[0], args[1], s.mem())
+ s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
+ return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT32], v)
+ },
+ sys.AMD64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
+ addF("runtime/internal/atomic", "Xchg64",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ v := s.newValue3(ssa.OpAtomicExchange64, types.NewTuple(types.Types[types.TUINT64], types.TypeMem), args[0], args[1], s.mem())
+ s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
+ return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT64], v)
+ },
+ sys.AMD64, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
+
+ type atomicOpEmitter func(s *state, n *ir.CallExpr, args []*ssa.Value, op ssa.Op, typ types.Kind)
+
+ makeAtomicGuardedIntrinsicARM64 := func(op0, op1 ssa.Op, typ, rtyp types.Kind, emit atomicOpEmitter) intrinsicBuilder {
+
+ return func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ // Target Atomic feature is identified by dynamic detection
+ addr := s.entryNewValue1A(ssa.OpAddr, types.Types[types.TBOOL].PtrTo(), ir.Syms.ARM64HasATOMICS, s.sb)
+ v := s.load(types.Types[types.TBOOL], addr)
+ b := s.endBlock()
+ b.Kind = ssa.BlockIf
+ b.SetControl(v)
+ bTrue := s.f.NewBlock(ssa.BlockPlain)
+ bFalse := s.f.NewBlock(ssa.BlockPlain)
+ bEnd := s.f.NewBlock(ssa.BlockPlain)
+ b.AddEdgeTo(bTrue)
+ b.AddEdgeTo(bFalse)
+ b.Likely = ssa.BranchLikely
+
+ // We have atomic instructions - use it directly.
+ s.startBlock(bTrue)
+ emit(s, n, args, op1, typ)
+ s.endBlock().AddEdgeTo(bEnd)
+
+ // Use original instruction sequence.
+ s.startBlock(bFalse)
+ emit(s, n, args, op0, typ)
+ s.endBlock().AddEdgeTo(bEnd)
+
+ // Merge results.
+ s.startBlock(bEnd)
+ if rtyp == types.TNIL {
+ return nil
+ } else {
+ return s.variable(n, types.Types[rtyp])
+ }
+ }
+ }
+
+ atomicXchgXaddEmitterARM64 := func(s *state, n *ir.CallExpr, args []*ssa.Value, op ssa.Op, typ types.Kind) {
+ v := s.newValue3(op, types.NewTuple(types.Types[typ], types.TypeMem), args[0], args[1], s.mem())
+ s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
+ s.vars[n] = s.newValue1(ssa.OpSelect0, types.Types[typ], v)
+ }
+ addF("runtime/internal/atomic", "Xchg",
+ makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicExchange32, ssa.OpAtomicExchange32Variant, types.TUINT32, types.TUINT32, atomicXchgXaddEmitterARM64),
+ sys.ARM64)
+ addF("runtime/internal/atomic", "Xchg64",
+ makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicExchange64, ssa.OpAtomicExchange64Variant, types.TUINT64, types.TUINT64, atomicXchgXaddEmitterARM64),
+ sys.ARM64)
+
+ addF("runtime/internal/atomic", "Xadd",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ v := s.newValue3(ssa.OpAtomicAdd32, types.NewTuple(types.Types[types.TUINT32], types.TypeMem), args[0], args[1], s.mem())
+ s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
+ return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT32], v)
+ },
+ sys.AMD64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
+ addF("runtime/internal/atomic", "Xadd64",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ v := s.newValue3(ssa.OpAtomicAdd64, types.NewTuple(types.Types[types.TUINT64], types.TypeMem), args[0], args[1], s.mem())
+ s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
+ return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT64], v)
+ },
+ sys.AMD64, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
+
+ addF("runtime/internal/atomic", "Xadd",
+ makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicAdd32, ssa.OpAtomicAdd32Variant, types.TUINT32, types.TUINT32, atomicXchgXaddEmitterARM64),
+ sys.ARM64)
+ addF("runtime/internal/atomic", "Xadd64",
+ makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicAdd64, ssa.OpAtomicAdd64Variant, types.TUINT64, types.TUINT64, atomicXchgXaddEmitterARM64),
+ sys.ARM64)
+
+ addF("runtime/internal/atomic", "Cas",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ v := s.newValue4(ssa.OpAtomicCompareAndSwap32, types.NewTuple(types.Types[types.TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem())
+ s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
+ return s.newValue1(ssa.OpSelect0, types.Types[types.TBOOL], v)
+ },
+ sys.AMD64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
+ addF("runtime/internal/atomic", "Cas64",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ v := s.newValue4(ssa.OpAtomicCompareAndSwap64, types.NewTuple(types.Types[types.TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem())
+ s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
+ return s.newValue1(ssa.OpSelect0, types.Types[types.TBOOL], v)
+ },
+ sys.AMD64, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
+ addF("runtime/internal/atomic", "CasRel",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ v := s.newValue4(ssa.OpAtomicCompareAndSwap32, types.NewTuple(types.Types[types.TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem())
+ s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
+ return s.newValue1(ssa.OpSelect0, types.Types[types.TBOOL], v)
+ },
+ sys.PPC64)
+
+ atomicCasEmitterARM64 := func(s *state, n *ir.CallExpr, args []*ssa.Value, op ssa.Op, typ types.Kind) {
+ v := s.newValue4(op, types.NewTuple(types.Types[types.TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem())
+ s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
+ s.vars[n] = s.newValue1(ssa.OpSelect0, types.Types[typ], v)
+ }
+
+ addF("runtime/internal/atomic", "Cas",
+ makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicCompareAndSwap32, ssa.OpAtomicCompareAndSwap32Variant, types.TUINT32, types.TBOOL, atomicCasEmitterARM64),
+ sys.ARM64)
+ addF("runtime/internal/atomic", "Cas64",
+ makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicCompareAndSwap64, ssa.OpAtomicCompareAndSwap64Variant, types.TUINT64, types.TBOOL, atomicCasEmitterARM64),
+ sys.ARM64)
+
+ addF("runtime/internal/atomic", "And8",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ s.vars[memVar] = s.newValue3(ssa.OpAtomicAnd8, types.TypeMem, args[0], args[1], s.mem())
+ return nil
+ },
+ sys.AMD64, sys.MIPS, sys.PPC64, sys.RISCV64, sys.S390X)
+ addF("runtime/internal/atomic", "And",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ s.vars[memVar] = s.newValue3(ssa.OpAtomicAnd32, types.TypeMem, args[0], args[1], s.mem())
+ return nil
+ },
+ sys.AMD64, sys.MIPS, sys.PPC64, sys.RISCV64, sys.S390X)
+ addF("runtime/internal/atomic", "Or8",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ s.vars[memVar] = s.newValue3(ssa.OpAtomicOr8, types.TypeMem, args[0], args[1], s.mem())
+ return nil
+ },
+ sys.AMD64, sys.ARM64, sys.MIPS, sys.PPC64, sys.RISCV64, sys.S390X)
+ addF("runtime/internal/atomic", "Or",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ s.vars[memVar] = s.newValue3(ssa.OpAtomicOr32, types.TypeMem, args[0], args[1], s.mem())
+ return nil
+ },
+ sys.AMD64, sys.MIPS, sys.PPC64, sys.RISCV64, sys.S390X)
+
+ atomicAndOrEmitterARM64 := func(s *state, n *ir.CallExpr, args []*ssa.Value, op ssa.Op, typ types.Kind) {
+ s.vars[memVar] = s.newValue3(op, types.TypeMem, args[0], args[1], s.mem())
+ }
+
+ addF("runtime/internal/atomic", "And8",
+ makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicAnd8, ssa.OpAtomicAnd8Variant, types.TNIL, types.TNIL, atomicAndOrEmitterARM64),
+ sys.ARM64)
+ addF("runtime/internal/atomic", "And",
+ makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicAnd32, ssa.OpAtomicAnd32Variant, types.TNIL, types.TNIL, atomicAndOrEmitterARM64),
+ sys.ARM64)
+ addF("runtime/internal/atomic", "Or8",
+ makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicOr8, ssa.OpAtomicOr8Variant, types.TNIL, types.TNIL, atomicAndOrEmitterARM64),
+ sys.ARM64)
+ addF("runtime/internal/atomic", "Or",
+ makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicOr32, ssa.OpAtomicOr32Variant, types.TNIL, types.TNIL, atomicAndOrEmitterARM64),
+ sys.ARM64)
+
+ // Aliases for atomic load operations
+ alias("runtime/internal/atomic", "Loadint32", "runtime/internal/atomic", "Load", all...)
+ alias("runtime/internal/atomic", "Loadint64", "runtime/internal/atomic", "Load64", all...)
+ alias("runtime/internal/atomic", "Loaduintptr", "runtime/internal/atomic", "Load", p4...)
+ alias("runtime/internal/atomic", "Loaduintptr", "runtime/internal/atomic", "Load64", p8...)
+ alias("runtime/internal/atomic", "Loaduint", "runtime/internal/atomic", "Load", p4...)
+ alias("runtime/internal/atomic", "Loaduint", "runtime/internal/atomic", "Load64", p8...)
+ alias("runtime/internal/atomic", "LoadAcq", "runtime/internal/atomic", "Load", lwatomics...)
+ alias("runtime/internal/atomic", "LoadAcq64", "runtime/internal/atomic", "Load64", lwatomics...)
+ alias("runtime/internal/atomic", "LoadAcquintptr", "runtime/internal/atomic", "LoadAcq", p4...)
+ alias("sync", "runtime_LoadAcquintptr", "runtime/internal/atomic", "LoadAcq", p4...) // linknamed
+ alias("runtime/internal/atomic", "LoadAcquintptr", "runtime/internal/atomic", "LoadAcq64", p8...)
+ alias("sync", "runtime_LoadAcquintptr", "runtime/internal/atomic", "LoadAcq64", p8...) // linknamed
+
+ // Aliases for atomic store operations
+ alias("runtime/internal/atomic", "Storeint32", "runtime/internal/atomic", "Store", all...)
+ alias("runtime/internal/atomic", "Storeint64", "runtime/internal/atomic", "Store64", all...)
+ alias("runtime/internal/atomic", "Storeuintptr", "runtime/internal/atomic", "Store", p4...)
+ alias("runtime/internal/atomic", "Storeuintptr", "runtime/internal/atomic", "Store64", p8...)
+ alias("runtime/internal/atomic", "StoreRel", "runtime/internal/atomic", "Store", lwatomics...)
+ alias("runtime/internal/atomic", "StoreRel64", "runtime/internal/atomic", "Store64", lwatomics...)
+ alias("runtime/internal/atomic", "StoreReluintptr", "runtime/internal/atomic", "StoreRel", p4...)
+ alias("sync", "runtime_StoreReluintptr", "runtime/internal/atomic", "StoreRel", p4...) // linknamed
+ alias("runtime/internal/atomic", "StoreReluintptr", "runtime/internal/atomic", "StoreRel64", p8...)
+ alias("sync", "runtime_StoreReluintptr", "runtime/internal/atomic", "StoreRel64", p8...) // linknamed
+
+ // Aliases for atomic swap operations
+ alias("runtime/internal/atomic", "Xchgint32", "runtime/internal/atomic", "Xchg", all...)
+ alias("runtime/internal/atomic", "Xchgint64", "runtime/internal/atomic", "Xchg64", all...)
+ alias("runtime/internal/atomic", "Xchguintptr", "runtime/internal/atomic", "Xchg", p4...)
+ alias("runtime/internal/atomic", "Xchguintptr", "runtime/internal/atomic", "Xchg64", p8...)
+
+ // Aliases for atomic add operations
+ alias("runtime/internal/atomic", "Xaddint32", "runtime/internal/atomic", "Xadd", all...)
+ alias("runtime/internal/atomic", "Xaddint64", "runtime/internal/atomic", "Xadd64", all...)
+ alias("runtime/internal/atomic", "Xadduintptr", "runtime/internal/atomic", "Xadd", p4...)
+ alias("runtime/internal/atomic", "Xadduintptr", "runtime/internal/atomic", "Xadd64", p8...)
+
+ // Aliases for atomic CAS operations
+ alias("runtime/internal/atomic", "Casint32", "runtime/internal/atomic", "Cas", all...)
+ alias("runtime/internal/atomic", "Casint64", "runtime/internal/atomic", "Cas64", all...)
+ alias("runtime/internal/atomic", "Casuintptr", "runtime/internal/atomic", "Cas", p4...)
+ alias("runtime/internal/atomic", "Casuintptr", "runtime/internal/atomic", "Cas64", p8...)
+ alias("runtime/internal/atomic", "Casp1", "runtime/internal/atomic", "Cas", p4...)
+ alias("runtime/internal/atomic", "Casp1", "runtime/internal/atomic", "Cas64", p8...)
+ alias("runtime/internal/atomic", "CasRel", "runtime/internal/atomic", "Cas", lwatomics...)
+
+ /******** math ********/
+ addF("math", "Sqrt",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue1(ssa.OpSqrt, types.Types[types.TFLOAT64], args[0])
+ },
+ sys.I386, sys.AMD64, sys.ARM, sys.ARM64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X, sys.Wasm)
+ addF("math", "Trunc",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue1(ssa.OpTrunc, types.Types[types.TFLOAT64], args[0])
+ },
+ sys.ARM64, sys.PPC64, sys.S390X, sys.Wasm)
+ addF("math", "Ceil",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue1(ssa.OpCeil, types.Types[types.TFLOAT64], args[0])
+ },
+ sys.ARM64, sys.PPC64, sys.S390X, sys.Wasm)
+ addF("math", "Floor",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue1(ssa.OpFloor, types.Types[types.TFLOAT64], args[0])
+ },
+ sys.ARM64, sys.PPC64, sys.S390X, sys.Wasm)
+ addF("math", "Round",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue1(ssa.OpRound, types.Types[types.TFLOAT64], args[0])
+ },
+ sys.ARM64, sys.PPC64, sys.S390X)
+ addF("math", "RoundToEven",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue1(ssa.OpRoundToEven, types.Types[types.TFLOAT64], args[0])
+ },
+ sys.ARM64, sys.S390X, sys.Wasm)
+ addF("math", "Abs",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue1(ssa.OpAbs, types.Types[types.TFLOAT64], args[0])
+ },
+ sys.ARM64, sys.ARM, sys.PPC64, sys.RISCV64, sys.Wasm)
+ addF("math", "Copysign",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue2(ssa.OpCopysign, types.Types[types.TFLOAT64], args[0], args[1])
+ },
+ sys.PPC64, sys.RISCV64, sys.Wasm)
+ addF("math", "FMA",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue3(ssa.OpFMA, types.Types[types.TFLOAT64], args[0], args[1], args[2])
+ },
+ sys.ARM64, sys.PPC64, sys.RISCV64, sys.S390X)
+ addF("math", "FMA",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ if !s.config.UseFMA {
+ s.vars[n] = s.callResult(n, callNormal) // types.Types[TFLOAT64]
+ return s.variable(n, types.Types[types.TFLOAT64])
+ }
+
+ if buildcfg.GOAMD64 >= 3 {
+ return s.newValue3(ssa.OpFMA, types.Types[types.TFLOAT64], args[0], args[1], args[2])
+ }
+
+ v := s.entryNewValue0A(ssa.OpHasCPUFeature, types.Types[types.TBOOL], ir.Syms.X86HasFMA)
+ b := s.endBlock()
+ b.Kind = ssa.BlockIf
+ b.SetControl(v)
+ bTrue := s.f.NewBlock(ssa.BlockPlain)
+ bFalse := s.f.NewBlock(ssa.BlockPlain)
+ bEnd := s.f.NewBlock(ssa.BlockPlain)
+ b.AddEdgeTo(bTrue)
+ b.AddEdgeTo(bFalse)
+ b.Likely = ssa.BranchLikely // >= haswell cpus are common
+
+ // We have the intrinsic - use it directly.
+ s.startBlock(bTrue)
+ s.vars[n] = s.newValue3(ssa.OpFMA, types.Types[types.TFLOAT64], args[0], args[1], args[2])
+ s.endBlock().AddEdgeTo(bEnd)
+
+ // Call the pure Go version.
+ s.startBlock(bFalse)
+ s.vars[n] = s.callResult(n, callNormal) // types.Types[TFLOAT64]
+ s.endBlock().AddEdgeTo(bEnd)
+
+ // Merge results.
+ s.startBlock(bEnd)
+ return s.variable(n, types.Types[types.TFLOAT64])
+ },
+ sys.AMD64)
+ addF("math", "FMA",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ if !s.config.UseFMA {
+ s.vars[n] = s.callResult(n, callNormal) // types.Types[TFLOAT64]
+ return s.variable(n, types.Types[types.TFLOAT64])
+ }
+ addr := s.entryNewValue1A(ssa.OpAddr, types.Types[types.TBOOL].PtrTo(), ir.Syms.ARMHasVFPv4, s.sb)
+ v := s.load(types.Types[types.TBOOL], addr)
+ b := s.endBlock()
+ b.Kind = ssa.BlockIf
+ b.SetControl(v)
+ bTrue := s.f.NewBlock(ssa.BlockPlain)
+ bFalse := s.f.NewBlock(ssa.BlockPlain)
+ bEnd := s.f.NewBlock(ssa.BlockPlain)
+ b.AddEdgeTo(bTrue)
+ b.AddEdgeTo(bFalse)
+ b.Likely = ssa.BranchLikely
+
+ // We have the intrinsic - use it directly.
+ s.startBlock(bTrue)
+ s.vars[n] = s.newValue3(ssa.OpFMA, types.Types[types.TFLOAT64], args[0], args[1], args[2])
+ s.endBlock().AddEdgeTo(bEnd)
+
+ // Call the pure Go version.
+ s.startBlock(bFalse)
+ s.vars[n] = s.callResult(n, callNormal) // types.Types[TFLOAT64]
+ s.endBlock().AddEdgeTo(bEnd)
+
+ // Merge results.
+ s.startBlock(bEnd)
+ return s.variable(n, types.Types[types.TFLOAT64])
+ },
+ sys.ARM)
+
+ makeRoundAMD64 := func(op ssa.Op) func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ if buildcfg.GOAMD64 >= 2 {
+ return s.newValue1(op, types.Types[types.TFLOAT64], args[0])
+ }
+
+ v := s.entryNewValue0A(ssa.OpHasCPUFeature, types.Types[types.TBOOL], ir.Syms.X86HasSSE41)
+ b := s.endBlock()
+ b.Kind = ssa.BlockIf
+ b.SetControl(v)
+ bTrue := s.f.NewBlock(ssa.BlockPlain)
+ bFalse := s.f.NewBlock(ssa.BlockPlain)
+ bEnd := s.f.NewBlock(ssa.BlockPlain)
+ b.AddEdgeTo(bTrue)
+ b.AddEdgeTo(bFalse)
+ b.Likely = ssa.BranchLikely // most machines have sse4.1 nowadays
+
+ // We have the intrinsic - use it directly.
+ s.startBlock(bTrue)
+ s.vars[n] = s.newValue1(op, types.Types[types.TFLOAT64], args[0])
+ s.endBlock().AddEdgeTo(bEnd)
+
+ // Call the pure Go version.
+ s.startBlock(bFalse)
+ s.vars[n] = s.callResult(n, callNormal) // types.Types[TFLOAT64]
+ s.endBlock().AddEdgeTo(bEnd)
+
+ // Merge results.
+ s.startBlock(bEnd)
+ return s.variable(n, types.Types[types.TFLOAT64])
+ }
+ }
+ addF("math", "RoundToEven",
+ makeRoundAMD64(ssa.OpRoundToEven),
+ sys.AMD64)
+ addF("math", "Floor",
+ makeRoundAMD64(ssa.OpFloor),
+ sys.AMD64)
+ addF("math", "Ceil",
+ makeRoundAMD64(ssa.OpCeil),
+ sys.AMD64)
+ addF("math", "Trunc",
+ makeRoundAMD64(ssa.OpTrunc),
+ sys.AMD64)
+
+ /******** math/bits ********/
+ addF("math/bits", "TrailingZeros64",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue1(ssa.OpCtz64, types.Types[types.TINT], args[0])
+ },
+ sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm)
+ addF("math/bits", "TrailingZeros32",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue1(ssa.OpCtz32, types.Types[types.TINT], args[0])
+ },
+ sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm)
+ addF("math/bits", "TrailingZeros16",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ x := s.newValue1(ssa.OpZeroExt16to32, types.Types[types.TUINT32], args[0])
+ c := s.constInt32(types.Types[types.TUINT32], 1<<16)
+ y := s.newValue2(ssa.OpOr32, types.Types[types.TUINT32], x, c)
+ return s.newValue1(ssa.OpCtz32, types.Types[types.TINT], y)
+ },
+ sys.MIPS)
+ addF("math/bits", "TrailingZeros16",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue1(ssa.OpCtz16, types.Types[types.TINT], args[0])
+ },
+ sys.AMD64, sys.I386, sys.ARM, sys.ARM64, sys.Wasm)
+ addF("math/bits", "TrailingZeros16",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ x := s.newValue1(ssa.OpZeroExt16to64, types.Types[types.TUINT64], args[0])
+ c := s.constInt64(types.Types[types.TUINT64], 1<<16)
+ y := s.newValue2(ssa.OpOr64, types.Types[types.TUINT64], x, c)
+ return s.newValue1(ssa.OpCtz64, types.Types[types.TINT], y)
+ },
+ sys.S390X, sys.PPC64)
+ addF("math/bits", "TrailingZeros8",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ x := s.newValue1(ssa.OpZeroExt8to32, types.Types[types.TUINT32], args[0])
+ c := s.constInt32(types.Types[types.TUINT32], 1<<8)
+ y := s.newValue2(ssa.OpOr32, types.Types[types.TUINT32], x, c)
+ return s.newValue1(ssa.OpCtz32, types.Types[types.TINT], y)
+ },
+ sys.MIPS)
+ addF("math/bits", "TrailingZeros8",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue1(ssa.OpCtz8, types.Types[types.TINT], args[0])
+ },
+ sys.AMD64, sys.ARM, sys.ARM64, sys.Wasm)
+ addF("math/bits", "TrailingZeros8",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ x := s.newValue1(ssa.OpZeroExt8to64, types.Types[types.TUINT64], args[0])
+ c := s.constInt64(types.Types[types.TUINT64], 1<<8)
+ y := s.newValue2(ssa.OpOr64, types.Types[types.TUINT64], x, c)
+ return s.newValue1(ssa.OpCtz64, types.Types[types.TINT], y)
+ },
+ sys.S390X)
+ alias("math/bits", "ReverseBytes64", "runtime/internal/sys", "Bswap64", all...)
+ alias("math/bits", "ReverseBytes32", "runtime/internal/sys", "Bswap32", all...)
+ // ReverseBytes inlines correctly, no need to intrinsify it.
+ // ReverseBytes16 lowers to a rotate, no need for anything special here.
+ addF("math/bits", "Len64",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue1(ssa.OpBitLen64, types.Types[types.TINT], args[0])
+ },
+ sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm)
+ addF("math/bits", "Len32",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue1(ssa.OpBitLen32, types.Types[types.TINT], args[0])
+ },
+ sys.AMD64, sys.ARM64, sys.PPC64)
+ addF("math/bits", "Len32",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ if s.config.PtrSize == 4 {
+ return s.newValue1(ssa.OpBitLen32, types.Types[types.TINT], args[0])
+ }
+ x := s.newValue1(ssa.OpZeroExt32to64, types.Types[types.TUINT64], args[0])
+ return s.newValue1(ssa.OpBitLen64, types.Types[types.TINT], x)
+ },
+ sys.ARM, sys.S390X, sys.MIPS, sys.Wasm)
+ addF("math/bits", "Len16",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ if s.config.PtrSize == 4 {
+ x := s.newValue1(ssa.OpZeroExt16to32, types.Types[types.TUINT32], args[0])
+ return s.newValue1(ssa.OpBitLen32, types.Types[types.TINT], x)
+ }
+ x := s.newValue1(ssa.OpZeroExt16to64, types.Types[types.TUINT64], args[0])
+ return s.newValue1(ssa.OpBitLen64, types.Types[types.TINT], x)
+ },
+ sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm)
+ addF("math/bits", "Len16",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue1(ssa.OpBitLen16, types.Types[types.TINT], args[0])
+ },
+ sys.AMD64)
+ addF("math/bits", "Len8",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ if s.config.PtrSize == 4 {
+ x := s.newValue1(ssa.OpZeroExt8to32, types.Types[types.TUINT32], args[0])
+ return s.newValue1(ssa.OpBitLen32, types.Types[types.TINT], x)
+ }
+ x := s.newValue1(ssa.OpZeroExt8to64, types.Types[types.TUINT64], args[0])
+ return s.newValue1(ssa.OpBitLen64, types.Types[types.TINT], x)
+ },
+ sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm)
+ addF("math/bits", "Len8",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue1(ssa.OpBitLen8, types.Types[types.TINT], args[0])
+ },
+ sys.AMD64)
+ addF("math/bits", "Len",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ if s.config.PtrSize == 4 {
+ return s.newValue1(ssa.OpBitLen32, types.Types[types.TINT], args[0])
+ }
+ return s.newValue1(ssa.OpBitLen64, types.Types[types.TINT], args[0])
+ },
+ sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm)
+ // LeadingZeros is handled because it trivially calls Len.
+ addF("math/bits", "Reverse64",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue1(ssa.OpBitRev64, types.Types[types.TINT], args[0])
+ },
+ sys.ARM64)
+ addF("math/bits", "Reverse32",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue1(ssa.OpBitRev32, types.Types[types.TINT], args[0])
+ },
+ sys.ARM64)
+ addF("math/bits", "Reverse16",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue1(ssa.OpBitRev16, types.Types[types.TINT], args[0])
+ },
+ sys.ARM64)
+ addF("math/bits", "Reverse8",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue1(ssa.OpBitRev8, types.Types[types.TINT], args[0])
+ },
+ sys.ARM64)
+ addF("math/bits", "Reverse",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ if s.config.PtrSize == 4 {
+ return s.newValue1(ssa.OpBitRev32, types.Types[types.TINT], args[0])
+ }
+ return s.newValue1(ssa.OpBitRev64, types.Types[types.TINT], args[0])
+ },
+ sys.ARM64)
+ addF("math/bits", "RotateLeft8",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue2(ssa.OpRotateLeft8, types.Types[types.TUINT8], args[0], args[1])
+ },
+ sys.AMD64)
+ addF("math/bits", "RotateLeft16",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue2(ssa.OpRotateLeft16, types.Types[types.TUINT16], args[0], args[1])
+ },
+ sys.AMD64)
+ addF("math/bits", "RotateLeft32",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue2(ssa.OpRotateLeft32, types.Types[types.TUINT32], args[0], args[1])
+ },
+ sys.AMD64, sys.ARM, sys.ARM64, sys.S390X, sys.PPC64, sys.Wasm)
+ addF("math/bits", "RotateLeft64",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue2(ssa.OpRotateLeft64, types.Types[types.TUINT64], args[0], args[1])
+ },
+ sys.AMD64, sys.ARM64, sys.S390X, sys.PPC64, sys.Wasm)
+ alias("math/bits", "RotateLeft", "math/bits", "RotateLeft64", p8...)
+
+ makeOnesCountAMD64 := func(op ssa.Op) func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ if buildcfg.GOAMD64 >= 2 {
+ return s.newValue1(op, types.Types[types.TINT], args[0])
+ }
+
+ v := s.entryNewValue0A(ssa.OpHasCPUFeature, types.Types[types.TBOOL], ir.Syms.X86HasPOPCNT)
+ b := s.endBlock()
+ b.Kind = ssa.BlockIf
+ b.SetControl(v)
+ bTrue := s.f.NewBlock(ssa.BlockPlain)
+ bFalse := s.f.NewBlock(ssa.BlockPlain)
+ bEnd := s.f.NewBlock(ssa.BlockPlain)
+ b.AddEdgeTo(bTrue)
+ b.AddEdgeTo(bFalse)
+ b.Likely = ssa.BranchLikely // most machines have popcnt nowadays
+
+ // We have the intrinsic - use it directly.
+ s.startBlock(bTrue)
+ s.vars[n] = s.newValue1(op, types.Types[types.TINT], args[0])
+ s.endBlock().AddEdgeTo(bEnd)
+
+ // Call the pure Go version.
+ s.startBlock(bFalse)
+ s.vars[n] = s.callResult(n, callNormal) // types.Types[TINT]
+ s.endBlock().AddEdgeTo(bEnd)
+
+ // Merge results.
+ s.startBlock(bEnd)
+ return s.variable(n, types.Types[types.TINT])
+ }
+ }
+ addF("math/bits", "OnesCount64",
+ makeOnesCountAMD64(ssa.OpPopCount64),
+ sys.AMD64)
+ addF("math/bits", "OnesCount64",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue1(ssa.OpPopCount64, types.Types[types.TINT], args[0])
+ },
+ sys.PPC64, sys.ARM64, sys.S390X, sys.Wasm)
+ addF("math/bits", "OnesCount32",
+ makeOnesCountAMD64(ssa.OpPopCount32),
+ sys.AMD64)
+ addF("math/bits", "OnesCount32",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue1(ssa.OpPopCount32, types.Types[types.TINT], args[0])
+ },
+ sys.PPC64, sys.ARM64, sys.S390X, sys.Wasm)
+ addF("math/bits", "OnesCount16",
+ makeOnesCountAMD64(ssa.OpPopCount16),
+ sys.AMD64)
+ addF("math/bits", "OnesCount16",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue1(ssa.OpPopCount16, types.Types[types.TINT], args[0])
+ },
+ sys.ARM64, sys.S390X, sys.PPC64, sys.Wasm)
+ addF("math/bits", "OnesCount8",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue1(ssa.OpPopCount8, types.Types[types.TINT], args[0])
+ },
+ sys.S390X, sys.PPC64, sys.Wasm)
+ addF("math/bits", "OnesCount",
+ makeOnesCountAMD64(ssa.OpPopCount64),
+ sys.AMD64)
+ addF("math/bits", "Mul64",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue2(ssa.OpMul64uhilo, types.NewTuple(types.Types[types.TUINT64], types.Types[types.TUINT64]), args[0], args[1])
+ },
+ sys.AMD64, sys.ARM64, sys.PPC64, sys.S390X, sys.MIPS64, sys.RISCV64)
+ alias("math/bits", "Mul", "math/bits", "Mul64", sys.ArchAMD64, sys.ArchARM64, sys.ArchPPC64, sys.ArchPPC64LE, sys.ArchS390X, sys.ArchMIPS64, sys.ArchMIPS64LE, sys.ArchRISCV64)
+ alias("runtime/internal/math", "Mul64", "math/bits", "Mul64", sys.ArchAMD64, sys.ArchARM64, sys.ArchPPC64, sys.ArchPPC64LE, sys.ArchS390X, sys.ArchMIPS64, sys.ArchMIPS64LE, sys.ArchRISCV64)
+ addF("math/bits", "Add64",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue3(ssa.OpAdd64carry, types.NewTuple(types.Types[types.TUINT64], types.Types[types.TUINT64]), args[0], args[1], args[2])
+ },
+ sys.AMD64, sys.ARM64, sys.PPC64, sys.S390X)
+ alias("math/bits", "Add", "math/bits", "Add64", sys.ArchAMD64, sys.ArchARM64, sys.ArchPPC64, sys.ArchPPC64LE, sys.ArchS390X)
+ addF("math/bits", "Sub64",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue3(ssa.OpSub64borrow, types.NewTuple(types.Types[types.TUINT64], types.Types[types.TUINT64]), args[0], args[1], args[2])
+ },
+ sys.AMD64, sys.ARM64, sys.S390X)
+ alias("math/bits", "Sub", "math/bits", "Sub64", sys.ArchAMD64, sys.ArchARM64, sys.ArchS390X)
+ addF("math/bits", "Div64",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ // check for divide-by-zero/overflow and panic with appropriate message
+ cmpZero := s.newValue2(s.ssaOp(ir.ONE, types.Types[types.TUINT64]), types.Types[types.TBOOL], args[2], s.zeroVal(types.Types[types.TUINT64]))
+ s.check(cmpZero, ir.Syms.Panicdivide)
+ cmpOverflow := s.newValue2(s.ssaOp(ir.OLT, types.Types[types.TUINT64]), types.Types[types.TBOOL], args[0], args[2])
+ s.check(cmpOverflow, ir.Syms.Panicoverflow)
+ return s.newValue3(ssa.OpDiv128u, types.NewTuple(types.Types[types.TUINT64], types.Types[types.TUINT64]), args[0], args[1], args[2])
+ },
+ sys.AMD64)
+ alias("math/bits", "Div", "math/bits", "Div64", sys.ArchAMD64)
+
+ alias("runtime/internal/sys", "Ctz8", "math/bits", "TrailingZeros8", all...)
+ alias("runtime/internal/sys", "TrailingZeros8", "math/bits", "TrailingZeros8", all...)
+ alias("runtime/internal/sys", "TrailingZeros64", "math/bits", "TrailingZeros64", all...)
+ alias("runtime/internal/sys", "Len8", "math/bits", "Len8", all...)
+ alias("runtime/internal/sys", "Len64", "math/bits", "Len64", all...)
+ alias("runtime/internal/sys", "OnesCount64", "math/bits", "OnesCount64", all...)
+
+ /******** sync/atomic ********/
+
+ // Note: these are disabled by flag_race in findIntrinsic below.
+ alias("sync/atomic", "LoadInt32", "runtime/internal/atomic", "Load", all...)
+ alias("sync/atomic", "LoadInt64", "runtime/internal/atomic", "Load64", all...)
+ alias("sync/atomic", "LoadPointer", "runtime/internal/atomic", "Loadp", all...)
+ alias("sync/atomic", "LoadUint32", "runtime/internal/atomic", "Load", all...)
+ alias("sync/atomic", "LoadUint64", "runtime/internal/atomic", "Load64", all...)
+ alias("sync/atomic", "LoadUintptr", "runtime/internal/atomic", "Load", p4...)
+ alias("sync/atomic", "LoadUintptr", "runtime/internal/atomic", "Load64", p8...)
+
+ alias("sync/atomic", "StoreInt32", "runtime/internal/atomic", "Store", all...)
+ alias("sync/atomic", "StoreInt64", "runtime/internal/atomic", "Store64", all...)
+ // Note: not StorePointer, that needs a write barrier. Same below for {CompareAnd}Swap.
+ alias("sync/atomic", "StoreUint32", "runtime/internal/atomic", "Store", all...)
+ alias("sync/atomic", "StoreUint64", "runtime/internal/atomic", "Store64", all...)
+ alias("sync/atomic", "StoreUintptr", "runtime/internal/atomic", "Store", p4...)
+ alias("sync/atomic", "StoreUintptr", "runtime/internal/atomic", "Store64", p8...)
+
+ alias("sync/atomic", "SwapInt32", "runtime/internal/atomic", "Xchg", all...)
+ alias("sync/atomic", "SwapInt64", "runtime/internal/atomic", "Xchg64", all...)
+ alias("sync/atomic", "SwapUint32", "runtime/internal/atomic", "Xchg", all...)
+ alias("sync/atomic", "SwapUint64", "runtime/internal/atomic", "Xchg64", all...)
+ alias("sync/atomic", "SwapUintptr", "runtime/internal/atomic", "Xchg", p4...)
+ alias("sync/atomic", "SwapUintptr", "runtime/internal/atomic", "Xchg64", p8...)
+
+ alias("sync/atomic", "CompareAndSwapInt32", "runtime/internal/atomic", "Cas", all...)
+ alias("sync/atomic", "CompareAndSwapInt64", "runtime/internal/atomic", "Cas64", all...)
+ alias("sync/atomic", "CompareAndSwapUint32", "runtime/internal/atomic", "Cas", all...)
+ alias("sync/atomic", "CompareAndSwapUint64", "runtime/internal/atomic", "Cas64", all...)
+ alias("sync/atomic", "CompareAndSwapUintptr", "runtime/internal/atomic", "Cas", p4...)
+ alias("sync/atomic", "CompareAndSwapUintptr", "runtime/internal/atomic", "Cas64", p8...)
+
+ alias("sync/atomic", "AddInt32", "runtime/internal/atomic", "Xadd", all...)
+ alias("sync/atomic", "AddInt64", "runtime/internal/atomic", "Xadd64", all...)
+ alias("sync/atomic", "AddUint32", "runtime/internal/atomic", "Xadd", all...)
+ alias("sync/atomic", "AddUint64", "runtime/internal/atomic", "Xadd64", all...)
+ alias("sync/atomic", "AddUintptr", "runtime/internal/atomic", "Xadd", p4...)
+ alias("sync/atomic", "AddUintptr", "runtime/internal/atomic", "Xadd64", p8...)
+
+ /******** math/big ********/
+ add("math/big", "mulWW",
+ func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
+ return s.newValue2(ssa.OpMul64uhilo, types.NewTuple(types.Types[types.TUINT64], types.Types[types.TUINT64]), args[0], args[1])
+ },
+ sys.ArchAMD64, sys.ArchARM64, sys.ArchPPC64LE, sys.ArchPPC64, sys.ArchS390X)
+}
+
+// findIntrinsic returns a function which builds the SSA equivalent of the
+// function identified by the symbol sym. If sym is not an intrinsic call, returns nil.
+func findIntrinsic(sym *types.Sym) intrinsicBuilder {
+ if sym == nil || sym.Pkg == nil {
+ return nil
+ }
+ pkg := sym.Pkg.Path
+ if sym.Pkg == types.LocalPkg {
+ pkg = base.Ctxt.Pkgpath
+ }
+ if sym.Pkg == ir.Pkgs.Runtime {
+ pkg = "runtime"
+ }
+ if base.Flag.Race && pkg == "sync/atomic" {
+ // The race detector needs to be able to intercept these calls.
+ // We can't intrinsify them.
+ return nil
+ }
+ // Skip intrinsifying math functions (which may contain hard-float
+ // instructions) when soft-float
+ if Arch.SoftFloat && pkg == "math" {
+ return nil
+ }
+
+ fn := sym.Name
+ if ssa.IntrinsicsDisable {
+ if pkg == "runtime" && (fn == "getcallerpc" || fn == "getcallersp" || fn == "getclosureptr") {
+ // These runtime functions don't have definitions, must be intrinsics.
+ } else {
+ return nil
+ }
+ }
+ return intrinsics[intrinsicKey{Arch.LinkArch.Arch, pkg, fn}]
+}
+
+func IsIntrinsicCall(n *ir.CallExpr) bool {
+ if n == nil {
+ return false
+ }
+ name, ok := n.X.(*ir.Name)
+ if !ok {
+ return false
+ }
+ return findIntrinsic(name.Sym()) != nil
+}
+
+// intrinsicCall converts a call to a recognized intrinsic function into the intrinsic SSA operation.
+func (s *state) intrinsicCall(n *ir.CallExpr) *ssa.Value {
+ v := findIntrinsic(n.X.Sym())(s, n, s.intrinsicArgs(n))
+ if ssa.IntrinsicsDebug > 0 {
+ x := v
+ if x == nil {
+ x = s.mem()
+ }
+ if x.Op == ssa.OpSelect0 || x.Op == ssa.OpSelect1 {
+ x = x.Args[0]
+ }
+ base.WarnfAt(n.Pos(), "intrinsic substitution for %v with %s", n.X.Sym().Name, x.LongString())
+ }
+ return v
+}
+
+// intrinsicArgs extracts args from n, evaluates them to SSA values, and returns them.
+func (s *state) intrinsicArgs(n *ir.CallExpr) []*ssa.Value {
+ args := make([]*ssa.Value, len(n.Args))
+ for i, n := range n.Args {
+ args[i] = s.expr(n)
+ }
+ return args
+}
+
+// openDeferRecord adds code to evaluate and store the function for an open-code defer
+// call, and records info about the defer, so we can generate proper code on the
+// exit paths. n is the sub-node of the defer node that is the actual function
+// call. We will also record funcdata information on where the function is stored
+// (as well as the deferBits variable), and this will enable us to run the proper
+// defer calls during panics.
+func (s *state) openDeferRecord(n *ir.CallExpr) {
+ if len(n.Args) != 0 || n.Op() != ir.OCALLFUNC || n.X.Type().NumResults() != 0 {
+ s.Fatalf("defer call with arguments or results: %v", n)
+ }
+
+ opendefer := &openDeferInfo{
+ n: n,
+ }
+ fn := n.X
+ // We must always store the function value in a stack slot for the
+ // runtime panic code to use. But in the defer exit code, we will
+ // call the function directly if it is a static function.
+ closureVal := s.expr(fn)
+ closure := s.openDeferSave(fn.Type(), closureVal)
+ opendefer.closureNode = closure.Aux.(*ir.Name)
+ if !(fn.Op() == ir.ONAME && fn.(*ir.Name).Class == ir.PFUNC) {
+ opendefer.closure = closure
+ }
+ index := len(s.openDefers)
+ s.openDefers = append(s.openDefers, opendefer)
+
+ // Update deferBits only after evaluation and storage to stack of
+ // the function is successful.
+ bitvalue := s.constInt8(types.Types[types.TUINT8], 1<<uint(index))
+ newDeferBits := s.newValue2(ssa.OpOr8, types.Types[types.TUINT8], s.variable(deferBitsVar, types.Types[types.TUINT8]), bitvalue)
+ s.vars[deferBitsVar] = newDeferBits
+ s.store(types.Types[types.TUINT8], s.deferBitsAddr, newDeferBits)
+}
+
+// openDeferSave generates SSA nodes to store a value (with type t) for an
+// open-coded defer at an explicit autotmp location on the stack, so it can be
+// reloaded and used for the appropriate call on exit. Type t must be a function type
+// (therefore SSAable). val is the value to be stored. The function returns an SSA
+// value representing a pointer to the autotmp location.
+func (s *state) openDeferSave(t *types.Type, val *ssa.Value) *ssa.Value {
+ if !TypeOK(t) {
+ s.Fatalf("openDeferSave of non-SSA-able type %v val=%v", t, val)
+ }
+ if !t.HasPointers() {
+ s.Fatalf("openDeferSave of pointerless type %v val=%v", t, val)
+ }
+ pos := val.Pos
+ temp := typecheck.TempAt(pos.WithNotStmt(), s.curfn, t)
+ temp.SetOpenDeferSlot(true)
+ var addrTemp *ssa.Value
+ // Use OpVarLive to make sure stack slot for the closure is not removed by
+ // dead-store elimination
+ if s.curBlock.ID != s.f.Entry.ID {
+ // Force the tmp storing this defer function to be declared in the entry
+ // block, so that it will be live for the defer exit code (which will
+ // actually access it only if the associated defer call has been activated).
+ s.defvars[s.f.Entry.ID][memVar] = s.f.Entry.NewValue1A(src.NoXPos, ssa.OpVarDef, types.TypeMem, temp, s.defvars[s.f.Entry.ID][memVar])
+ s.defvars[s.f.Entry.ID][memVar] = s.f.Entry.NewValue1A(src.NoXPos, ssa.OpVarLive, types.TypeMem, temp, s.defvars[s.f.Entry.ID][memVar])
+ addrTemp = s.f.Entry.NewValue2A(src.NoXPos, ssa.OpLocalAddr, types.NewPtr(temp.Type()), temp, s.sp, s.defvars[s.f.Entry.ID][memVar])
+ } else {
+ // Special case if we're still in the entry block. We can't use
+ // the above code, since s.defvars[s.f.Entry.ID] isn't defined
+ // until we end the entry block with s.endBlock().
+ s.vars[memVar] = s.newValue1Apos(ssa.OpVarDef, types.TypeMem, temp, s.mem(), false)
+ s.vars[memVar] = s.newValue1Apos(ssa.OpVarLive, types.TypeMem, temp, s.mem(), false)
+ addrTemp = s.newValue2Apos(ssa.OpLocalAddr, types.NewPtr(temp.Type()), temp, s.sp, s.mem(), false)
+ }
+ // Since we may use this temp during exit depending on the
+ // deferBits, we must define it unconditionally on entry.
+ // Therefore, we must make sure it is zeroed out in the entry
+ // block if it contains pointers, else GC may wrongly follow an
+ // uninitialized pointer value.
+ temp.SetNeedzero(true)
+ // We are storing to the stack, hence we can avoid the full checks in
+ // storeType() (no write barrier) and do a simple store().
+ s.store(t, addrTemp, val)
+ return addrTemp
+}
+
+// openDeferExit generates SSA for processing all the open coded defers at exit.
+// The code involves loading deferBits, and checking each of the bits to see if
+// the corresponding defer statement was executed. For each bit that is turned
+// on, the associated defer call is made.
+func (s *state) openDeferExit() {
+ deferExit := s.f.NewBlock(ssa.BlockPlain)
+ s.endBlock().AddEdgeTo(deferExit)
+ s.startBlock(deferExit)
+ s.lastDeferExit = deferExit
+ s.lastDeferCount = len(s.openDefers)
+ zeroval := s.constInt8(types.Types[types.TUINT8], 0)
+ // Test for and run defers in reverse order
+ for i := len(s.openDefers) - 1; i >= 0; i-- {
+ r := s.openDefers[i]
+ bCond := s.f.NewBlock(ssa.BlockPlain)
+ bEnd := s.f.NewBlock(ssa.BlockPlain)
+
+ deferBits := s.variable(deferBitsVar, types.Types[types.TUINT8])
+ // Generate code to check if the bit associated with the current
+ // defer is set.
+ bitval := s.constInt8(types.Types[types.TUINT8], 1<<uint(i))
+ andval := s.newValue2(ssa.OpAnd8, types.Types[types.TUINT8], deferBits, bitval)
+ eqVal := s.newValue2(ssa.OpEq8, types.Types[types.TBOOL], andval, zeroval)
+ b := s.endBlock()
+ b.Kind = ssa.BlockIf
+ b.SetControl(eqVal)
+ b.AddEdgeTo(bEnd)
+ b.AddEdgeTo(bCond)
+ bCond.AddEdgeTo(bEnd)
+ s.startBlock(bCond)
+
+ // Clear this bit in deferBits and force store back to stack, so
+ // we will not try to re-run this defer call if this defer call panics.
+ nbitval := s.newValue1(ssa.OpCom8, types.Types[types.TUINT8], bitval)
+ maskedval := s.newValue2(ssa.OpAnd8, types.Types[types.TUINT8], deferBits, nbitval)
+ s.store(types.Types[types.TUINT8], s.deferBitsAddr, maskedval)
+ // Use this value for following tests, so we keep previous
+ // bits cleared.
+ s.vars[deferBitsVar] = maskedval
+
+ // Generate code to call the function call of the defer, using the
+ // closure that were stored in argtmps at the point of the defer
+ // statement.
+ fn := r.n.X
+ stksize := fn.Type().ArgWidth()
+ var callArgs []*ssa.Value
+ var call *ssa.Value
+ if r.closure != nil {
+ v := s.load(r.closure.Type.Elem(), r.closure)
+ s.maybeNilCheckClosure(v, callDefer)
+ codeptr := s.rawLoad(types.Types[types.TUINTPTR], v)
+ aux := ssa.ClosureAuxCall(s.f.ABIDefault.ABIAnalyzeTypes(nil, nil, nil))
+ call = s.newValue2A(ssa.OpClosureLECall, aux.LateExpansionResultType(), aux, codeptr, v)
+ } else {
+ aux := ssa.StaticAuxCall(fn.(*ir.Name).Linksym(), s.f.ABIDefault.ABIAnalyzeTypes(nil, nil, nil))
+ call = s.newValue0A(ssa.OpStaticLECall, aux.LateExpansionResultType(), aux)
+ }
+ callArgs = append(callArgs, s.mem())
+ call.AddArgs(callArgs...)
+ call.AuxInt = stksize
+ s.vars[memVar] = s.newValue1I(ssa.OpSelectN, types.TypeMem, 0, call)
+ // Make sure that the stack slots with pointers are kept live
+ // through the call (which is a pre-emption point). Also, we will
+ // use the first call of the last defer exit to compute liveness
+ // for the deferreturn, so we want all stack slots to be live.
+ if r.closureNode != nil {
+ s.vars[memVar] = s.newValue1Apos(ssa.OpVarLive, types.TypeMem, r.closureNode, s.mem(), false)
+ }
+
+ s.endBlock()
+ s.startBlock(bEnd)
+ }
+}
+
+func (s *state) callResult(n *ir.CallExpr, k callKind) *ssa.Value {
+ return s.call(n, k, false)
+}
+
+func (s *state) callAddr(n *ir.CallExpr, k callKind) *ssa.Value {
+ return s.call(n, k, true)
+}
+
+// Calls the function n using the specified call type.
+// Returns the address of the return value (or nil if none).
+func (s *state) call(n *ir.CallExpr, k callKind, returnResultAddr bool) *ssa.Value {
+ s.prevCall = nil
+ var callee *ir.Name // target function (if static)
+ var closure *ssa.Value // ptr to closure to run (if dynamic)
+ var codeptr *ssa.Value // ptr to target code (if dynamic)
+ var rcvr *ssa.Value // receiver to set
+ fn := n.X
+ var ACArgs []*types.Type // AuxCall args
+ var ACResults []*types.Type // AuxCall results
+ var callArgs []*ssa.Value // For late-expansion, the args themselves (not stored, args to the call instead).
+
+ callABI := s.f.ABIDefault
+
+ if !buildcfg.Experiment.RegabiArgs {
+ var magicFnNameSym *types.Sym
+ if fn.Name() != nil {
+ magicFnNameSym = fn.Name().Sym()
+ ss := magicFnNameSym.Name
+ if strings.HasSuffix(ss, magicNameDotSuffix) {
+ callABI = s.f.ABI1
+ }
+ }
+ if magicFnNameSym == nil && n.Op() == ir.OCALLINTER {
+ magicFnNameSym = fn.(*ir.SelectorExpr).Sym()
+ ss := magicFnNameSym.Name
+ if strings.HasSuffix(ss, magicNameDotSuffix[1:]) {
+ callABI = s.f.ABI1
+ }
+ }
+ }
+
+ if k != callNormal && k != callTail && (len(n.Args) != 0 || n.Op() == ir.OCALLINTER || n.X.Type().NumResults() != 0) {
+ s.Fatalf("go/defer call with arguments: %v", n)
+ }
+
+ switch n.Op() {
+ case ir.OCALLFUNC:
+ if (k == callNormal || k == callTail) && fn.Op() == ir.ONAME && fn.(*ir.Name).Class == ir.PFUNC {
+ fn := fn.(*ir.Name)
+ callee = fn
+ if buildcfg.Experiment.RegabiArgs {
+ // This is a static call, so it may be
+ // a direct call to a non-ABIInternal
+ // function. fn.Func may be nil for
+ // some compiler-generated functions,
+ // but those are all ABIInternal.
+ if fn.Func != nil {
+ callABI = abiForFunc(fn.Func, s.f.ABI0, s.f.ABI1)
+ }
+ } else {
+ // TODO(register args) remove after register abi is working
+ inRegistersImported := fn.Pragma()&ir.RegisterParams != 0
+ inRegistersSamePackage := fn.Func != nil && fn.Func.Pragma&ir.RegisterParams != 0
+ if inRegistersImported || inRegistersSamePackage {
+ callABI = s.f.ABI1
+ }
+ }
+ break
+ }
+ closure = s.expr(fn)
+ if k != callDefer && k != callDeferStack {
+ // Deferred nil function needs to panic when the function is invoked,
+ // not the point of defer statement.
+ s.maybeNilCheckClosure(closure, k)
+ }
+ case ir.OCALLINTER:
+ if fn.Op() != ir.ODOTINTER {
+ s.Fatalf("OCALLINTER: n.Left not an ODOTINTER: %v", fn.Op())
+ }
+ fn := fn.(*ir.SelectorExpr)
+ var iclosure *ssa.Value
+ iclosure, rcvr = s.getClosureAndRcvr(fn)
+ if k == callNormal {
+ codeptr = s.load(types.Types[types.TUINTPTR], iclosure)
+ } else {
+ closure = iclosure
+ }
+ }
+
+ if !buildcfg.Experiment.RegabiArgs {
+ if regAbiForFuncType(n.X.Type().FuncType()) {
+ // Magic last type in input args to call
+ callABI = s.f.ABI1
+ }
+ }
+
+ params := callABI.ABIAnalyze(n.X.Type(), false /* Do not set (register) nNames from caller side -- can cause races. */)
+ types.CalcSize(fn.Type())
+ stksize := params.ArgWidth() // includes receiver, args, and results
+
+ res := n.X.Type().Results()
+ if k == callNormal || k == callTail {
+ for _, p := range params.OutParams() {
+ ACResults = append(ACResults, p.Type)
+ }
+ }
+
+ var call *ssa.Value
+ if k == callDeferStack {
+ // Make a defer struct d on the stack.
+ if stksize != 0 {
+ s.Fatalf("deferprocStack with non-zero stack size %d: %v", stksize, n)
+ }
+
+ t := deferstruct()
+ d := typecheck.TempAt(n.Pos(), s.curfn, t)
+
+ s.vars[memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, d, s.mem())
+ addr := s.addr(d)
+
+ // Must match deferstruct() below and src/runtime/runtime2.go:_defer.
+ // 0: started, set in deferprocStack
+ // 1: heap, set in deferprocStack
+ // 2: openDefer
+ // 3: sp, set in deferprocStack
+ // 4: pc, set in deferprocStack
+ // 5: fn
+ s.store(closure.Type,
+ s.newValue1I(ssa.OpOffPtr, closure.Type.PtrTo(), t.FieldOff(5), addr),
+ closure)
+ // 6: panic, set in deferprocStack
+ // 7: link, set in deferprocStack
+ // 8: fd
+ // 9: varp
+ // 10: framepc
+
+ // Call runtime.deferprocStack with pointer to _defer record.
+ ACArgs = append(ACArgs, types.Types[types.TUINTPTR])
+ aux := ssa.StaticAuxCall(ir.Syms.DeferprocStack, s.f.ABIDefault.ABIAnalyzeTypes(nil, ACArgs, ACResults))
+ callArgs = append(callArgs, addr, s.mem())
+ call = s.newValue0A(ssa.OpStaticLECall, aux.LateExpansionResultType(), aux)
+ call.AddArgs(callArgs...)
+ call.AuxInt = int64(types.PtrSize) // deferprocStack takes a *_defer arg
+ } else {
+ // Store arguments to stack, including defer/go arguments and receiver for method calls.
+ // These are written in SP-offset order.
+ argStart := base.Ctxt.FixedFrameSize()
+ // Defer/go args.
+ if k != callNormal && k != callTail {
+ // Write closure (arg to newproc/deferproc).
+ ACArgs = append(ACArgs, types.Types[types.TUINTPTR]) // not argExtra
+ callArgs = append(callArgs, closure)
+ stksize += int64(types.PtrSize)
+ argStart += int64(types.PtrSize)
+ }
+
+ // Set receiver (for interface calls).
+ if rcvr != nil {
+ callArgs = append(callArgs, rcvr)
+ }
+
+ // Write args.
+ t := n.X.Type()
+ args := n.Args
+
+ for _, p := range params.InParams() { // includes receiver for interface calls
+ ACArgs = append(ACArgs, p.Type)
+ }
+
+ // Split the entry block if there are open defers, because later calls to
+ // openDeferSave may cause a mismatch between the mem for an OpDereference
+ // and the call site which uses it. See #49282.
+ if s.curBlock.ID == s.f.Entry.ID && s.hasOpenDefers {
+ b := s.endBlock()
+ b.Kind = ssa.BlockPlain
+ curb := s.f.NewBlock(ssa.BlockPlain)
+ b.AddEdgeTo(curb)
+ s.startBlock(curb)
+ }
+
+ for i, n := range args {
+ callArgs = append(callArgs, s.putArg(n, t.Params().Field(i).Type))
+ }
+
+ callArgs = append(callArgs, s.mem())
+
+ // call target
+ switch {
+ case k == callDefer:
+ aux := ssa.StaticAuxCall(ir.Syms.Deferproc, s.f.ABIDefault.ABIAnalyzeTypes(nil, ACArgs, ACResults)) // TODO paramResultInfo for DeferProc
+ call = s.newValue0A(ssa.OpStaticLECall, aux.LateExpansionResultType(), aux)
+ case k == callGo:
+ aux := ssa.StaticAuxCall(ir.Syms.Newproc, s.f.ABIDefault.ABIAnalyzeTypes(nil, ACArgs, ACResults))
+ call = s.newValue0A(ssa.OpStaticLECall, aux.LateExpansionResultType(), aux) // TODO paramResultInfo for NewProc
+ case closure != nil:
+ // rawLoad because loading the code pointer from a
+ // closure is always safe, but IsSanitizerSafeAddr
+ // can't always figure that out currently, and it's
+ // critical that we not clobber any arguments already
+ // stored onto the stack.
+ codeptr = s.rawLoad(types.Types[types.TUINTPTR], closure)
+ aux := ssa.ClosureAuxCall(callABI.ABIAnalyzeTypes(nil, ACArgs, ACResults))
+ call = s.newValue2A(ssa.OpClosureLECall, aux.LateExpansionResultType(), aux, codeptr, closure)
+ case codeptr != nil:
+ // Note that the "receiver" parameter is nil because the actual receiver is the first input parameter.
+ aux := ssa.InterfaceAuxCall(params)
+ call = s.newValue1A(ssa.OpInterLECall, aux.LateExpansionResultType(), aux, codeptr)
+ case callee != nil:
+ aux := ssa.StaticAuxCall(callTargetLSym(callee), params)
+ call = s.newValue0A(ssa.OpStaticLECall, aux.LateExpansionResultType(), aux)
+ if k == callTail {
+ call.Op = ssa.OpTailLECall
+ stksize = 0 // Tail call does not use stack. We reuse caller's frame.
+ }
+ default:
+ s.Fatalf("bad call type %v %v", n.Op(), n)
+ }
+ call.AddArgs(callArgs...)
+ call.AuxInt = stksize // Call operations carry the argsize of the callee along with them
+ }
+ s.prevCall = call
+ s.vars[memVar] = s.newValue1I(ssa.OpSelectN, types.TypeMem, int64(len(ACResults)), call)
+ // Insert OVARLIVE nodes
+ for _, name := range n.KeepAlive {
+ s.stmt(ir.NewUnaryExpr(n.Pos(), ir.OVARLIVE, name))
+ }
+
+ // Finish block for defers
+ if k == callDefer || k == callDeferStack {
+ b := s.endBlock()
+ b.Kind = ssa.BlockDefer
+ b.SetControl(call)
+ bNext := s.f.NewBlock(ssa.BlockPlain)
+ b.AddEdgeTo(bNext)
+ // Add recover edge to exit code.
+ r := s.f.NewBlock(ssa.BlockPlain)
+ s.startBlock(r)
+ s.exit()
+ b.AddEdgeTo(r)
+ b.Likely = ssa.BranchLikely
+ s.startBlock(bNext)
+ }
+
+ if res.NumFields() == 0 || k != callNormal {
+ // call has no return value. Continue with the next statement.
+ return nil
+ }
+ fp := res.Field(0)
+ if returnResultAddr {
+ return s.resultAddrOfCall(call, 0, fp.Type)
+ }
+ return s.newValue1I(ssa.OpSelectN, fp.Type, 0, call)
+}
+
+// maybeNilCheckClosure checks if a nil check of a closure is needed in some
+// architecture-dependent situations and, if so, emits the nil check.
+func (s *state) maybeNilCheckClosure(closure *ssa.Value, k callKind) {
+ if Arch.LinkArch.Family == sys.Wasm || buildcfg.GOOS == "aix" && k != callGo {
+ // On AIX, the closure needs to be verified as fn can be nil, except if it's a call go. This needs to be handled by the runtime to have the "go of nil func value" error.
+ // TODO(neelance): On other architectures this should be eliminated by the optimization steps
+ s.nilCheck(closure)
+ }
+}
+
+// getClosureAndRcvr returns values for the appropriate closure and receiver of an
+// interface call
+func (s *state) getClosureAndRcvr(fn *ir.SelectorExpr) (*ssa.Value, *ssa.Value) {
+ i := s.expr(fn.X)
+ itab := s.newValue1(ssa.OpITab, types.Types[types.TUINTPTR], i)
+ s.nilCheck(itab)
+ itabidx := fn.Offset() + 2*int64(types.PtrSize) + 8 // offset of fun field in runtime.itab
+ closure := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.UintptrPtr, itabidx, itab)
+ rcvr := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, i)
+ return closure, rcvr
+}
+
+// etypesign returns the signed-ness of e, for integer/pointer etypes.
+// -1 means signed, +1 means unsigned, 0 means non-integer/non-pointer.
+func etypesign(e types.Kind) int8 {
+ switch e {
+ case types.TINT8, types.TINT16, types.TINT32, types.TINT64, types.TINT:
+ return -1
+ case types.TUINT8, types.TUINT16, types.TUINT32, types.TUINT64, types.TUINT, types.TUINTPTR, types.TUNSAFEPTR:
+ return +1
+ }
+ return 0
+}
+
+// addr converts the address of the expression n to SSA, adds it to s and returns the SSA result.
+// The value that the returned Value represents is guaranteed to be non-nil.
+func (s *state) addr(n ir.Node) *ssa.Value {
+ if n.Op() != ir.ONAME {
+ s.pushLine(n.Pos())
+ defer s.popLine()
+ }
+
+ if s.canSSA(n) {
+ s.Fatalf("addr of canSSA expression: %+v", n)
+ }
+
+ t := types.NewPtr(n.Type())
+ linksymOffset := func(lsym *obj.LSym, offset int64) *ssa.Value {
+ v := s.entryNewValue1A(ssa.OpAddr, t, lsym, s.sb)
+ // TODO: Make OpAddr use AuxInt as well as Aux.
+ if offset != 0 {
+ v = s.entryNewValue1I(ssa.OpOffPtr, v.Type, offset, v)
+ }
+ return v
+ }
+ switch n.Op() {
+ case ir.OLINKSYMOFFSET:
+ no := n.(*ir.LinksymOffsetExpr)
+ return linksymOffset(no.Linksym, no.Offset_)
+ case ir.ONAME:
+ n := n.(*ir.Name)
+ if n.Heapaddr != nil {
+ return s.expr(n.Heapaddr)
+ }
+ switch n.Class {
+ case ir.PEXTERN:
+ // global variable
+ return linksymOffset(n.Linksym(), 0)
+ case ir.PPARAM:
+ // parameter slot
+ v := s.decladdrs[n]
+ if v != nil {
+ return v
+ }
+ s.Fatalf("addr of undeclared ONAME %v. declared: %v", n, s.decladdrs)
+ return nil
+ case ir.PAUTO:
+ return s.newValue2Apos(ssa.OpLocalAddr, t, n, s.sp, s.mem(), !ir.IsAutoTmp(n))
+
+ case ir.PPARAMOUT: // Same as PAUTO -- cannot generate LEA early.
+ // ensure that we reuse symbols for out parameters so
+ // that cse works on their addresses
+ return s.newValue2Apos(ssa.OpLocalAddr, t, n, s.sp, s.mem(), true)
+ default:
+ s.Fatalf("variable address class %v not implemented", n.Class)
+ return nil
+ }
+ case ir.ORESULT:
+ // load return from callee
+ n := n.(*ir.ResultExpr)
+ return s.resultAddrOfCall(s.prevCall, n.Index, n.Type())
+ case ir.OINDEX:
+ n := n.(*ir.IndexExpr)
+ if n.X.Type().IsSlice() {
+ a := s.expr(n.X)
+ i := s.expr(n.Index)
+ len := s.newValue1(ssa.OpSliceLen, types.Types[types.TINT], a)
+ i = s.boundsCheck(i, len, ssa.BoundsIndex, n.Bounded())
+ p := s.newValue1(ssa.OpSlicePtr, t, a)
+ return s.newValue2(ssa.OpPtrIndex, t, p, i)
+ } else { // array
+ a := s.addr(n.X)
+ i := s.expr(n.Index)
+ len := s.constInt(types.Types[types.TINT], n.X.Type().NumElem())
+ i = s.boundsCheck(i, len, ssa.BoundsIndex, n.Bounded())
+ return s.newValue2(ssa.OpPtrIndex, types.NewPtr(n.X.Type().Elem()), a, i)
+ }
+ case ir.ODEREF:
+ n := n.(*ir.StarExpr)
+ return s.exprPtr(n.X, n.Bounded(), n.Pos())
+ case ir.ODOT:
+ n := n.(*ir.SelectorExpr)
+ p := s.addr(n.X)
+ return s.newValue1I(ssa.OpOffPtr, t, n.Offset(), p)
+ case ir.ODOTPTR:
+ n := n.(*ir.SelectorExpr)
+ p := s.exprPtr(n.X, n.Bounded(), n.Pos())
+ return s.newValue1I(ssa.OpOffPtr, t, n.Offset(), p)
+ case ir.OCONVNOP:
+ n := n.(*ir.ConvExpr)
+ if n.Type() == n.X.Type() {
+ return s.addr(n.X)
+ }
+ addr := s.addr(n.X)
+ return s.newValue1(ssa.OpCopy, t, addr) // ensure that addr has the right type
+ case ir.OCALLFUNC, ir.OCALLINTER:
+ n := n.(*ir.CallExpr)
+ return s.callAddr(n, callNormal)
+ case ir.ODOTTYPE, ir.ODYNAMICDOTTYPE:
+ var v *ssa.Value
+ if n.Op() == ir.ODOTTYPE {
+ v, _ = s.dottype(n.(*ir.TypeAssertExpr), false)
+ } else {
+ v, _ = s.dynamicDottype(n.(*ir.DynamicTypeAssertExpr), false)
+ }
+ if v.Op != ssa.OpLoad {
+ s.Fatalf("dottype of non-load")
+ }
+ if v.Args[1] != s.mem() {
+ s.Fatalf("memory no longer live from dottype load")
+ }
+ return v.Args[0]
+ default:
+ s.Fatalf("unhandled addr %v", n.Op())
+ return nil
+ }
+}
+
+// canSSA reports whether n is SSA-able.
+// n must be an ONAME (or an ODOT sequence with an ONAME base).
+func (s *state) canSSA(n ir.Node) bool {
+ if base.Flag.N != 0 {
+ return false
+ }
+ for {
+ nn := n
+ if nn.Op() == ir.ODOT {
+ nn := nn.(*ir.SelectorExpr)
+ n = nn.X
+ continue
+ }
+ if nn.Op() == ir.OINDEX {
+ nn := nn.(*ir.IndexExpr)
+ if nn.X.Type().IsArray() {
+ n = nn.X
+ continue
+ }
+ }
+ break
+ }
+ if n.Op() != ir.ONAME {
+ return false
+ }
+ return s.canSSAName(n.(*ir.Name)) && TypeOK(n.Type())
+}
+
+func (s *state) canSSAName(name *ir.Name) bool {
+ if name.Addrtaken() || !name.OnStack() {
+ return false
+ }
+ switch name.Class {
+ case ir.PPARAMOUT:
+ if s.hasdefer {
+ // TODO: handle this case? Named return values must be
+ // in memory so that the deferred function can see them.
+ // Maybe do: if !strings.HasPrefix(n.String(), "~") { return false }
+ // Or maybe not, see issue 18860. Even unnamed return values
+ // must be written back so if a defer recovers, the caller can see them.
+ return false
+ }
+ if s.cgoUnsafeArgs {
+ // Cgo effectively takes the address of all result args,
+ // but the compiler can't see that.
+ return false
+ }
+ }
+ return true
+ // TODO: try to make more variables SSAable?
+}
+
+// TypeOK reports whether variables of type t are SSA-able.
+func TypeOK(t *types.Type) bool {
+ types.CalcSize(t)
+ if t.Size() > int64(4*types.PtrSize) {
+ // 4*Widthptr is an arbitrary constant. We want it
+ // to be at least 3*Widthptr so slices can be registerized.
+ // Too big and we'll introduce too much register pressure.
+ return false
+ }
+ switch t.Kind() {
+ case types.TARRAY:
+ // We can't do larger arrays because dynamic indexing is
+ // not supported on SSA variables.
+ // TODO: allow if all indexes are constant.
+ if t.NumElem() <= 1 {
+ return TypeOK(t.Elem())
+ }
+ return false
+ case types.TSTRUCT:
+ if t.NumFields() > ssa.MaxStruct {
+ return false
+ }
+ for _, t1 := range t.Fields().Slice() {
+ if !TypeOK(t1.Type) {
+ return false
+ }
+ }
+ return true
+ default:
+ return true
+ }
+}
+
+// exprPtr evaluates n to a pointer and nil-checks it.
+func (s *state) exprPtr(n ir.Node, bounded bool, lineno src.XPos) *ssa.Value {
+ p := s.expr(n)
+ if bounded || n.NonNil() {
+ if s.f.Frontend().Debug_checknil() && lineno.Line() > 1 {
+ s.f.Warnl(lineno, "removed nil check")
+ }
+ return p
+ }
+ s.nilCheck(p)
+ return p
+}
+
+// nilCheck generates nil pointer checking code.
+// Used only for automatically inserted nil checks,
+// not for user code like 'x != nil'.
+func (s *state) nilCheck(ptr *ssa.Value) {
+ if base.Debug.DisableNil != 0 || s.curfn.NilCheckDisabled() {
+ return
+ }
+ s.newValue2(ssa.OpNilCheck, types.TypeVoid, ptr, s.mem())
+}
+
+// boundsCheck generates bounds checking code. Checks if 0 <= idx <[=] len, branches to exit if not.
+// Starts a new block on return.
+// On input, len must be converted to full int width and be nonnegative.
+// Returns idx converted to full int width.
+// If bounded is true then caller guarantees the index is not out of bounds
+// (but boundsCheck will still extend the index to full int width).
+func (s *state) boundsCheck(idx, len *ssa.Value, kind ssa.BoundsKind, bounded bool) *ssa.Value {
+ idx = s.extendIndex(idx, len, kind, bounded)
+
+ if bounded || base.Flag.B != 0 {
+ // If bounded or bounds checking is flag-disabled, then no check necessary,
+ // just return the extended index.
+ //
+ // Here, bounded == true if the compiler generated the index itself,
+ // such as in the expansion of a slice initializer. These indexes are
+ // compiler-generated, not Go program variables, so they cannot be
+ // attacker-controlled, so we can omit Spectre masking as well.
+ //
+ // Note that we do not want to omit Spectre masking in code like:
+ //
+ // if 0 <= i && i < len(x) {
+ // use(x[i])
+ // }
+ //
+ // Lucky for us, bounded==false for that code.
+ // In that case (handled below), we emit a bound check (and Spectre mask)
+ // and then the prove pass will remove the bounds check.
+ // In theory the prove pass could potentially remove certain
+ // Spectre masks, but it's very delicate and probably better
+ // to be conservative and leave them all in.
+ return idx
+ }
+
+ bNext := s.f.NewBlock(ssa.BlockPlain)
+ bPanic := s.f.NewBlock(ssa.BlockExit)
+
+ if !idx.Type.IsSigned() {
+ switch kind {
+ case ssa.BoundsIndex:
+ kind = ssa.BoundsIndexU
+ case ssa.BoundsSliceAlen:
+ kind = ssa.BoundsSliceAlenU
+ case ssa.BoundsSliceAcap:
+ kind = ssa.BoundsSliceAcapU
+ case ssa.BoundsSliceB:
+ kind = ssa.BoundsSliceBU
+ case ssa.BoundsSlice3Alen:
+ kind = ssa.BoundsSlice3AlenU
+ case ssa.BoundsSlice3Acap:
+ kind = ssa.BoundsSlice3AcapU
+ case ssa.BoundsSlice3B:
+ kind = ssa.BoundsSlice3BU
+ case ssa.BoundsSlice3C:
+ kind = ssa.BoundsSlice3CU
+ }
+ }
+
+ var cmp *ssa.Value
+ if kind == ssa.BoundsIndex || kind == ssa.BoundsIndexU {
+ cmp = s.newValue2(ssa.OpIsInBounds, types.Types[types.TBOOL], idx, len)
+ } else {
+ cmp = s.newValue2(ssa.OpIsSliceInBounds, types.Types[types.TBOOL], idx, len)
+ }
+ b := s.endBlock()
+ b.Kind = ssa.BlockIf
+ b.SetControl(cmp)
+ b.Likely = ssa.BranchLikely
+ b.AddEdgeTo(bNext)
+ b.AddEdgeTo(bPanic)
+
+ s.startBlock(bPanic)
+ if Arch.LinkArch.Family == sys.Wasm {
+ // TODO(khr): figure out how to do "register" based calling convention for bounds checks.
+ // Should be similar to gcWriteBarrier, but I can't make it work.
+ s.rtcall(BoundsCheckFunc[kind], false, nil, idx, len)
+ } else {
+ mem := s.newValue3I(ssa.OpPanicBounds, types.TypeMem, int64(kind), idx, len, s.mem())
+ s.endBlock().SetControl(mem)
+ }
+ s.startBlock(bNext)
+
+ // In Spectre index mode, apply an appropriate mask to avoid speculative out-of-bounds accesses.
+ if base.Flag.Cfg.SpectreIndex {
+ op := ssa.OpSpectreIndex
+ if kind != ssa.BoundsIndex && kind != ssa.BoundsIndexU {
+ op = ssa.OpSpectreSliceIndex
+ }
+ idx = s.newValue2(op, types.Types[types.TINT], idx, len)
+ }
+
+ return idx
+}
+
+// If cmp (a bool) is false, panic using the given function.
+func (s *state) check(cmp *ssa.Value, fn *obj.LSym) {
+ b := s.endBlock()
+ b.Kind = ssa.BlockIf
+ b.SetControl(cmp)
+ b.Likely = ssa.BranchLikely
+ bNext := s.f.NewBlock(ssa.BlockPlain)
+ line := s.peekPos()
+ pos := base.Ctxt.PosTable.Pos(line)
+ fl := funcLine{f: fn, base: pos.Base(), line: pos.Line()}
+ bPanic := s.panics[fl]
+ if bPanic == nil {
+ bPanic = s.f.NewBlock(ssa.BlockPlain)
+ s.panics[fl] = bPanic
+ s.startBlock(bPanic)
+ // The panic call takes/returns memory to ensure that the right
+ // memory state is observed if the panic happens.
+ s.rtcall(fn, false, nil)
+ }
+ b.AddEdgeTo(bNext)
+ b.AddEdgeTo(bPanic)
+ s.startBlock(bNext)
+}
+
+func (s *state) intDivide(n ir.Node, a, b *ssa.Value) *ssa.Value {
+ needcheck := true
+ switch b.Op {
+ case ssa.OpConst8, ssa.OpConst16, ssa.OpConst32, ssa.OpConst64:
+ if b.AuxInt != 0 {
+ needcheck = false
+ }
+ }
+ if needcheck {
+ // do a size-appropriate check for zero
+ cmp := s.newValue2(s.ssaOp(ir.ONE, n.Type()), types.Types[types.TBOOL], b, s.zeroVal(n.Type()))
+ s.check(cmp, ir.Syms.Panicdivide)
+ }
+ return s.newValue2(s.ssaOp(n.Op(), n.Type()), a.Type, a, b)
+}
+
+// rtcall issues a call to the given runtime function fn with the listed args.
+// Returns a slice of results of the given result types.
+// The call is added to the end of the current block.
+// If returns is false, the block is marked as an exit block.
+func (s *state) rtcall(fn *obj.LSym, returns bool, results []*types.Type, args ...*ssa.Value) []*ssa.Value {
+ s.prevCall = nil
+ // Write args to the stack
+ off := base.Ctxt.FixedFrameSize()
+ var callArgs []*ssa.Value
+ var callArgTypes []*types.Type
+
+ for _, arg := range args {
+ t := arg.Type
+ off = types.Rnd(off, t.Alignment())
+ size := t.Size()
+ callArgs = append(callArgs, arg)
+ callArgTypes = append(callArgTypes, t)
+ off += size
+ }
+ off = types.Rnd(off, int64(types.RegSize))
+
+ // Accumulate results types and offsets
+ offR := off
+ for _, t := range results {
+ offR = types.Rnd(offR, t.Alignment())
+ offR += t.Size()
+ }
+
+ // Issue call
+ var call *ssa.Value
+ aux := ssa.StaticAuxCall(fn, s.f.ABIDefault.ABIAnalyzeTypes(nil, callArgTypes, results))
+ callArgs = append(callArgs, s.mem())
+ call = s.newValue0A(ssa.OpStaticLECall, aux.LateExpansionResultType(), aux)
+ call.AddArgs(callArgs...)
+ s.vars[memVar] = s.newValue1I(ssa.OpSelectN, types.TypeMem, int64(len(results)), call)
+
+ if !returns {
+ // Finish block
+ b := s.endBlock()
+ b.Kind = ssa.BlockExit
+ b.SetControl(call)
+ call.AuxInt = off - base.Ctxt.FixedFrameSize()
+ if len(results) > 0 {
+ s.Fatalf("panic call can't have results")
+ }
+ return nil
+ }
+
+ // Load results
+ res := make([]*ssa.Value, len(results))
+ for i, t := range results {
+ off = types.Rnd(off, t.Alignment())
+ res[i] = s.resultOfCall(call, int64(i), t)
+ off += t.Size()
+ }
+ off = types.Rnd(off, int64(types.PtrSize))
+
+ // Remember how much callee stack space we needed.
+ call.AuxInt = off
+
+ return res
+}
+
+// do *left = right for type t.
+func (s *state) storeType(t *types.Type, left, right *ssa.Value, skip skipMask, leftIsStmt bool) {
+ s.instrument(t, left, instrumentWrite)
+
+ if skip == 0 && (!t.HasPointers() || ssa.IsStackAddr(left)) {
+ // Known to not have write barrier. Store the whole type.
+ s.vars[memVar] = s.newValue3Apos(ssa.OpStore, types.TypeMem, t, left, right, s.mem(), leftIsStmt)
+ return
+ }
+
+ // store scalar fields first, so write barrier stores for
+ // pointer fields can be grouped together, and scalar values
+ // don't need to be live across the write barrier call.
+ // TODO: if the writebarrier pass knows how to reorder stores,
+ // we can do a single store here as long as skip==0.
+ s.storeTypeScalars(t, left, right, skip)
+ if skip&skipPtr == 0 && t.HasPointers() {
+ s.storeTypePtrs(t, left, right)
+ }
+}
+
+// do *left = right for all scalar (non-pointer) parts of t.
+func (s *state) storeTypeScalars(t *types.Type, left, right *ssa.Value, skip skipMask) {
+ switch {
+ case t.IsBoolean() || t.IsInteger() || t.IsFloat() || t.IsComplex():
+ s.store(t, left, right)
+ case t.IsPtrShaped():
+ if t.IsPtr() && t.Elem().NotInHeap() {
+ s.store(t, left, right) // see issue 42032
+ }
+ // otherwise, no scalar fields.
+ case t.IsString():
+ if skip&skipLen != 0 {
+ return
+ }
+ len := s.newValue1(ssa.OpStringLen, types.Types[types.TINT], right)
+ lenAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, s.config.PtrSize, left)
+ s.store(types.Types[types.TINT], lenAddr, len)
+ case t.IsSlice():
+ if skip&skipLen == 0 {
+ len := s.newValue1(ssa.OpSliceLen, types.Types[types.TINT], right)
+ lenAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, s.config.PtrSize, left)
+ s.store(types.Types[types.TINT], lenAddr, len)
+ }
+ if skip&skipCap == 0 {
+ cap := s.newValue1(ssa.OpSliceCap, types.Types[types.TINT], right)
+ capAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, 2*s.config.PtrSize, left)
+ s.store(types.Types[types.TINT], capAddr, cap)
+ }
+ case t.IsInterface():
+ // itab field doesn't need a write barrier (even though it is a pointer).
+ itab := s.newValue1(ssa.OpITab, s.f.Config.Types.BytePtr, right)
+ s.store(types.Types[types.TUINTPTR], left, itab)
+ case t.IsStruct():
+ n := t.NumFields()
+ for i := 0; i < n; i++ {
+ ft := t.FieldType(i)
+ addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
+ val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
+ s.storeTypeScalars(ft, addr, val, 0)
+ }
+ case t.IsArray() && t.NumElem() == 0:
+ // nothing
+ case t.IsArray() && t.NumElem() == 1:
+ s.storeTypeScalars(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right), 0)
+ default:
+ s.Fatalf("bad write barrier type %v", t)
+ }
+}
+
+// do *left = right for all pointer parts of t.
+func (s *state) storeTypePtrs(t *types.Type, left, right *ssa.Value) {
+ switch {
+ case t.IsPtrShaped():
+ if t.IsPtr() && t.Elem().NotInHeap() {
+ break // see issue 42032
+ }
+ s.store(t, left, right)
+ case t.IsString():
+ ptr := s.newValue1(ssa.OpStringPtr, s.f.Config.Types.BytePtr, right)
+ s.store(s.f.Config.Types.BytePtr, left, ptr)
+ case t.IsSlice():
+ elType := types.NewPtr(t.Elem())
+ ptr := s.newValue1(ssa.OpSlicePtr, elType, right)
+ s.store(elType, left, ptr)
+ case t.IsInterface():
+ // itab field is treated as a scalar.
+ idata := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, right)
+ idataAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.BytePtrPtr, s.config.PtrSize, left)
+ s.store(s.f.Config.Types.BytePtr, idataAddr, idata)
+ case t.IsStruct():
+ n := t.NumFields()
+ for i := 0; i < n; i++ {
+ ft := t.FieldType(i)
+ if !ft.HasPointers() {
+ continue
+ }
+ addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
+ val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
+ s.storeTypePtrs(ft, addr, val)
+ }
+ case t.IsArray() && t.NumElem() == 0:
+ // nothing
+ case t.IsArray() && t.NumElem() == 1:
+ s.storeTypePtrs(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right))
+ default:
+ s.Fatalf("bad write barrier type %v", t)
+ }
+}
+
+// putArg evaluates n for the purpose of passing it as an argument to a function and returns the value for the call.
+func (s *state) putArg(n ir.Node, t *types.Type) *ssa.Value {
+ var a *ssa.Value
+ if !TypeOK(t) {
+ a = s.newValue2(ssa.OpDereference, t, s.addr(n), s.mem())
+ } else {
+ a = s.expr(n)
+ }
+ return a
+}
+
+func (s *state) storeArgWithBase(n ir.Node, t *types.Type, base *ssa.Value, off int64) {
+ pt := types.NewPtr(t)
+ var addr *ssa.Value
+ if base == s.sp {
+ // Use special routine that avoids allocation on duplicate offsets.
+ addr = s.constOffPtrSP(pt, off)
+ } else {
+ addr = s.newValue1I(ssa.OpOffPtr, pt, off, base)
+ }
+
+ if !TypeOK(t) {
+ a := s.addr(n)
+ s.move(t, addr, a)
+ return
+ }
+
+ a := s.expr(n)
+ s.storeType(t, addr, a, 0, false)
+}
+
+// slice computes the slice v[i:j:k] and returns ptr, len, and cap of result.
+// i,j,k may be nil, in which case they are set to their default value.
+// v may be a slice, string or pointer to an array.
+func (s *state) slice(v, i, j, k *ssa.Value, bounded bool) (p, l, c *ssa.Value) {
+ t := v.Type
+ var ptr, len, cap *ssa.Value
+ switch {
+ case t.IsSlice():
+ ptr = s.newValue1(ssa.OpSlicePtr, types.NewPtr(t.Elem()), v)
+ len = s.newValue1(ssa.OpSliceLen, types.Types[types.TINT], v)
+ cap = s.newValue1(ssa.OpSliceCap, types.Types[types.TINT], v)
+ case t.IsString():
+ ptr = s.newValue1(ssa.OpStringPtr, types.NewPtr(types.Types[types.TUINT8]), v)
+ len = s.newValue1(ssa.OpStringLen, types.Types[types.TINT], v)
+ cap = len
+ case t.IsPtr():
+ if !t.Elem().IsArray() {
+ s.Fatalf("bad ptr to array in slice %v\n", t)
+ }
+ s.nilCheck(v)
+ ptr = s.newValue1(ssa.OpCopy, types.NewPtr(t.Elem().Elem()), v)
+ len = s.constInt(types.Types[types.TINT], t.Elem().NumElem())
+ cap = len
+ default:
+ s.Fatalf("bad type in slice %v\n", t)
+ }
+
+ // Set default values
+ if i == nil {
+ i = s.constInt(types.Types[types.TINT], 0)
+ }
+ if j == nil {
+ j = len
+ }
+ three := true
+ if k == nil {
+ three = false
+ k = cap
+ }
+
+ // Panic if slice indices are not in bounds.
+ // Make sure we check these in reverse order so that we're always
+ // comparing against a value known to be nonnegative. See issue 28797.
+ if three {
+ if k != cap {
+ kind := ssa.BoundsSlice3Alen
+ if t.IsSlice() {
+ kind = ssa.BoundsSlice3Acap
+ }
+ k = s.boundsCheck(k, cap, kind, bounded)
+ }
+ if j != k {
+ j = s.boundsCheck(j, k, ssa.BoundsSlice3B, bounded)
+ }
+ i = s.boundsCheck(i, j, ssa.BoundsSlice3C, bounded)
+ } else {
+ if j != k {
+ kind := ssa.BoundsSliceAlen
+ if t.IsSlice() {
+ kind = ssa.BoundsSliceAcap
+ }
+ j = s.boundsCheck(j, k, kind, bounded)
+ }
+ i = s.boundsCheck(i, j, ssa.BoundsSliceB, bounded)
+ }
+
+ // Word-sized integer operations.
+ subOp := s.ssaOp(ir.OSUB, types.Types[types.TINT])
+ mulOp := s.ssaOp(ir.OMUL, types.Types[types.TINT])
+ andOp := s.ssaOp(ir.OAND, types.Types[types.TINT])
+
+ // Calculate the length (rlen) and capacity (rcap) of the new slice.
+ // For strings the capacity of the result is unimportant. However,
+ // we use rcap to test if we've generated a zero-length slice.
+ // Use length of strings for that.
+ rlen := s.newValue2(subOp, types.Types[types.TINT], j, i)
+ rcap := rlen
+ if j != k && !t.IsString() {
+ rcap = s.newValue2(subOp, types.Types[types.TINT], k, i)
+ }
+
+ if (i.Op == ssa.OpConst64 || i.Op == ssa.OpConst32) && i.AuxInt == 0 {
+ // No pointer arithmetic necessary.
+ return ptr, rlen, rcap
+ }
+
+ // Calculate the base pointer (rptr) for the new slice.
+ //
+ // Generate the following code assuming that indexes are in bounds.
+ // The masking is to make sure that we don't generate a slice
+ // that points to the next object in memory. We cannot just set
+ // the pointer to nil because then we would create a nil slice or
+ // string.
+ //
+ // rcap = k - i
+ // rlen = j - i
+ // rptr = ptr + (mask(rcap) & (i * stride))
+ //
+ // Where mask(x) is 0 if x==0 and -1 if x>0 and stride is the width
+ // of the element type.
+ stride := s.constInt(types.Types[types.TINT], ptr.Type.Elem().Size())
+
+ // The delta is the number of bytes to offset ptr by.
+ delta := s.newValue2(mulOp, types.Types[types.TINT], i, stride)
+
+ // If we're slicing to the point where the capacity is zero,
+ // zero out the delta.
+ mask := s.newValue1(ssa.OpSlicemask, types.Types[types.TINT], rcap)
+ delta = s.newValue2(andOp, types.Types[types.TINT], delta, mask)
+
+ // Compute rptr = ptr + delta.
+ rptr := s.newValue2(ssa.OpAddPtr, ptr.Type, ptr, delta)
+
+ return rptr, rlen, rcap
+}
+
+type u642fcvtTab struct {
+ leq, cvt2F, and, rsh, or, add ssa.Op
+ one func(*state, *types.Type, int64) *ssa.Value
+}
+
+var u64_f64 = u642fcvtTab{
+ leq: ssa.OpLeq64,
+ cvt2F: ssa.OpCvt64to64F,
+ and: ssa.OpAnd64,
+ rsh: ssa.OpRsh64Ux64,
+ or: ssa.OpOr64,
+ add: ssa.OpAdd64F,
+ one: (*state).constInt64,
+}
+
+var u64_f32 = u642fcvtTab{
+ leq: ssa.OpLeq64,
+ cvt2F: ssa.OpCvt64to32F,
+ and: ssa.OpAnd64,
+ rsh: ssa.OpRsh64Ux64,
+ or: ssa.OpOr64,
+ add: ssa.OpAdd32F,
+ one: (*state).constInt64,
+}
+
+func (s *state) uint64Tofloat64(n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
+ return s.uint64Tofloat(&u64_f64, n, x, ft, tt)
+}
+
+func (s *state) uint64Tofloat32(n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
+ return s.uint64Tofloat(&u64_f32, n, x, ft, tt)
+}
+
+func (s *state) uint64Tofloat(cvttab *u642fcvtTab, n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
+ // if x >= 0 {
+ // result = (floatY) x
+ // } else {
+ // y = uintX(x) ; y = x & 1
+ // z = uintX(x) ; z = z >> 1
+ // z = z | y
+ // result = floatY(z)
+ // result = result + result
+ // }
+ //
+ // Code borrowed from old code generator.
+ // What's going on: large 64-bit "unsigned" looks like
+ // negative number to hardware's integer-to-float
+ // conversion. However, because the mantissa is only
+ // 63 bits, we don't need the LSB, so instead we do an
+ // unsigned right shift (divide by two), convert, and
+ // double. However, before we do that, we need to be
+ // sure that we do not lose a "1" if that made the
+ // difference in the resulting rounding. Therefore, we
+ // preserve it, and OR (not ADD) it back in. The case
+ // that matters is when the eleven discarded bits are
+ // equal to 10000000001; that rounds up, and the 1 cannot
+ // be lost else it would round down if the LSB of the
+ // candidate mantissa is 0.
+ cmp := s.newValue2(cvttab.leq, types.Types[types.TBOOL], s.zeroVal(ft), x)
+ b := s.endBlock()
+ b.Kind = ssa.BlockIf
+ b.SetControl(cmp)
+ b.Likely = ssa.BranchLikely
+
+ bThen := s.f.NewBlock(ssa.BlockPlain)
+ bElse := s.f.NewBlock(ssa.BlockPlain)
+ bAfter := s.f.NewBlock(ssa.BlockPlain)
+
+ b.AddEdgeTo(bThen)
+ s.startBlock(bThen)
+ a0 := s.newValue1(cvttab.cvt2F, tt, x)
+ s.vars[n] = a0
+ s.endBlock()
+ bThen.AddEdgeTo(bAfter)
+
+ b.AddEdgeTo(bElse)
+ s.startBlock(bElse)
+ one := cvttab.one(s, ft, 1)
+ y := s.newValue2(cvttab.and, ft, x, one)
+ z := s.newValue2(cvttab.rsh, ft, x, one)
+ z = s.newValue2(cvttab.or, ft, z, y)
+ a := s.newValue1(cvttab.cvt2F, tt, z)
+ a1 := s.newValue2(cvttab.add, tt, a, a)
+ s.vars[n] = a1
+ s.endBlock()
+ bElse.AddEdgeTo(bAfter)
+
+ s.startBlock(bAfter)
+ return s.variable(n, n.Type())
+}
+
+type u322fcvtTab struct {
+ cvtI2F, cvtF2F ssa.Op
+}
+
+var u32_f64 = u322fcvtTab{
+ cvtI2F: ssa.OpCvt32to64F,
+ cvtF2F: ssa.OpCopy,
+}
+
+var u32_f32 = u322fcvtTab{
+ cvtI2F: ssa.OpCvt32to32F,
+ cvtF2F: ssa.OpCvt64Fto32F,
+}
+
+func (s *state) uint32Tofloat64(n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
+ return s.uint32Tofloat(&u32_f64, n, x, ft, tt)
+}
+
+func (s *state) uint32Tofloat32(n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
+ return s.uint32Tofloat(&u32_f32, n, x, ft, tt)
+}
+
+func (s *state) uint32Tofloat(cvttab *u322fcvtTab, n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
+ // if x >= 0 {
+ // result = floatY(x)
+ // } else {
+ // result = floatY(float64(x) + (1<<32))
+ // }
+ cmp := s.newValue2(ssa.OpLeq32, types.Types[types.TBOOL], s.zeroVal(ft), x)
+ b := s.endBlock()
+ b.Kind = ssa.BlockIf
+ b.SetControl(cmp)
+ b.Likely = ssa.BranchLikely
+
+ bThen := s.f.NewBlock(ssa.BlockPlain)
+ bElse := s.f.NewBlock(ssa.BlockPlain)
+ bAfter := s.f.NewBlock(ssa.BlockPlain)
+
+ b.AddEdgeTo(bThen)
+ s.startBlock(bThen)
+ a0 := s.newValue1(cvttab.cvtI2F, tt, x)
+ s.vars[n] = a0
+ s.endBlock()
+ bThen.AddEdgeTo(bAfter)
+
+ b.AddEdgeTo(bElse)
+ s.startBlock(bElse)
+ a1 := s.newValue1(ssa.OpCvt32to64F, types.Types[types.TFLOAT64], x)
+ twoToThe32 := s.constFloat64(types.Types[types.TFLOAT64], float64(1<<32))
+ a2 := s.newValue2(ssa.OpAdd64F, types.Types[types.TFLOAT64], a1, twoToThe32)
+ a3 := s.newValue1(cvttab.cvtF2F, tt, a2)
+
+ s.vars[n] = a3
+ s.endBlock()
+ bElse.AddEdgeTo(bAfter)
+
+ s.startBlock(bAfter)
+ return s.variable(n, n.Type())
+}
+
+// referenceTypeBuiltin generates code for the len/cap builtins for maps and channels.
+func (s *state) referenceTypeBuiltin(n *ir.UnaryExpr, x *ssa.Value) *ssa.Value {
+ if !n.X.Type().IsMap() && !n.X.Type().IsChan() {
+ s.Fatalf("node must be a map or a channel")
+ }
+ // if n == nil {
+ // return 0
+ // } else {
+ // // len
+ // return *((*int)n)
+ // // cap
+ // return *(((*int)n)+1)
+ // }
+ lenType := n.Type()
+ nilValue := s.constNil(types.Types[types.TUINTPTR])
+ cmp := s.newValue2(ssa.OpEqPtr, types.Types[types.TBOOL], x, nilValue)
+ b := s.endBlock()
+ b.Kind = ssa.BlockIf
+ b.SetControl(cmp)
+ b.Likely = ssa.BranchUnlikely
+
+ bThen := s.f.NewBlock(ssa.BlockPlain)
+ bElse := s.f.NewBlock(ssa.BlockPlain)
+ bAfter := s.f.NewBlock(ssa.BlockPlain)
+
+ // length/capacity of a nil map/chan is zero
+ b.AddEdgeTo(bThen)
+ s.startBlock(bThen)
+ s.vars[n] = s.zeroVal(lenType)
+ s.endBlock()
+ bThen.AddEdgeTo(bAfter)
+
+ b.AddEdgeTo(bElse)
+ s.startBlock(bElse)
+ switch n.Op() {
+ case ir.OLEN:
+ // length is stored in the first word for map/chan
+ s.vars[n] = s.load(lenType, x)
+ case ir.OCAP:
+ // capacity is stored in the second word for chan
+ sw := s.newValue1I(ssa.OpOffPtr, lenType.PtrTo(), lenType.Size(), x)
+ s.vars[n] = s.load(lenType, sw)
+ default:
+ s.Fatalf("op must be OLEN or OCAP")
+ }
+ s.endBlock()
+ bElse.AddEdgeTo(bAfter)
+
+ s.startBlock(bAfter)
+ return s.variable(n, lenType)
+}
+
+type f2uCvtTab struct {
+ ltf, cvt2U, subf, or ssa.Op
+ floatValue func(*state, *types.Type, float64) *ssa.Value
+ intValue func(*state, *types.Type, int64) *ssa.Value
+ cutoff uint64
+}
+
+var f32_u64 = f2uCvtTab{
+ ltf: ssa.OpLess32F,
+ cvt2U: ssa.OpCvt32Fto64,
+ subf: ssa.OpSub32F,
+ or: ssa.OpOr64,
+ floatValue: (*state).constFloat32,
+ intValue: (*state).constInt64,
+ cutoff: 1 << 63,
+}
+
+var f64_u64 = f2uCvtTab{
+ ltf: ssa.OpLess64F,
+ cvt2U: ssa.OpCvt64Fto64,
+ subf: ssa.OpSub64F,
+ or: ssa.OpOr64,
+ floatValue: (*state).constFloat64,
+ intValue: (*state).constInt64,
+ cutoff: 1 << 63,
+}
+
+var f32_u32 = f2uCvtTab{
+ ltf: ssa.OpLess32F,
+ cvt2U: ssa.OpCvt32Fto32,
+ subf: ssa.OpSub32F,
+ or: ssa.OpOr32,
+ floatValue: (*state).constFloat32,
+ intValue: func(s *state, t *types.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) },
+ cutoff: 1 << 31,
+}
+
+var f64_u32 = f2uCvtTab{
+ ltf: ssa.OpLess64F,
+ cvt2U: ssa.OpCvt64Fto32,
+ subf: ssa.OpSub64F,
+ or: ssa.OpOr32,
+ floatValue: (*state).constFloat64,
+ intValue: func(s *state, t *types.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) },
+ cutoff: 1 << 31,
+}
+
+func (s *state) float32ToUint64(n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
+ return s.floatToUint(&f32_u64, n, x, ft, tt)
+}
+func (s *state) float64ToUint64(n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
+ return s.floatToUint(&f64_u64, n, x, ft, tt)
+}
+
+func (s *state) float32ToUint32(n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
+ return s.floatToUint(&f32_u32, n, x, ft, tt)
+}
+
+func (s *state) float64ToUint32(n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
+ return s.floatToUint(&f64_u32, n, x, ft, tt)
+}
+
+func (s *state) floatToUint(cvttab *f2uCvtTab, n ir.Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value {
+ // cutoff:=1<<(intY_Size-1)
+ // if x < floatX(cutoff) {
+ // result = uintY(x)
+ // } else {
+ // y = x - floatX(cutoff)
+ // z = uintY(y)
+ // result = z | -(cutoff)
+ // }
+ cutoff := cvttab.floatValue(s, ft, float64(cvttab.cutoff))
+ cmp := s.newValue2(cvttab.ltf, types.Types[types.TBOOL], x, cutoff)
+ b := s.endBlock()
+ b.Kind = ssa.BlockIf
+ b.SetControl(cmp)
+ b.Likely = ssa.BranchLikely
+
+ bThen := s.f.NewBlock(ssa.BlockPlain)
+ bElse := s.f.NewBlock(ssa.BlockPlain)
+ bAfter := s.f.NewBlock(ssa.BlockPlain)
+
+ b.AddEdgeTo(bThen)
+ s.startBlock(bThen)
+ a0 := s.newValue1(cvttab.cvt2U, tt, x)
+ s.vars[n] = a0
+ s.endBlock()
+ bThen.AddEdgeTo(bAfter)
+
+ b.AddEdgeTo(bElse)
+ s.startBlock(bElse)
+ y := s.newValue2(cvttab.subf, ft, x, cutoff)
+ y = s.newValue1(cvttab.cvt2U, tt, y)
+ z := cvttab.intValue(s, tt, int64(-cvttab.cutoff))
+ a1 := s.newValue2(cvttab.or, tt, y, z)
+ s.vars[n] = a1
+ s.endBlock()
+ bElse.AddEdgeTo(bAfter)
+
+ s.startBlock(bAfter)
+ return s.variable(n, n.Type())
+}
+
+// dottype generates SSA for a type assertion node.
+// commaok indicates whether to panic or return a bool.
+// If commaok is false, resok will be nil.
+func (s *state) dottype(n *ir.TypeAssertExpr, commaok bool) (res, resok *ssa.Value) {
+ iface := s.expr(n.X) // input interface
+ target := s.reflectType(n.Type()) // target type
+ var targetItab *ssa.Value
+ if n.Itab != nil {
+ targetItab = s.expr(n.Itab)
+ }
+ return s.dottype1(n.Pos(), n.X.Type(), n.Type(), iface, target, targetItab, commaok)
+}
+
+func (s *state) dynamicDottype(n *ir.DynamicTypeAssertExpr, commaok bool) (res, resok *ssa.Value) {
+ iface := s.expr(n.X)
+ target := s.expr(n.T)
+ var itab *ssa.Value
+ if !n.X.Type().IsEmptyInterface() && !n.Type().IsInterface() {
+ byteptr := s.f.Config.Types.BytePtr
+ itab = target
+ target = s.load(byteptr, s.newValue1I(ssa.OpOffPtr, byteptr, int64(types.PtrSize), itab)) // itab.typ
+ }
+ return s.dottype1(n.Pos(), n.X.Type(), n.Type(), iface, target, itab, commaok)
+}
+
+// dottype1 implements a x.(T) operation. iface is the argument (x), dst is the type we're asserting to (T)
+// and src is the type we're asserting from.
+// target is the *runtime._type of dst.
+// If src is a nonempty interface and dst is not an interface, targetItab is an itab representing (dst, src). Otherwise it is nil.
+// commaok is true if the caller wants a boolean success value. Otherwise, the generated code panics if the conversion fails.
+func (s *state) dottype1(pos src.XPos, src, dst *types.Type, iface, target, targetItab *ssa.Value, commaok bool) (res, resok *ssa.Value) {
+ byteptr := s.f.Config.Types.BytePtr
+ if dst.IsInterface() {
+ if dst.IsEmptyInterface() {
+ // Converting to an empty interface.
+ // Input could be an empty or nonempty interface.
+ if base.Debug.TypeAssert > 0 {
+ base.WarnfAt(pos, "type assertion inlined")
+ }
+
+ // Get itab/type field from input.
+ itab := s.newValue1(ssa.OpITab, byteptr, iface)
+ // Conversion succeeds iff that field is not nil.
+ cond := s.newValue2(ssa.OpNeqPtr, types.Types[types.TBOOL], itab, s.constNil(byteptr))
+
+ if src.IsEmptyInterface() && commaok {
+ // Converting empty interface to empty interface with ,ok is just a nil check.
+ return iface, cond
+ }
+
+ // Branch on nilness.
+ b := s.endBlock()
+ b.Kind = ssa.BlockIf
+ b.SetControl(cond)
+ b.Likely = ssa.BranchLikely
+ bOk := s.f.NewBlock(ssa.BlockPlain)
+ bFail := s.f.NewBlock(ssa.BlockPlain)
+ b.AddEdgeTo(bOk)
+ b.AddEdgeTo(bFail)
+
+ if !commaok {
+ // On failure, panic by calling panicnildottype.
+ s.startBlock(bFail)
+ s.rtcall(ir.Syms.Panicnildottype, false, nil, target)
+
+ // On success, return (perhaps modified) input interface.
+ s.startBlock(bOk)
+ if src.IsEmptyInterface() {
+ res = iface // Use input interface unchanged.
+ return
+ }
+ // Load type out of itab, build interface with existing idata.
+ off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(types.PtrSize), itab)
+ typ := s.load(byteptr, off)
+ idata := s.newValue1(ssa.OpIData, byteptr, iface)
+ res = s.newValue2(ssa.OpIMake, dst, typ, idata)
+ return
+ }
+
+ s.startBlock(bOk)
+ // nonempty -> empty
+ // Need to load type from itab
+ off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(types.PtrSize), itab)
+ s.vars[typVar] = s.load(byteptr, off)
+ s.endBlock()
+
+ // itab is nil, might as well use that as the nil result.
+ s.startBlock(bFail)
+ s.vars[typVar] = itab
+ s.endBlock()
+
+ // Merge point.
+ bEnd := s.f.NewBlock(ssa.BlockPlain)
+ bOk.AddEdgeTo(bEnd)
+ bFail.AddEdgeTo(bEnd)
+ s.startBlock(bEnd)
+ idata := s.newValue1(ssa.OpIData, byteptr, iface)
+ res = s.newValue2(ssa.OpIMake, dst, s.variable(typVar, byteptr), idata)
+ resok = cond
+ delete(s.vars, typVar)
+ return
+ }
+ // converting to a nonempty interface needs a runtime call.
+ if base.Debug.TypeAssert > 0 {
+ base.WarnfAt(pos, "type assertion not inlined")
+ }
+ if !commaok {
+ fn := ir.Syms.AssertI2I
+ if src.IsEmptyInterface() {
+ fn = ir.Syms.AssertE2I
+ }
+ data := s.newValue1(ssa.OpIData, types.Types[types.TUNSAFEPTR], iface)
+ tab := s.newValue1(ssa.OpITab, byteptr, iface)
+ tab = s.rtcall(fn, true, []*types.Type{byteptr}, target, tab)[0]
+ return s.newValue2(ssa.OpIMake, dst, tab, data), nil
+ }
+ fn := ir.Syms.AssertI2I2
+ if src.IsEmptyInterface() {
+ fn = ir.Syms.AssertE2I2
+ }
+ res = s.rtcall(fn, true, []*types.Type{dst}, target, iface)[0]
+ resok = s.newValue2(ssa.OpNeqInter, types.Types[types.TBOOL], res, s.constInterface(dst))
+ return
+ }
+
+ if base.Debug.TypeAssert > 0 {
+ base.WarnfAt(pos, "type assertion inlined")
+ }
+
+ // Converting to a concrete type.
+ direct := types.IsDirectIface(dst)
+ itab := s.newValue1(ssa.OpITab, byteptr, iface) // type word of interface
+ if base.Debug.TypeAssert > 0 {
+ base.WarnfAt(pos, "type assertion inlined")
+ }
+ var wantedFirstWord *ssa.Value
+ if src.IsEmptyInterface() {
+ // Looking for pointer to target type.
+ wantedFirstWord = target
+ } else {
+ // Looking for pointer to itab for target type and source interface.
+ wantedFirstWord = targetItab
+ }
+
+ var tmp ir.Node // temporary for use with large types
+ var addr *ssa.Value // address of tmp
+ if commaok && !TypeOK(dst) {
+ // unSSAable type, use temporary.
+ // TODO: get rid of some of these temporaries.
+ tmp, addr = s.temp(pos, dst)
+ }
+
+ cond := s.newValue2(ssa.OpEqPtr, types.Types[types.TBOOL], itab, wantedFirstWord)
+ b := s.endBlock()
+ b.Kind = ssa.BlockIf
+ b.SetControl(cond)
+ b.Likely = ssa.BranchLikely
+
+ bOk := s.f.NewBlock(ssa.BlockPlain)
+ bFail := s.f.NewBlock(ssa.BlockPlain)
+ b.AddEdgeTo(bOk)
+ b.AddEdgeTo(bFail)
+
+ if !commaok {
+ // on failure, panic by calling panicdottype
+ s.startBlock(bFail)
+ taddr := s.reflectType(src)
+ if src.IsEmptyInterface() {
+ s.rtcall(ir.Syms.PanicdottypeE, false, nil, itab, target, taddr)
+ } else {
+ s.rtcall(ir.Syms.PanicdottypeI, false, nil, itab, target, taddr)
+ }
+
+ // on success, return data from interface
+ s.startBlock(bOk)
+ if direct {
+ return s.newValue1(ssa.OpIData, dst, iface), nil
+ }
+ p := s.newValue1(ssa.OpIData, types.NewPtr(dst), iface)
+ return s.load(dst, p), nil
+ }
+
+ // commaok is the more complicated case because we have
+ // a control flow merge point.
+ bEnd := s.f.NewBlock(ssa.BlockPlain)
+ // Note that we need a new valVar each time (unlike okVar where we can
+ // reuse the variable) because it might have a different type every time.
+ valVar := ssaMarker("val")
+
+ // type assertion succeeded
+ s.startBlock(bOk)
+ if tmp == nil {
+ if direct {
+ s.vars[valVar] = s.newValue1(ssa.OpIData, dst, iface)
+ } else {
+ p := s.newValue1(ssa.OpIData, types.NewPtr(dst), iface)
+ s.vars[valVar] = s.load(dst, p)
+ }
+ } else {
+ p := s.newValue1(ssa.OpIData, types.NewPtr(dst), iface)
+ s.move(dst, addr, p)
+ }
+ s.vars[okVar] = s.constBool(true)
+ s.endBlock()
+ bOk.AddEdgeTo(bEnd)
+
+ // type assertion failed
+ s.startBlock(bFail)
+ if tmp == nil {
+ s.vars[valVar] = s.zeroVal(dst)
+ } else {
+ s.zero(dst, addr)
+ }
+ s.vars[okVar] = s.constBool(false)
+ s.endBlock()
+ bFail.AddEdgeTo(bEnd)
+
+ // merge point
+ s.startBlock(bEnd)
+ if tmp == nil {
+ res = s.variable(valVar, dst)
+ delete(s.vars, valVar)
+ } else {
+ res = s.load(dst, addr)
+ s.vars[memVar] = s.newValue1A(ssa.OpVarKill, types.TypeMem, tmp.(*ir.Name), s.mem())
+ }
+ resok = s.variable(okVar, types.Types[types.TBOOL])
+ delete(s.vars, okVar)
+ return res, resok
+}
+
+// temp allocates a temp of type t at position pos
+func (s *state) temp(pos src.XPos, t *types.Type) (*ir.Name, *ssa.Value) {
+ tmp := typecheck.TempAt(pos, s.curfn, t)
+ s.vars[memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, tmp, s.mem())
+ addr := s.addr(tmp)
+ return tmp, addr
+}
+
+// variable returns the value of a variable at the current location.
+func (s *state) variable(n ir.Node, t *types.Type) *ssa.Value {
+ v := s.vars[n]
+ if v != nil {
+ return v
+ }
+ v = s.fwdVars[n]
+ if v != nil {
+ return v
+ }
+
+ if s.curBlock == s.f.Entry {
+ // No variable should be live at entry.
+ s.Fatalf("Value live at entry. It shouldn't be. func %s, node %v, value %v", s.f.Name, n, v)
+ }
+ // Make a FwdRef, which records a value that's live on block input.
+ // We'll find the matching definition as part of insertPhis.
+ v = s.newValue0A(ssa.OpFwdRef, t, fwdRefAux{N: n})
+ s.fwdVars[n] = v
+ if n.Op() == ir.ONAME {
+ s.addNamedValue(n.(*ir.Name), v)
+ }
+ return v
+}
+
+func (s *state) mem() *ssa.Value {
+ return s.variable(memVar, types.TypeMem)
+}
+
+func (s *state) addNamedValue(n *ir.Name, v *ssa.Value) {
+ if n.Class == ir.Pxxx {
+ // Don't track our marker nodes (memVar etc.).
+ return
+ }
+ if ir.IsAutoTmp(n) {
+ // Don't track temporary variables.
+ return
+ }
+ if n.Class == ir.PPARAMOUT {
+ // Don't track named output values. This prevents return values
+ // from being assigned too early. See #14591 and #14762. TODO: allow this.
+ return
+ }
+ loc := ssa.LocalSlot{N: n, Type: n.Type(), Off: 0}
+ values, ok := s.f.NamedValues[loc]
+ if !ok {
+ s.f.Names = append(s.f.Names, &loc)
+ s.f.CanonicalLocalSlots[loc] = &loc
+ }
+ s.f.NamedValues[loc] = append(values, v)
+}
+
+// Branch is an unresolved branch.
+type Branch struct {
+ P *obj.Prog // branch instruction
+ B *ssa.Block // target
+}
+
+// State contains state needed during Prog generation.
+type State struct {
+ ABI obj.ABI
+
+ pp *objw.Progs
+
+ // Branches remembers all the branch instructions we've seen
+ // and where they would like to go.
+ Branches []Branch
+
+ // bstart remembers where each block starts (indexed by block ID)
+ bstart []*obj.Prog
+
+ maxarg int64 // largest frame size for arguments to calls made by the function
+
+ // Map from GC safe points to liveness index, generated by
+ // liveness analysis.
+ livenessMap liveness.Map
+
+ // partLiveArgs includes arguments that may be partially live, for which we
+ // need to generate instructions that spill the argument registers.
+ partLiveArgs map[*ir.Name]bool
+
+ // lineRunStart records the beginning of the current run of instructions
+ // within a single block sharing the same line number
+ // Used to move statement marks to the beginning of such runs.
+ lineRunStart *obj.Prog
+
+ // wasm: The number of values on the WebAssembly stack. This is only used as a safeguard.
+ OnWasmStackSkipped int
+}
+
+func (s *State) FuncInfo() *obj.FuncInfo {
+ return s.pp.CurFunc.LSym.Func()
+}
+
+// Prog appends a new Prog.
+func (s *State) Prog(as obj.As) *obj.Prog {
+ p := s.pp.Prog(as)
+ if objw.LosesStmtMark(as) {
+ return p
+ }
+ // Float a statement start to the beginning of any same-line run.
+ // lineRunStart is reset at block boundaries, which appears to work well.
+ if s.lineRunStart == nil || s.lineRunStart.Pos.Line() != p.Pos.Line() {
+ s.lineRunStart = p
+ } else if p.Pos.IsStmt() == src.PosIsStmt {
+ s.lineRunStart.Pos = s.lineRunStart.Pos.WithIsStmt()
+ p.Pos = p.Pos.WithNotStmt()
+ }
+ return p
+}
+
+// Pc returns the current Prog.
+func (s *State) Pc() *obj.Prog {
+ return s.pp.Next
+}
+
+// SetPos sets the current source position.
+func (s *State) SetPos(pos src.XPos) {
+ s.pp.Pos = pos
+}
+
+// Br emits a single branch instruction and returns the instruction.
+// Not all architectures need the returned instruction, but otherwise
+// the boilerplate is common to all.
+func (s *State) Br(op obj.As, target *ssa.Block) *obj.Prog {
+ p := s.Prog(op)
+ p.To.Type = obj.TYPE_BRANCH
+ s.Branches = append(s.Branches, Branch{P: p, B: target})
+ return p
+}
+
+// DebugFriendlySetPosFrom adjusts Pos.IsStmt subject to heuristics
+// that reduce "jumpy" line number churn when debugging.
+// Spill/fill/copy instructions from the register allocator,
+// phi functions, and instructions with a no-pos position
+// are examples of instructions that can cause churn.
+func (s *State) DebugFriendlySetPosFrom(v *ssa.Value) {
+ switch v.Op {
+ case ssa.OpPhi, ssa.OpCopy, ssa.OpLoadReg, ssa.OpStoreReg:
+ // These are not statements
+ s.SetPos(v.Pos.WithNotStmt())
+ default:
+ p := v.Pos
+ if p != src.NoXPos {
+ // If the position is defined, update the position.
+ // Also convert default IsStmt to NotStmt; only
+ // explicit statement boundaries should appear
+ // in the generated code.
+ if p.IsStmt() != src.PosIsStmt {
+ if s.pp.Pos.IsStmt() == src.PosIsStmt && s.pp.Pos.SameFileAndLine(p) {
+ // If s.pp.Pos already has a statement mark, then it was set here (below) for
+ // the previous value. If an actual instruction had been emitted for that
+ // value, then the statement mark would have been reset. Since the statement
+ // mark of s.pp.Pos was not reset, this position (file/line) still needs a
+ // statement mark on an instruction. If file and line for this value are
+ // the same as the previous value, then the first instruction for this
+ // value will work to take the statement mark. Return early to avoid
+ // resetting the statement mark.
+ //
+ // The reset of s.pp.Pos occurs in (*Progs).Prog() -- if it emits
+ // an instruction, and the instruction's statement mark was set,
+ // and it is not one of the LosesStmtMark instructions,
+ // then Prog() resets the statement mark on the (*Progs).Pos.
+ return
+ }
+ p = p.WithNotStmt()
+ // Calls use the pos attached to v, but copy the statement mark from State
+ }
+ s.SetPos(p)
+ } else {
+ s.SetPos(s.pp.Pos.WithNotStmt())
+ }
+ }
+}
+
+// emit argument info (locations on stack) for traceback.
+func emitArgInfo(e *ssafn, f *ssa.Func, pp *objw.Progs) {
+ ft := e.curfn.Type()
+ if ft.NumRecvs() == 0 && ft.NumParams() == 0 {
+ return
+ }
+
+ x := EmitArgInfo(e.curfn, f.OwnAux.ABIInfo())
+ x.Set(obj.AttrContentAddressable, true)
+ e.curfn.LSym.Func().ArgInfo = x
+
+ // Emit a funcdata pointing at the arg info data.
+ p := pp.Prog(obj.AFUNCDATA)
+ p.From.SetConst(objabi.FUNCDATA_ArgInfo)
+ p.To.Type = obj.TYPE_MEM
+ p.To.Name = obj.NAME_EXTERN
+ p.To.Sym = x
+}
+
+// emit argument info (locations on stack) of f for traceback.
+func EmitArgInfo(f *ir.Func, abiInfo *abi.ABIParamResultInfo) *obj.LSym {
+ x := base.Ctxt.Lookup(fmt.Sprintf("%s.arginfo%d", f.LSym.Name, f.ABI))
+ // NOTE: do not set ContentAddressable here. This may be referenced from
+ // assembly code by name (in this case f is a declaration).
+ // Instead, set it in emitArgInfo above.
+
+ PtrSize := int64(types.PtrSize)
+ uintptrTyp := types.Types[types.TUINTPTR]
+
+ isAggregate := func(t *types.Type) bool {
+ return t.IsStruct() || t.IsArray() || t.IsComplex() || t.IsInterface() || t.IsString() || t.IsSlice()
+ }
+
+ // Populate the data.
+ // The data is a stream of bytes, which contains the offsets and sizes of the
+ // non-aggregate arguments or non-aggregate fields/elements of aggregate-typed
+ // arguments, along with special "operators". Specifically,
+ // - for each non-aggrgate arg/field/element, its offset from FP (1 byte) and
+ // size (1 byte)
+ // - special operators:
+ // - 0xff - end of sequence
+ // - 0xfe - print { (at the start of an aggregate-typed argument)
+ // - 0xfd - print } (at the end of an aggregate-typed argument)
+ // - 0xfc - print ... (more args/fields/elements)
+ // - 0xfb - print _ (offset too large)
+ // These constants need to be in sync with runtime.traceback.go:printArgs.
+ const (
+ _endSeq = 0xff
+ _startAgg = 0xfe
+ _endAgg = 0xfd
+ _dotdotdot = 0xfc
+ _offsetTooLarge = 0xfb
+ _special = 0xf0 // above this are operators, below this are ordinary offsets
+ )
+
+ const (
+ limit = 10 // print no more than 10 args/components
+ maxDepth = 5 // no more than 5 layers of nesting
+
+ // maxLen is a (conservative) upper bound of the byte stream length. For
+ // each arg/component, it has no more than 2 bytes of data (size, offset),
+ // and no more than one {, }, ... at each level (it cannot have both the
+ // data and ... unless it is the last one, just be conservative). Plus 1
+ // for _endSeq.
+ maxLen = (maxDepth*3+2)*limit + 1
+ )
+
+ wOff := 0
+ n := 0
+ writebyte := func(o uint8) { wOff = objw.Uint8(x, wOff, o) }
+
+ // Write one non-aggrgate arg/field/element.
+ write1 := func(sz, offset int64) {
+ if offset >= _special {
+ writebyte(_offsetTooLarge)
+ } else {
+ writebyte(uint8(offset))
+ writebyte(uint8(sz))
+ }
+ n++
+ }
+
+ // Visit t recursively and write it out.
+ // Returns whether to continue visiting.
+ var visitType func(baseOffset int64, t *types.Type, depth int) bool
+ visitType = func(baseOffset int64, t *types.Type, depth int) bool {
+ if n >= limit {
+ writebyte(_dotdotdot)
+ return false
+ }
+ if !isAggregate(t) {
+ write1(t.Size(), baseOffset)
+ return true
+ }
+ writebyte(_startAgg)
+ depth++
+ if depth >= maxDepth {
+ writebyte(_dotdotdot)
+ writebyte(_endAgg)
+ n++
+ return true
+ }
+ switch {
+ case t.IsInterface(), t.IsString():
+ _ = visitType(baseOffset, uintptrTyp, depth) &&
+ visitType(baseOffset+PtrSize, uintptrTyp, depth)
+ case t.IsSlice():
+ _ = visitType(baseOffset, uintptrTyp, depth) &&
+ visitType(baseOffset+PtrSize, uintptrTyp, depth) &&
+ visitType(baseOffset+PtrSize*2, uintptrTyp, depth)
+ case t.IsComplex():
+ _ = visitType(baseOffset, types.FloatForComplex(t), depth) &&
+ visitType(baseOffset+t.Size()/2, types.FloatForComplex(t), depth)
+ case t.IsArray():
+ if t.NumElem() == 0 {
+ n++ // {} counts as a component
+ break
+ }
+ for i := int64(0); i < t.NumElem(); i++ {
+ if !visitType(baseOffset, t.Elem(), depth) {
+ break
+ }
+ baseOffset += t.Elem().Size()
+ }
+ case t.IsStruct():
+ if t.NumFields() == 0 {
+ n++ // {} counts as a component
+ break
+ }
+ for _, field := range t.Fields().Slice() {
+ if !visitType(baseOffset+field.Offset, field.Type, depth) {
+ break
+ }
+ }
+ }
+ writebyte(_endAgg)
+ return true
+ }
+
+ start := 0
+ if strings.Contains(f.LSym.Name, "[") {
+ // Skip the dictionary argument - it is implicit and the user doesn't need to see it.
+ start = 1
+ }
+
+ for _, a := range abiInfo.InParams()[start:] {
+ if !visitType(a.FrameOffset(abiInfo), a.Type, 0) {
+ break
+ }
+ }
+ writebyte(_endSeq)
+ if wOff > maxLen {
+ base.Fatalf("ArgInfo too large")
+ }
+
+ return x
+}
+
+// for wrapper, emit info of wrapped function.
+func emitWrappedFuncInfo(e *ssafn, pp *objw.Progs) {
+ if base.Ctxt.Flag_linkshared {
+ // Relative reference (SymPtrOff) to another shared object doesn't work.
+ // Unfortunate.
+ return
+ }
+
+ wfn := e.curfn.WrappedFunc
+ if wfn == nil {
+ return
+ }
+
+ wsym := wfn.Linksym()
+ x := base.Ctxt.LookupInit(fmt.Sprintf("%s.wrapinfo", wsym.Name), func(x *obj.LSym) {
+ objw.SymPtrOff(x, 0, wsym)
+ x.Set(obj.AttrContentAddressable, true)
+ })
+ e.curfn.LSym.Func().WrapInfo = x
+
+ // Emit a funcdata pointing at the wrap info data.
+ p := pp.Prog(obj.AFUNCDATA)
+ p.From.SetConst(objabi.FUNCDATA_WrapInfo)
+ p.To.Type = obj.TYPE_MEM
+ p.To.Name = obj.NAME_EXTERN
+ p.To.Sym = x
+}
+
+// genssa appends entries to pp for each instruction in f.
+func genssa(f *ssa.Func, pp *objw.Progs) {
+ var s State
+ s.ABI = f.OwnAux.Fn.ABI()
+
+ e := f.Frontend().(*ssafn)
+
+ s.livenessMap, s.partLiveArgs = liveness.Compute(e.curfn, f, e.stkptrsize, pp)
+ emitArgInfo(e, f, pp)
+ argLiveBlockMap, argLiveValueMap := liveness.ArgLiveness(e.curfn, f, pp)
+
+ openDeferInfo := e.curfn.LSym.Func().OpenCodedDeferInfo
+ if openDeferInfo != nil {
+ // This function uses open-coded defers -- write out the funcdata
+ // info that we computed at the end of genssa.
+ p := pp.Prog(obj.AFUNCDATA)
+ p.From.SetConst(objabi.FUNCDATA_OpenCodedDeferInfo)
+ p.To.Type = obj.TYPE_MEM
+ p.To.Name = obj.NAME_EXTERN
+ p.To.Sym = openDeferInfo
+ }
+
+ emitWrappedFuncInfo(e, pp)
+
+ // Remember where each block starts.
+ s.bstart = make([]*obj.Prog, f.NumBlocks())
+ s.pp = pp
+ var progToValue map[*obj.Prog]*ssa.Value
+ var progToBlock map[*obj.Prog]*ssa.Block
+ var valueToProgAfter []*obj.Prog // The first Prog following computation of a value v; v is visible at this point.
+ gatherPrintInfo := f.PrintOrHtmlSSA || ssa.GenssaDump[f.Name]
+ if gatherPrintInfo {
+ progToValue = make(map[*obj.Prog]*ssa.Value, f.NumValues())
+ progToBlock = make(map[*obj.Prog]*ssa.Block, f.NumBlocks())
+ f.Logf("genssa %s\n", f.Name)
+ progToBlock[s.pp.Next] = f.Blocks[0]
+ }
+
+ if base.Ctxt.Flag_locationlists {
+ if cap(f.Cache.ValueToProgAfter) < f.NumValues() {
+ f.Cache.ValueToProgAfter = make([]*obj.Prog, f.NumValues())
+ }
+ valueToProgAfter = f.Cache.ValueToProgAfter[:f.NumValues()]
+ for i := range valueToProgAfter {
+ valueToProgAfter[i] = nil
+ }
+ }
+
+ // If the very first instruction is not tagged as a statement,
+ // debuggers may attribute it to previous function in program.
+ firstPos := src.NoXPos
+ for _, v := range f.Entry.Values {
+ if v.Pos.IsStmt() == src.PosIsStmt {
+ firstPos = v.Pos
+ v.Pos = firstPos.WithDefaultStmt()
+ break
+ }
+ }
+
+ // inlMarks has an entry for each Prog that implements an inline mark.
+ // It maps from that Prog to the global inlining id of the inlined body
+ // which should unwind to this Prog's location.
+ var inlMarks map[*obj.Prog]int32
+ var inlMarkList []*obj.Prog
+
+ // inlMarksByPos maps from a (column 1) source position to the set of
+ // Progs that are in the set above and have that source position.
+ var inlMarksByPos map[src.XPos][]*obj.Prog
+
+ var argLiveIdx int = -1 // argument liveness info index
+
+ // Emit basic blocks
+ for i, b := range f.Blocks {
+ s.bstart[b.ID] = s.pp.Next
+ s.lineRunStart = nil
+ s.SetPos(s.pp.Pos.WithNotStmt()) // It needs a non-empty Pos, but cannot be a statement boundary (yet).
+
+ // Attach a "default" liveness info. Normally this will be
+ // overwritten in the Values loop below for each Value. But
+ // for an empty block this will be used for its control
+ // instruction. We won't use the actual liveness map on a
+ // control instruction. Just mark it something that is
+ // preemptible, unless this function is "all unsafe".
+ s.pp.NextLive = objw.LivenessIndex{StackMapIndex: -1, IsUnsafePoint: liveness.IsUnsafe(f)}
+
+ if idx, ok := argLiveBlockMap[b.ID]; ok && idx != argLiveIdx {
+ argLiveIdx = idx
+ p := s.pp.Prog(obj.APCDATA)
+ p.From.SetConst(objabi.PCDATA_ArgLiveIndex)
+ p.To.SetConst(int64(idx))
+ }
+
+ // Emit values in block
+ Arch.SSAMarkMoves(&s, b)
+ for _, v := range b.Values {
+ x := s.pp.Next
+ s.DebugFriendlySetPosFrom(v)
+
+ if v.Op.ResultInArg0() && v.ResultReg() != v.Args[0].Reg() {
+ v.Fatalf("input[0] and output not in same register %s", v.LongString())
+ }
+
+ switch v.Op {
+ case ssa.OpInitMem:
+ // memory arg needs no code
+ case ssa.OpArg:
+ // input args need no code
+ case ssa.OpSP, ssa.OpSB:
+ // nothing to do
+ case ssa.OpSelect0, ssa.OpSelect1, ssa.OpSelectN, ssa.OpMakeResult:
+ // nothing to do
+ case ssa.OpGetG:
+ // nothing to do when there's a g register,
+ // and checkLower complains if there's not
+ case ssa.OpVarDef, ssa.OpVarLive, ssa.OpKeepAlive, ssa.OpVarKill:
+ // nothing to do; already used by liveness
+ case ssa.OpPhi:
+ CheckLoweredPhi(v)
+ case ssa.OpConvert:
+ // nothing to do; no-op conversion for liveness
+ if v.Args[0].Reg() != v.Reg() {
+ v.Fatalf("OpConvert should be a no-op: %s; %s", v.Args[0].LongString(), v.LongString())
+ }
+ case ssa.OpInlMark:
+ p := Arch.Ginsnop(s.pp)
+ if inlMarks == nil {
+ inlMarks = map[*obj.Prog]int32{}
+ inlMarksByPos = map[src.XPos][]*obj.Prog{}
+ }
+ inlMarks[p] = v.AuxInt32()
+ inlMarkList = append(inlMarkList, p)
+ pos := v.Pos.AtColumn1()
+ inlMarksByPos[pos] = append(inlMarksByPos[pos], p)
+
+ default:
+ // Special case for first line in function; move it to the start (which cannot be a register-valued instruction)
+ if firstPos != src.NoXPos && v.Op != ssa.OpArgIntReg && v.Op != ssa.OpArgFloatReg && v.Op != ssa.OpLoadReg && v.Op != ssa.OpStoreReg {
+ s.SetPos(firstPos)
+ firstPos = src.NoXPos
+ }
+ // Attach this safe point to the next
+ // instruction.
+ s.pp.NextLive = s.livenessMap.Get(v)
+
+ // let the backend handle it
+ Arch.SSAGenValue(&s, v)
+ }
+
+ if idx, ok := argLiveValueMap[v.ID]; ok && idx != argLiveIdx {
+ argLiveIdx = idx
+ p := s.pp.Prog(obj.APCDATA)
+ p.From.SetConst(objabi.PCDATA_ArgLiveIndex)
+ p.To.SetConst(int64(idx))
+ }
+
+ if base.Ctxt.Flag_locationlists {
+ valueToProgAfter[v.ID] = s.pp.Next
+ }
+
+ if gatherPrintInfo {
+ for ; x != s.pp.Next; x = x.Link {
+ progToValue[x] = v
+ }
+ }
+ }
+ // If this is an empty infinite loop, stick a hardware NOP in there so that debuggers are less confused.
+ if s.bstart[b.ID] == s.pp.Next && len(b.Succs) == 1 && b.Succs[0].Block() == b {
+ p := Arch.Ginsnop(s.pp)
+ p.Pos = p.Pos.WithIsStmt()
+ if b.Pos == src.NoXPos {
+ b.Pos = p.Pos // It needs a file, otherwise a no-file non-zero line causes confusion. See #35652.
+ if b.Pos == src.NoXPos {
+ b.Pos = pp.Text.Pos // Sometimes p.Pos is empty. See #35695.
+ }
+ }
+ b.Pos = b.Pos.WithBogusLine() // Debuggers are not good about infinite loops, force a change in line number
+ }
+ // Emit control flow instructions for block
+ var next *ssa.Block
+ if i < len(f.Blocks)-1 && base.Flag.N == 0 {
+ // If -N, leave next==nil so every block with successors
+ // ends in a JMP (except call blocks - plive doesn't like
+ // select{send,recv} followed by a JMP call). Helps keep
+ // line numbers for otherwise empty blocks.
+ next = f.Blocks[i+1]
+ }
+ x := s.pp.Next
+ s.SetPos(b.Pos)
+ Arch.SSAGenBlock(&s, b, next)
+ if gatherPrintInfo {
+ for ; x != s.pp.Next; x = x.Link {
+ progToBlock[x] = b
+ }
+ }
+ }
+ if f.Blocks[len(f.Blocks)-1].Kind == ssa.BlockExit {
+ // We need the return address of a panic call to
+ // still be inside the function in question. So if
+ // it ends in a call which doesn't return, add a
+ // nop (which will never execute) after the call.
+ Arch.Ginsnop(pp)
+ }
+ if openDeferInfo != nil {
+ // When doing open-coded defers, generate a disconnected call to
+ // deferreturn and a return. This will be used to during panic
+ // recovery to unwind the stack and return back to the runtime.
+ s.pp.NextLive = s.livenessMap.DeferReturn
+ p := pp.Prog(obj.ACALL)
+ p.To.Type = obj.TYPE_MEM
+ p.To.Name = obj.NAME_EXTERN
+ p.To.Sym = ir.Syms.Deferreturn
+
+ // Load results into registers. So when a deferred function
+ // recovers a panic, it will return to caller with right results.
+ // The results are already in memory, because they are not SSA'd
+ // when the function has defers (see canSSAName).
+ for _, o := range f.OwnAux.ABIInfo().OutParams() {
+ n := o.Name.(*ir.Name)
+ rts, offs := o.RegisterTypesAndOffsets()
+ for i := range o.Registers {
+ Arch.LoadRegResult(&s, f, rts[i], ssa.ObjRegForAbiReg(o.Registers[i], f.Config), n, offs[i])
+ }
+ }
+
+ pp.Prog(obj.ARET)
+ }
+
+ if inlMarks != nil {
+ // We have some inline marks. Try to find other instructions we're
+ // going to emit anyway, and use those instructions instead of the
+ // inline marks.
+ for p := pp.Text; p != nil; p = p.Link {
+ if p.As == obj.ANOP || p.As == obj.AFUNCDATA || p.As == obj.APCDATA || p.As == obj.ATEXT || p.As == obj.APCALIGN || Arch.LinkArch.Family == sys.Wasm {
+ // Don't use 0-sized instructions as inline marks, because we need
+ // to identify inline mark instructions by pc offset.
+ // (Some of these instructions are sometimes zero-sized, sometimes not.
+ // We must not use anything that even might be zero-sized.)
+ // TODO: are there others?
+ continue
+ }
+ if _, ok := inlMarks[p]; ok {
+ // Don't use inline marks themselves. We don't know
+ // whether they will be zero-sized or not yet.
+ continue
+ }
+ pos := p.Pos.AtColumn1()
+ s := inlMarksByPos[pos]
+ if len(s) == 0 {
+ continue
+ }
+ for _, m := range s {
+ // We found an instruction with the same source position as
+ // some of the inline marks.
+ // Use this instruction instead.
+ p.Pos = p.Pos.WithIsStmt() // promote position to a statement
+ pp.CurFunc.LSym.Func().AddInlMark(p, inlMarks[m])
+ // Make the inline mark a real nop, so it doesn't generate any code.
+ m.As = obj.ANOP
+ m.Pos = src.NoXPos
+ m.From = obj.Addr{}
+ m.To = obj.Addr{}
+ }
+ delete(inlMarksByPos, pos)
+ }
+ // Any unmatched inline marks now need to be added to the inlining tree (and will generate a nop instruction).
+ for _, p := range inlMarkList {
+ if p.As != obj.ANOP {
+ pp.CurFunc.LSym.Func().AddInlMark(p, inlMarks[p])
+ }
+ }
+ }
+
+ if base.Ctxt.Flag_locationlists {
+ var debugInfo *ssa.FuncDebug
+ debugInfo = e.curfn.DebugInfo.(*ssa.FuncDebug)
+ if e.curfn.ABI == obj.ABIInternal && base.Flag.N != 0 {
+ ssa.BuildFuncDebugNoOptimized(base.Ctxt, f, base.Debug.LocationLists > 1, StackOffset, debugInfo)
+ } else {
+ ssa.BuildFuncDebug(base.Ctxt, f, base.Debug.LocationLists > 1, StackOffset, debugInfo)
+ }
+ bstart := s.bstart
+ idToIdx := make([]int, f.NumBlocks())
+ for i, b := range f.Blocks {
+ idToIdx[b.ID] = i
+ }
+ // Note that at this moment, Prog.Pc is a sequence number; it's
+ // not a real PC until after assembly, so this mapping has to
+ // be done later.
+ debugInfo.GetPC = func(b, v ssa.ID) int64 {
+ switch v {
+ case ssa.BlockStart.ID:
+ if b == f.Entry.ID {
+ return 0 // Start at the very beginning, at the assembler-generated prologue.
+ // this should only happen for function args (ssa.OpArg)
+ }
+ return bstart[b].Pc
+ case ssa.BlockEnd.ID:
+ blk := f.Blocks[idToIdx[b]]
+ nv := len(blk.Values)
+ return valueToProgAfter[blk.Values[nv-1].ID].Pc
+ case ssa.FuncEnd.ID:
+ return e.curfn.LSym.Size
+ default:
+ return valueToProgAfter[v].Pc
+ }
+ }
+ }
+
+ // Resolve branches, and relax DefaultStmt into NotStmt
+ for _, br := range s.Branches {
+ br.P.To.SetTarget(s.bstart[br.B.ID])
+ if br.P.Pos.IsStmt() != src.PosIsStmt {
+ br.P.Pos = br.P.Pos.WithNotStmt()
+ } else if v0 := br.B.FirstPossibleStmtValue(); v0 != nil && v0.Pos.Line() == br.P.Pos.Line() && v0.Pos.IsStmt() == src.PosIsStmt {
+ br.P.Pos = br.P.Pos.WithNotStmt()
+ }
+
+ }
+
+ if e.log { // spew to stdout
+ filename := ""
+ for p := pp.Text; p != nil; p = p.Link {
+ if p.Pos.IsKnown() && p.InnermostFilename() != filename {
+ filename = p.InnermostFilename()
+ f.Logf("# %s\n", filename)
+ }
+
+ var s string
+ if v, ok := progToValue[p]; ok {
+ s = v.String()
+ } else if b, ok := progToBlock[p]; ok {
+ s = b.String()
+ } else {
+ s = " " // most value and branch strings are 2-3 characters long
+ }
+ f.Logf(" %-6s\t%.5d (%s)\t%s\n", s, p.Pc, p.InnermostLineNumber(), p.InstructionString())
+ }
+ }
+ if f.HTMLWriter != nil { // spew to ssa.html
+ var buf bytes.Buffer
+ buf.WriteString("<code>")
+ buf.WriteString("<dl class=\"ssa-gen\">")
+ filename := ""
+ for p := pp.Text; p != nil; p = p.Link {
+ // Don't spam every line with the file name, which is often huge.
+ // Only print changes, and "unknown" is not a change.
+ if p.Pos.IsKnown() && p.InnermostFilename() != filename {
+ filename = p.InnermostFilename()
+ buf.WriteString("<dt class=\"ssa-prog-src\"></dt><dd class=\"ssa-prog\">")
+ buf.WriteString(html.EscapeString("# " + filename))
+ buf.WriteString("</dd>")
+ }
+
+ buf.WriteString("<dt class=\"ssa-prog-src\">")
+ if v, ok := progToValue[p]; ok {
+ buf.WriteString(v.HTML())
+ } else if b, ok := progToBlock[p]; ok {
+ buf.WriteString("<b>" + b.HTML() + "</b>")
+ }
+ buf.WriteString("</dt>")
+ buf.WriteString("<dd class=\"ssa-prog\">")
+ buf.WriteString(fmt.Sprintf("%.5d <span class=\"l%v line-number\">(%s)</span> %s", p.Pc, p.InnermostLineNumber(), p.InnermostLineNumberHTML(), html.EscapeString(p.InstructionString())))
+ buf.WriteString("</dd>")
+ }
+ buf.WriteString("</dl>")
+ buf.WriteString("</code>")
+ f.HTMLWriter.WriteColumn("genssa", "genssa", "ssa-prog", buf.String())
+ }
+ if ssa.GenssaDump[f.Name] {
+ fi := f.DumpFileForPhase("genssa")
+ if fi != nil {
+
+ // inliningDiffers if any filename changes or if any line number except the innermost (index 0) changes.
+ inliningDiffers := func(a, b []src.Pos) bool {
+ if len(a) != len(b) {
+ return true
+ }
+ for i := range a {
+ if a[i].Filename() != b[i].Filename() {
+ return true
+ }
+ if i > 0 && a[i].Line() != b[i].Line() {
+ return true
+ }
+ }
+ return false
+ }
+
+ var allPosOld []src.Pos
+ var allPos []src.Pos
+
+ for p := pp.Text; p != nil; p = p.Link {
+ if p.Pos.IsKnown() {
+ allPos = p.AllPos(allPos)
+ if inliningDiffers(allPos, allPosOld) {
+ for i := len(allPos) - 1; i >= 0; i-- {
+ pos := allPos[i]
+ fmt.Fprintf(fi, "# %s:%d\n", pos.Filename(), pos.Line())
+ }
+ allPos, allPosOld = allPosOld, allPos // swap, not copy, so that they do not share slice storage.
+ }
+ }
+
+ var s string
+ if v, ok := progToValue[p]; ok {
+ s = v.String()
+ } else if b, ok := progToBlock[p]; ok {
+ s = b.String()
+ } else {
+ s = " " // most value and branch strings are 2-3 characters long
+ }
+ fmt.Fprintf(fi, " %-6s\t%.5d %s\t%s\n", s, p.Pc, ssa.StmtString(p.Pos), p.InstructionString())
+ }
+ fi.Close()
+ }
+ }
+
+ defframe(&s, e, f)
+
+ f.HTMLWriter.Close()
+ f.HTMLWriter = nil
+}
+
+func defframe(s *State, e *ssafn, f *ssa.Func) {
+ pp := s.pp
+
+ frame := types.Rnd(s.maxarg+e.stksize, int64(types.RegSize))
+ if Arch.PadFrame != nil {
+ frame = Arch.PadFrame(frame)
+ }
+
+ // Fill in argument and frame size.
+ pp.Text.To.Type = obj.TYPE_TEXTSIZE
+ pp.Text.To.Val = int32(types.Rnd(f.OwnAux.ArgWidth(), int64(types.RegSize)))
+ pp.Text.To.Offset = frame
+
+ p := pp.Text
+
+ // Insert code to spill argument registers if the named slot may be partially
+ // live. That is, the named slot is considered live by liveness analysis,
+ // (because a part of it is live), but we may not spill all parts into the
+ // slot. This can only happen with aggregate-typed arguments that are SSA-able
+ // and not address-taken (for non-SSA-able or address-taken arguments we always
+ // spill upfront).
+ // Note: spilling is unnecessary in the -N/no-optimize case, since all values
+ // will be considered non-SSAable and spilled up front.
+ // TODO(register args) Make liveness more fine-grained to that partial spilling is okay.
+ if f.OwnAux.ABIInfo().InRegistersUsed() != 0 && base.Flag.N == 0 {
+ // First, see if it is already spilled before it may be live. Look for a spill
+ // in the entry block up to the first safepoint.
+ type nameOff struct {
+ n *ir.Name
+ off int64
+ }
+ partLiveArgsSpilled := make(map[nameOff]bool)
+ for _, v := range f.Entry.Values {
+ if v.Op.IsCall() {
+ break
+ }
+ if v.Op != ssa.OpStoreReg || v.Args[0].Op != ssa.OpArgIntReg {
+ continue
+ }
+ n, off := ssa.AutoVar(v)
+ if n.Class != ir.PPARAM || n.Addrtaken() || !TypeOK(n.Type()) || !s.partLiveArgs[n] {
+ continue
+ }
+ partLiveArgsSpilled[nameOff{n, off}] = true
+ }
+
+ // Then, insert code to spill registers if not already.
+ for _, a := range f.OwnAux.ABIInfo().InParams() {
+ n, ok := a.Name.(*ir.Name)
+ if !ok || n.Addrtaken() || !TypeOK(n.Type()) || !s.partLiveArgs[n] || len(a.Registers) <= 1 {
+ continue
+ }
+ rts, offs := a.RegisterTypesAndOffsets()
+ for i := range a.Registers {
+ if !rts[i].HasPointers() {
+ continue
+ }
+ if partLiveArgsSpilled[nameOff{n, offs[i]}] {
+ continue // already spilled
+ }
+ reg := ssa.ObjRegForAbiReg(a.Registers[i], f.Config)
+ p = Arch.SpillArgReg(pp, p, f, rts[i], reg, n, offs[i])
+ }
+ }
+ }
+
+ // Insert code to zero ambiguously live variables so that the
+ // garbage collector only sees initialized values when it
+ // looks for pointers.
+ var lo, hi int64
+
+ // Opaque state for backend to use. Current backends use it to
+ // keep track of which helper registers have been zeroed.
+ var state uint32
+
+ // Iterate through declarations. Autos are sorted in decreasing
+ // frame offset order.
+ for _, n := range e.curfn.Dcl {
+ if !n.Needzero() {
+ continue
+ }
+ if n.Class != ir.PAUTO {
+ e.Fatalf(n.Pos(), "needzero class %d", n.Class)
+ }
+ if n.Type().Size()%int64(types.PtrSize) != 0 || n.FrameOffset()%int64(types.PtrSize) != 0 || n.Type().Size() == 0 {
+ e.Fatalf(n.Pos(), "var %L has size %d offset %d", n, n.Type().Size(), n.Offset_)
+ }
+
+ if lo != hi && n.FrameOffset()+n.Type().Size() >= lo-int64(2*types.RegSize) {
+ // Merge with range we already have.
+ lo = n.FrameOffset()
+ continue
+ }
+
+ // Zero old range
+ p = Arch.ZeroRange(pp, p, frame+lo, hi-lo, &state)
+
+ // Set new range.
+ lo = n.FrameOffset()
+ hi = lo + n.Type().Size()
+ }
+
+ // Zero final range.
+ Arch.ZeroRange(pp, p, frame+lo, hi-lo, &state)
+}
+
+// For generating consecutive jump instructions to model a specific branching
+type IndexJump struct {
+ Jump obj.As
+ Index int
+}
+
+func (s *State) oneJump(b *ssa.Block, jump *IndexJump) {
+ p := s.Br(jump.Jump, b.Succs[jump.Index].Block())
+ p.Pos = b.Pos
+}
+
+// CombJump generates combinational instructions (2 at present) for a block jump,
+// thereby the behaviour of non-standard condition codes could be simulated
+func (s *State) CombJump(b, next *ssa.Block, jumps *[2][2]IndexJump) {
+ switch next {
+ case b.Succs[0].Block():
+ s.oneJump(b, &jumps[0][0])
+ s.oneJump(b, &jumps[0][1])
+ case b.Succs[1].Block():
+ s.oneJump(b, &jumps[1][0])
+ s.oneJump(b, &jumps[1][1])
+ default:
+ var q *obj.Prog
+ if b.Likely != ssa.BranchUnlikely {
+ s.oneJump(b, &jumps[1][0])
+ s.oneJump(b, &jumps[1][1])
+ q = s.Br(obj.AJMP, b.Succs[1].Block())
+ } else {
+ s.oneJump(b, &jumps[0][0])
+ s.oneJump(b, &jumps[0][1])
+ q = s.Br(obj.AJMP, b.Succs[0].Block())
+ }
+ q.Pos = b.Pos
+ }
+}
+
+// AddAux adds the offset in the aux fields (AuxInt and Aux) of v to a.
+func AddAux(a *obj.Addr, v *ssa.Value) {
+ AddAux2(a, v, v.AuxInt)
+}
+func AddAux2(a *obj.Addr, v *ssa.Value, offset int64) {
+ if a.Type != obj.TYPE_MEM && a.Type != obj.TYPE_ADDR {
+ v.Fatalf("bad AddAux addr %v", a)
+ }
+ // add integer offset
+ a.Offset += offset
+
+ // If no additional symbol offset, we're done.
+ if v.Aux == nil {
+ return
+ }
+ // Add symbol's offset from its base register.
+ switch n := v.Aux.(type) {
+ case *ssa.AuxCall:
+ a.Name = obj.NAME_EXTERN
+ a.Sym = n.Fn
+ case *obj.LSym:
+ a.Name = obj.NAME_EXTERN
+ a.Sym = n
+ case *ir.Name:
+ if n.Class == ir.PPARAM || (n.Class == ir.PPARAMOUT && !n.IsOutputParamInRegisters()) {
+ a.Name = obj.NAME_PARAM
+ a.Sym = ir.Orig(n).(*ir.Name).Linksym()
+ a.Offset += n.FrameOffset()
+ break
+ }
+ a.Name = obj.NAME_AUTO
+ if n.Class == ir.PPARAMOUT {
+ a.Sym = ir.Orig(n).(*ir.Name).Linksym()
+ } else {
+ a.Sym = n.Linksym()
+ }
+ a.Offset += n.FrameOffset()
+ default:
+ v.Fatalf("aux in %s not implemented %#v", v, v.Aux)
+ }
+}
+
+// extendIndex extends v to a full int width.
+// panic with the given kind if v does not fit in an int (only on 32-bit archs).
+func (s *state) extendIndex(idx, len *ssa.Value, kind ssa.BoundsKind, bounded bool) *ssa.Value {
+ size := idx.Type.Size()
+ if size == s.config.PtrSize {
+ return idx
+ }
+ if size > s.config.PtrSize {
+ // truncate 64-bit indexes on 32-bit pointer archs. Test the
+ // high word and branch to out-of-bounds failure if it is not 0.
+ var lo *ssa.Value
+ if idx.Type.IsSigned() {
+ lo = s.newValue1(ssa.OpInt64Lo, types.Types[types.TINT], idx)
+ } else {
+ lo = s.newValue1(ssa.OpInt64Lo, types.Types[types.TUINT], idx)
+ }
+ if bounded || base.Flag.B != 0 {
+ return lo
+ }
+ bNext := s.f.NewBlock(ssa.BlockPlain)
+ bPanic := s.f.NewBlock(ssa.BlockExit)
+ hi := s.newValue1(ssa.OpInt64Hi, types.Types[types.TUINT32], idx)
+ cmp := s.newValue2(ssa.OpEq32, types.Types[types.TBOOL], hi, s.constInt32(types.Types[types.TUINT32], 0))
+ if !idx.Type.IsSigned() {
+ switch kind {
+ case ssa.BoundsIndex:
+ kind = ssa.BoundsIndexU
+ case ssa.BoundsSliceAlen:
+ kind = ssa.BoundsSliceAlenU
+ case ssa.BoundsSliceAcap:
+ kind = ssa.BoundsSliceAcapU
+ case ssa.BoundsSliceB:
+ kind = ssa.BoundsSliceBU
+ case ssa.BoundsSlice3Alen:
+ kind = ssa.BoundsSlice3AlenU
+ case ssa.BoundsSlice3Acap:
+ kind = ssa.BoundsSlice3AcapU
+ case ssa.BoundsSlice3B:
+ kind = ssa.BoundsSlice3BU
+ case ssa.BoundsSlice3C:
+ kind = ssa.BoundsSlice3CU
+ }
+ }
+ b := s.endBlock()
+ b.Kind = ssa.BlockIf
+ b.SetControl(cmp)
+ b.Likely = ssa.BranchLikely
+ b.AddEdgeTo(bNext)
+ b.AddEdgeTo(bPanic)
+
+ s.startBlock(bPanic)
+ mem := s.newValue4I(ssa.OpPanicExtend, types.TypeMem, int64(kind), hi, lo, len, s.mem())
+ s.endBlock().SetControl(mem)
+ s.startBlock(bNext)
+
+ return lo
+ }
+
+ // Extend value to the required size
+ var op ssa.Op
+ if idx.Type.IsSigned() {
+ switch 10*size + s.config.PtrSize {
+ case 14:
+ op = ssa.OpSignExt8to32
+ case 18:
+ op = ssa.OpSignExt8to64
+ case 24:
+ op = ssa.OpSignExt16to32
+ case 28:
+ op = ssa.OpSignExt16to64
+ case 48:
+ op = ssa.OpSignExt32to64
+ default:
+ s.Fatalf("bad signed index extension %s", idx.Type)
+ }
+ } else {
+ switch 10*size + s.config.PtrSize {
+ case 14:
+ op = ssa.OpZeroExt8to32
+ case 18:
+ op = ssa.OpZeroExt8to64
+ case 24:
+ op = ssa.OpZeroExt16to32
+ case 28:
+ op = ssa.OpZeroExt16to64
+ case 48:
+ op = ssa.OpZeroExt32to64
+ default:
+ s.Fatalf("bad unsigned index extension %s", idx.Type)
+ }
+ }
+ return s.newValue1(op, types.Types[types.TINT], idx)
+}
+
+// CheckLoweredPhi checks that regalloc and stackalloc correctly handled phi values.
+// Called during ssaGenValue.
+func CheckLoweredPhi(v *ssa.Value) {
+ if v.Op != ssa.OpPhi {
+ v.Fatalf("CheckLoweredPhi called with non-phi value: %v", v.LongString())
+ }
+ if v.Type.IsMemory() {
+ return
+ }
+ f := v.Block.Func
+ loc := f.RegAlloc[v.ID]
+ for _, a := range v.Args {
+ if aloc := f.RegAlloc[a.ID]; aloc != loc { // TODO: .Equal() instead?
+ v.Fatalf("phi arg at different location than phi: %v @ %s, but arg %v @ %s\n%s\n", v, loc, a, aloc, v.Block.Func)
+ }
+ }
+}
+
+// CheckLoweredGetClosurePtr checks that v is the first instruction in the function's entry block,
+// except for incoming in-register arguments.
+// The output of LoweredGetClosurePtr is generally hardwired to the correct register.
+// That register contains the closure pointer on closure entry.
+func CheckLoweredGetClosurePtr(v *ssa.Value) {
+ entry := v.Block.Func.Entry
+ if entry != v.Block {
+ base.Fatalf("in %s, badly placed LoweredGetClosurePtr: %v %v", v.Block.Func.Name, v.Block, v)
+ }
+ for _, w := range entry.Values {
+ if w == v {
+ break
+ }
+ switch w.Op {
+ case ssa.OpArgIntReg, ssa.OpArgFloatReg:
+ // okay
+ default:
+ base.Fatalf("in %s, badly placed LoweredGetClosurePtr: %v %v", v.Block.Func.Name, v.Block, v)
+ }
+ }
+}
+
+// CheckArgReg ensures that v is in the function's entry block.
+func CheckArgReg(v *ssa.Value) {
+ entry := v.Block.Func.Entry
+ if entry != v.Block {
+ base.Fatalf("in %s, badly placed ArgIReg or ArgFReg: %v %v", v.Block.Func.Name, v.Block, v)
+ }
+}
+
+func AddrAuto(a *obj.Addr, v *ssa.Value) {
+ n, off := ssa.AutoVar(v)
+ a.Type = obj.TYPE_MEM
+ a.Sym = n.Linksym()
+ a.Reg = int16(Arch.REGSP)
+ a.Offset = n.FrameOffset() + off
+ if n.Class == ir.PPARAM || (n.Class == ir.PPARAMOUT && !n.IsOutputParamInRegisters()) {
+ a.Name = obj.NAME_PARAM
+ } else {
+ a.Name = obj.NAME_AUTO
+ }
+}
+
+// Call returns a new CALL instruction for the SSA value v.
+// It uses PrepareCall to prepare the call.
+func (s *State) Call(v *ssa.Value) *obj.Prog {
+ pPosIsStmt := s.pp.Pos.IsStmt() // The statement-ness fo the call comes from ssaGenState
+ s.PrepareCall(v)
+
+ p := s.Prog(obj.ACALL)
+ if pPosIsStmt == src.PosIsStmt {
+ p.Pos = v.Pos.WithIsStmt()
+ } else {
+ p.Pos = v.Pos.WithNotStmt()
+ }
+ if sym, ok := v.Aux.(*ssa.AuxCall); ok && sym.Fn != nil {
+ p.To.Type = obj.TYPE_MEM
+ p.To.Name = obj.NAME_EXTERN
+ p.To.Sym = sym.Fn
+ } else {
+ // TODO(mdempsky): Can these differences be eliminated?
+ switch Arch.LinkArch.Family {
+ case sys.AMD64, sys.I386, sys.PPC64, sys.RISCV64, sys.S390X, sys.Wasm:
+ p.To.Type = obj.TYPE_REG
+ case sys.ARM, sys.ARM64, sys.MIPS, sys.MIPS64:
+ p.To.Type = obj.TYPE_MEM
+ default:
+ base.Fatalf("unknown indirect call family")
+ }
+ p.To.Reg = v.Args[0].Reg()
+ }
+ return p
+}
+
+// TailCall returns a new tail call instruction for the SSA value v.
+// It is like Call, but for a tail call.
+func (s *State) TailCall(v *ssa.Value) *obj.Prog {
+ p := s.Call(v)
+ p.As = obj.ARET
+ return p
+}
+
+// PrepareCall prepares to emit a CALL instruction for v and does call-related bookkeeping.
+// It must be called immediately before emitting the actual CALL instruction,
+// since it emits PCDATA for the stack map at the call (calls are safe points).
+func (s *State) PrepareCall(v *ssa.Value) {
+ idx := s.livenessMap.Get(v)
+ if !idx.StackMapValid() {
+ // See Liveness.hasStackMap.
+ if sym, ok := v.Aux.(*ssa.AuxCall); !ok || !(sym.Fn == ir.Syms.Typedmemclr || sym.Fn == ir.Syms.Typedmemmove) {
+ base.Fatalf("missing stack map index for %v", v.LongString())
+ }
+ }
+
+ call, ok := v.Aux.(*ssa.AuxCall)
+
+ if ok {
+ // Record call graph information for nowritebarrierrec
+ // analysis.
+ if nowritebarrierrecCheck != nil {
+ nowritebarrierrecCheck.recordCall(s.pp.CurFunc, call.Fn, v.Pos)
+ }
+ }
+
+ if s.maxarg < v.AuxInt {
+ s.maxarg = v.AuxInt
+ }
+}
+
+// UseArgs records the fact that an instruction needs a certain amount of
+// callee args space for its use.
+func (s *State) UseArgs(n int64) {
+ if s.maxarg < n {
+ s.maxarg = n
+ }
+}
+
+// fieldIdx finds the index of the field referred to by the ODOT node n.
+func fieldIdx(n *ir.SelectorExpr) int {
+ t := n.X.Type()
+ if !t.IsStruct() {
+ panic("ODOT's LHS is not a struct")
+ }
+
+ for i, f := range t.Fields().Slice() {
+ if f.Sym == n.Sel {
+ if f.Offset != n.Offset() {
+ panic("field offset doesn't match")
+ }
+ return i
+ }
+ }
+ panic(fmt.Sprintf("can't find field in expr %v\n", n))
+
+ // TODO: keep the result of this function somewhere in the ODOT Node
+ // so we don't have to recompute it each time we need it.
+}
+
+// ssafn holds frontend information about a function that the backend is processing.
+// It also exports a bunch of compiler services for the ssa backend.
+type ssafn struct {
+ curfn *ir.Func
+ strings map[string]*obj.LSym // map from constant string to data symbols
+ stksize int64 // stack size for current frame
+ stkptrsize int64 // prefix of stack containing pointers
+ log bool // print ssa debug to the stdout
+}
+
+// StringData returns a symbol which
+// is the data component of a global string constant containing s.
+func (e *ssafn) StringData(s string) *obj.LSym {
+ if aux, ok := e.strings[s]; ok {
+ return aux
+ }
+ if e.strings == nil {
+ e.strings = make(map[string]*obj.LSym)
+ }
+ data := staticdata.StringSym(e.curfn.Pos(), s)
+ e.strings[s] = data
+ return data
+}
+
+func (e *ssafn) Auto(pos src.XPos, t *types.Type) *ir.Name {
+ return typecheck.TempAt(pos, e.curfn, t) // Note: adds new auto to e.curfn.Func.Dcl list
+}
+
+// SplitSlot returns a slot representing the data of parent starting at offset.
+func (e *ssafn) SplitSlot(parent *ssa.LocalSlot, suffix string, offset int64, t *types.Type) ssa.LocalSlot {
+ node := parent.N
+
+ if node.Class != ir.PAUTO || node.Addrtaken() {
+ // addressed things and non-autos retain their parents (i.e., cannot truly be split)
+ return ssa.LocalSlot{N: node, Type: t, Off: parent.Off + offset}
+ }
+
+ s := &types.Sym{Name: node.Sym().Name + suffix, Pkg: types.LocalPkg}
+ n := ir.NewNameAt(parent.N.Pos(), s)
+ s.Def = n
+ ir.AsNode(s.Def).Name().SetUsed(true)
+ n.SetType(t)
+ n.Class = ir.PAUTO
+ n.SetEsc(ir.EscNever)
+ n.Curfn = e.curfn
+ e.curfn.Dcl = append(e.curfn.Dcl, n)
+ types.CalcSize(t)
+ return ssa.LocalSlot{N: n, Type: t, Off: 0, SplitOf: parent, SplitOffset: offset}
+}
+
+func (e *ssafn) CanSSA(t *types.Type) bool {
+ return TypeOK(t)
+}
+
+func (e *ssafn) Line(pos src.XPos) string {
+ return base.FmtPos(pos)
+}
+
+// Log logs a message from the compiler.
+func (e *ssafn) Logf(msg string, args ...interface{}) {
+ if e.log {
+ fmt.Printf(msg, args...)
+ }
+}
+
+func (e *ssafn) Log() bool {
+ return e.log
+}
+
+// Fatal reports a compiler error and exits.
+func (e *ssafn) Fatalf(pos src.XPos, msg string, args ...interface{}) {
+ base.Pos = pos
+ nargs := append([]interface{}{ir.FuncName(e.curfn)}, args...)
+ base.Fatalf("'%s': "+msg, nargs...)
+}
+
+// Warnl reports a "warning", which is usually flag-triggered
+// logging output for the benefit of tests.
+func (e *ssafn) Warnl(pos src.XPos, fmt_ string, args ...interface{}) {
+ base.WarnfAt(pos, fmt_, args...)
+}
+
+func (e *ssafn) Debug_checknil() bool {
+ return base.Debug.Nil != 0
+}
+
+func (e *ssafn) UseWriteBarrier() bool {
+ return base.Flag.WB
+}
+
+func (e *ssafn) Syslook(name string) *obj.LSym {
+ switch name {
+ case "goschedguarded":
+ return ir.Syms.Goschedguarded
+ case "writeBarrier":
+ return ir.Syms.WriteBarrier
+ case "gcWriteBarrier":
+ return ir.Syms.GCWriteBarrier
+ case "typedmemmove":
+ return ir.Syms.Typedmemmove
+ case "typedmemclr":
+ return ir.Syms.Typedmemclr
+ }
+ e.Fatalf(src.NoXPos, "unknown Syslook func %v", name)
+ return nil
+}
+
+func (e *ssafn) SetWBPos(pos src.XPos) {
+ e.curfn.SetWBPos(pos)
+}
+
+func (e *ssafn) MyImportPath() string {
+ return base.Ctxt.Pkgpath
+}
+
+func clobberBase(n ir.Node) ir.Node {
+ if n.Op() == ir.ODOT {
+ n := n.(*ir.SelectorExpr)
+ if n.X.Type().NumFields() == 1 {
+ return clobberBase(n.X)
+ }
+ }
+ if n.Op() == ir.OINDEX {
+ n := n.(*ir.IndexExpr)
+ if n.X.Type().IsArray() && n.X.Type().NumElem() == 1 {
+ return clobberBase(n.X)
+ }
+ }
+ return n
+}
+
+// callTargetLSym returns the correct LSym to call 'callee' using its ABI.
+func callTargetLSym(callee *ir.Name) *obj.LSym {
+ if callee.Func == nil {
+ // TODO(austin): This happens in a few cases of
+ // compiler-generated functions. These are all
+ // ABIInternal. It would be better if callee.Func was
+ // never nil and we didn't need this case.
+ return callee.Linksym()
+ }
+
+ return callee.LinksymABI(callee.Func.ABI)
+}
+
+func min8(a, b int8) int8 {
+ if a < b {
+ return a
+ }
+ return b
+}
+
+func max8(a, b int8) int8 {
+ if a > b {
+ return a
+ }
+ return b
+}
+
+// deferstruct makes a runtime._defer structure.
+func deferstruct() *types.Type {
+ makefield := func(name string, typ *types.Type) *types.Field {
+ // Unlike the global makefield function, this one needs to set Pkg
+ // because these types might be compared (in SSA CSE sorting).
+ // TODO: unify this makefield and the global one above.
+ sym := &types.Sym{Name: name, Pkg: types.LocalPkg}
+ return types.NewField(src.NoXPos, sym, typ)
+ }
+ // These fields must match the ones in runtime/runtime2.go:_defer and
+ // (*state).call above.
+ fields := []*types.Field{
+ makefield("started", types.Types[types.TBOOL]),
+ makefield("heap", types.Types[types.TBOOL]),
+ makefield("openDefer", types.Types[types.TBOOL]),
+ makefield("sp", types.Types[types.TUINTPTR]),
+ makefield("pc", types.Types[types.TUINTPTR]),
+ // Note: the types here don't really matter. Defer structures
+ // are always scanned explicitly during stack copying and GC,
+ // so we make them uintptr type even though they are real pointers.
+ makefield("fn", types.Types[types.TUINTPTR]),
+ makefield("_panic", types.Types[types.TUINTPTR]),
+ makefield("link", types.Types[types.TUINTPTR]),
+ makefield("fd", types.Types[types.TUINTPTR]),
+ makefield("varp", types.Types[types.TUINTPTR]),
+ makefield("framepc", types.Types[types.TUINTPTR]),
+ }
+
+ // build struct holding the above fields
+ s := types.NewStruct(types.NoPkg, fields)
+ s.SetNoalg(true)
+ types.CalcStructSize(s)
+ return s
+}
+
+// SlotAddr uses LocalSlot information to initialize an obj.Addr
+// The resulting addr is used in a non-standard context -- in the prologue
+// of a function, before the frame has been constructed, so the standard
+// addressing for the parameters will be wrong.
+func SpillSlotAddr(spill ssa.Spill, baseReg int16, extraOffset int64) obj.Addr {
+ return obj.Addr{
+ Name: obj.NAME_NONE,
+ Type: obj.TYPE_MEM,
+ Reg: baseReg,
+ Offset: spill.Offset + extraOffset,
+ }
+}
+
+var (
+ BoundsCheckFunc [ssa.BoundsKindCount]*obj.LSym
+ ExtendCheckFunc [ssa.BoundsKindCount]*obj.LSym
+)
+
+// GCWriteBarrierReg maps from registers to gcWriteBarrier implementation LSyms.
+var GCWriteBarrierReg map[int16]*obj.LSym