summaryrefslogtreecommitdiffstats
path: root/src/cmd/internal/obj/pcln.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:16:40 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:16:40 +0000
commit47ab3d4a42e9ab51c465c4322d2ec233f6324e6b (patch)
treea61a0ffd83f4a3def4b36e5c8e99630c559aa723 /src/cmd/internal/obj/pcln.go
parentInitial commit. (diff)
downloadgolang-1.18-47ab3d4a42e9ab51c465c4322d2ec233f6324e6b.tar.xz
golang-1.18-47ab3d4a42e9ab51c465c4322d2ec233f6324e6b.zip
Adding upstream version 1.18.10.upstream/1.18.10upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/cmd/internal/obj/pcln.go')
-rw-r--r--src/cmd/internal/obj/pcln.go425
1 files changed, 425 insertions, 0 deletions
diff --git a/src/cmd/internal/obj/pcln.go b/src/cmd/internal/obj/pcln.go
new file mode 100644
index 0000000..49b425b
--- /dev/null
+++ b/src/cmd/internal/obj/pcln.go
@@ -0,0 +1,425 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package obj
+
+import (
+ "cmd/internal/goobj"
+ "cmd/internal/objabi"
+ "encoding/binary"
+ "fmt"
+ "log"
+)
+
+// funcpctab writes to dst a pc-value table mapping the code in func to the values
+// returned by valfunc parameterized by arg. The invocation of valfunc to update the
+// current value is, for each p,
+//
+// sym = valfunc(func, p, 0, arg);
+// record sym.P as value at p->pc;
+// sym = valfunc(func, p, 1, arg);
+//
+// where func is the function, val is the current value, p is the instruction being
+// considered, and arg can be used to further parameterize valfunc.
+func funcpctab(ctxt *Link, func_ *LSym, desc string, valfunc func(*Link, *LSym, int32, *Prog, int32, interface{}) int32, arg interface{}) *LSym {
+ dbg := desc == ctxt.Debugpcln
+ dst := []byte{}
+ sym := &LSym{
+ Type: objabi.SRODATA,
+ Attribute: AttrContentAddressable | AttrPcdata,
+ }
+
+ if dbg {
+ ctxt.Logf("funcpctab %s [valfunc=%s]\n", func_.Name, desc)
+ }
+
+ val := int32(-1)
+ oldval := val
+ fn := func_.Func()
+ if fn.Text == nil {
+ // Return the empty symbol we've built so far.
+ return sym
+ }
+
+ pc := fn.Text.Pc
+
+ if dbg {
+ ctxt.Logf("%6x %6d %v\n", uint64(pc), val, fn.Text)
+ }
+
+ buf := make([]byte, binary.MaxVarintLen32)
+ started := false
+ for p := fn.Text; p != nil; p = p.Link {
+ // Update val. If it's not changing, keep going.
+ val = valfunc(ctxt, func_, val, p, 0, arg)
+
+ if val == oldval && started {
+ val = valfunc(ctxt, func_, val, p, 1, arg)
+ if dbg {
+ ctxt.Logf("%6x %6s %v\n", uint64(p.Pc), "", p)
+ }
+ continue
+ }
+
+ // If the pc of the next instruction is the same as the
+ // pc of this instruction, this instruction is not a real
+ // instruction. Keep going, so that we only emit a delta
+ // for a true instruction boundary in the program.
+ if p.Link != nil && p.Link.Pc == p.Pc {
+ val = valfunc(ctxt, func_, val, p, 1, arg)
+ if dbg {
+ ctxt.Logf("%6x %6s %v\n", uint64(p.Pc), "", p)
+ }
+ continue
+ }
+
+ // The table is a sequence of (value, pc) pairs, where each
+ // pair states that the given value is in effect from the current position
+ // up to the given pc, which becomes the new current position.
+ // To generate the table as we scan over the program instructions,
+ // we emit a "(value" when pc == func->value, and then
+ // each time we observe a change in value we emit ", pc) (value".
+ // When the scan is over, we emit the closing ", pc)".
+ //
+ // The table is delta-encoded. The value deltas are signed and
+ // transmitted in zig-zag form, where a complement bit is placed in bit 0,
+ // and the pc deltas are unsigned. Both kinds of deltas are sent
+ // as variable-length little-endian base-128 integers,
+ // where the 0x80 bit indicates that the integer continues.
+
+ if dbg {
+ ctxt.Logf("%6x %6d %v\n", uint64(p.Pc), val, p)
+ }
+
+ if started {
+ pcdelta := (p.Pc - pc) / int64(ctxt.Arch.MinLC)
+ n := binary.PutUvarint(buf, uint64(pcdelta))
+ dst = append(dst, buf[:n]...)
+ pc = p.Pc
+ }
+
+ delta := val - oldval
+ n := binary.PutVarint(buf, int64(delta))
+ dst = append(dst, buf[:n]...)
+ oldval = val
+ started = true
+ val = valfunc(ctxt, func_, val, p, 1, arg)
+ }
+
+ if started {
+ if dbg {
+ ctxt.Logf("%6x done\n", uint64(fn.Text.Pc+func_.Size))
+ }
+ v := (func_.Size - pc) / int64(ctxt.Arch.MinLC)
+ if v < 0 {
+ ctxt.Diag("negative pc offset: %v", v)
+ }
+ n := binary.PutUvarint(buf, uint64(v))
+ dst = append(dst, buf[:n]...)
+ // add terminating varint-encoded 0, which is just 0
+ dst = append(dst, 0)
+ }
+
+ if dbg {
+ ctxt.Logf("wrote %d bytes to %p\n", len(dst), dst)
+ for _, p := range dst {
+ ctxt.Logf(" %02x", p)
+ }
+ ctxt.Logf("\n")
+ }
+
+ sym.Size = int64(len(dst))
+ sym.P = dst
+ return sym
+}
+
+// pctofileline computes either the file number (arg == 0)
+// or the line number (arg == 1) to use at p.
+// Because p.Pos applies to p, phase == 0 (before p)
+// takes care of the update.
+func pctofileline(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 {
+ if p.As == ATEXT || p.As == ANOP || p.Pos.Line() == 0 || phase == 1 {
+ return oldval
+ }
+ f, l := getFileIndexAndLine(ctxt, p.Pos)
+ if arg == nil {
+ return l
+ }
+ pcln := arg.(*Pcln)
+ pcln.UsedFiles[goobj.CUFileIndex(f)] = struct{}{}
+ return int32(f)
+}
+
+// pcinlineState holds the state used to create a function's inlining
+// tree and the PC-value table that maps PCs to nodes in that tree.
+type pcinlineState struct {
+ globalToLocal map[int]int
+ localTree InlTree
+}
+
+// addBranch adds a branch from the global inlining tree in ctxt to
+// the function's local inlining tree, returning the index in the local tree.
+func (s *pcinlineState) addBranch(ctxt *Link, globalIndex int) int {
+ if globalIndex < 0 {
+ return -1
+ }
+
+ localIndex, ok := s.globalToLocal[globalIndex]
+ if ok {
+ return localIndex
+ }
+
+ // Since tracebacks don't include column information, we could
+ // use one node for multiple calls of the same function on the
+ // same line (e.g., f(x) + f(y)). For now, we use one node for
+ // each inlined call.
+ call := ctxt.InlTree.nodes[globalIndex]
+ call.Parent = s.addBranch(ctxt, call.Parent)
+ localIndex = len(s.localTree.nodes)
+ s.localTree.nodes = append(s.localTree.nodes, call)
+ s.globalToLocal[globalIndex] = localIndex
+ return localIndex
+}
+
+func (s *pcinlineState) setParentPC(ctxt *Link, globalIndex int, pc int32) {
+ localIndex, ok := s.globalToLocal[globalIndex]
+ if !ok {
+ // We know where to unwind to when we need to unwind a body identified
+ // by globalIndex. But there may be no instructions generated by that
+ // body (it's empty, or its instructions were CSEd with other things, etc.).
+ // In that case, we don't need an unwind entry.
+ // TODO: is this really right? Seems to happen a whole lot...
+ return
+ }
+ s.localTree.setParentPC(localIndex, pc)
+}
+
+// pctoinline computes the index into the local inlining tree to use at p.
+// If p is not the result of inlining, pctoinline returns -1. Because p.Pos
+// applies to p, phase == 0 (before p) takes care of the update.
+func (s *pcinlineState) pctoinline(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 {
+ if phase == 1 {
+ return oldval
+ }
+
+ posBase := ctxt.PosTable.Pos(p.Pos).Base()
+ if posBase == nil {
+ return -1
+ }
+
+ globalIndex := posBase.InliningIndex()
+ if globalIndex < 0 {
+ return -1
+ }
+
+ if s.globalToLocal == nil {
+ s.globalToLocal = make(map[int]int)
+ }
+
+ return int32(s.addBranch(ctxt, globalIndex))
+}
+
+// pctospadj computes the sp adjustment in effect.
+// It is oldval plus any adjustment made by p itself.
+// The adjustment by p takes effect only after p, so we
+// apply the change during phase == 1.
+func pctospadj(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 {
+ if oldval == -1 { // starting
+ oldval = 0
+ }
+ if phase == 0 {
+ return oldval
+ }
+ if oldval+p.Spadj < -10000 || oldval+p.Spadj > 1100000000 {
+ ctxt.Diag("overflow in spadj: %d + %d = %d", oldval, p.Spadj, oldval+p.Spadj)
+ ctxt.DiagFlush()
+ log.Fatalf("bad code")
+ }
+
+ return oldval + p.Spadj
+}
+
+// pctopcdata computes the pcdata value in effect at p.
+// A PCDATA instruction sets the value in effect at future
+// non-PCDATA instructions.
+// Since PCDATA instructions have no width in the final code,
+// it does not matter which phase we use for the update.
+func pctopcdata(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 {
+ if phase == 0 || p.As != APCDATA || p.From.Offset != int64(arg.(uint32)) {
+ return oldval
+ }
+ if int64(int32(p.To.Offset)) != p.To.Offset {
+ ctxt.Diag("overflow in PCDATA instruction: %v", p)
+ ctxt.DiagFlush()
+ log.Fatalf("bad code")
+ }
+
+ return int32(p.To.Offset)
+}
+
+func linkpcln(ctxt *Link, cursym *LSym) {
+ pcln := &cursym.Func().Pcln
+ pcln.UsedFiles = make(map[goobj.CUFileIndex]struct{})
+
+ npcdata := 0
+ nfuncdata := 0
+ for p := cursym.Func().Text; p != nil; p = p.Link {
+ // Find the highest ID of any used PCDATA table. This ignores PCDATA table
+ // that consist entirely of "-1", since that's the assumed default value.
+ // From.Offset is table ID
+ // To.Offset is data
+ if p.As == APCDATA && p.From.Offset >= int64(npcdata) && p.To.Offset != -1 { // ignore -1 as we start at -1, if we only see -1, nothing changed
+ npcdata = int(p.From.Offset + 1)
+ }
+ // Find the highest ID of any FUNCDATA table.
+ // From.Offset is table ID
+ if p.As == AFUNCDATA && p.From.Offset >= int64(nfuncdata) {
+ nfuncdata = int(p.From.Offset + 1)
+ }
+ }
+
+ pcln.Pcdata = make([]*LSym, npcdata)
+ pcln.Funcdata = make([]*LSym, nfuncdata)
+
+ pcln.Pcsp = funcpctab(ctxt, cursym, "pctospadj", pctospadj, nil)
+ pcln.Pcfile = funcpctab(ctxt, cursym, "pctofile", pctofileline, pcln)
+ pcln.Pcline = funcpctab(ctxt, cursym, "pctoline", pctofileline, nil)
+
+ // Check that all the Progs used as inline markers are still reachable.
+ // See issue #40473.
+ fn := cursym.Func()
+ inlMarkProgs := make(map[*Prog]struct{}, len(fn.InlMarks))
+ for _, inlMark := range fn.InlMarks {
+ inlMarkProgs[inlMark.p] = struct{}{}
+ }
+ for p := fn.Text; p != nil; p = p.Link {
+ if _, ok := inlMarkProgs[p]; ok {
+ delete(inlMarkProgs, p)
+ }
+ }
+ if len(inlMarkProgs) > 0 {
+ ctxt.Diag("one or more instructions used as inline markers are no longer reachable")
+ }
+
+ pcinlineState := new(pcinlineState)
+ pcln.Pcinline = funcpctab(ctxt, cursym, "pctoinline", pcinlineState.pctoinline, nil)
+ for _, inlMark := range fn.InlMarks {
+ pcinlineState.setParentPC(ctxt, int(inlMark.id), int32(inlMark.p.Pc))
+ }
+ pcln.InlTree = pcinlineState.localTree
+ if ctxt.Debugpcln == "pctoinline" && len(pcln.InlTree.nodes) > 0 {
+ ctxt.Logf("-- inlining tree for %s:\n", cursym)
+ dumpInlTree(ctxt, pcln.InlTree)
+ ctxt.Logf("--\n")
+ }
+
+ // tabulate which pc and func data we have.
+ havepc := make([]uint32, (npcdata+31)/32)
+ havefunc := make([]uint32, (nfuncdata+31)/32)
+ for p := fn.Text; p != nil; p = p.Link {
+ if p.As == AFUNCDATA {
+ if (havefunc[p.From.Offset/32]>>uint64(p.From.Offset%32))&1 != 0 {
+ ctxt.Diag("multiple definitions for FUNCDATA $%d", p.From.Offset)
+ }
+ havefunc[p.From.Offset/32] |= 1 << uint64(p.From.Offset%32)
+ }
+
+ if p.As == APCDATA && p.To.Offset != -1 {
+ havepc[p.From.Offset/32] |= 1 << uint64(p.From.Offset%32)
+ }
+ }
+
+ // pcdata.
+ for i := 0; i < npcdata; i++ {
+ if (havepc[i/32]>>uint(i%32))&1 == 0 {
+ // use an empty symbol.
+ pcln.Pcdata[i] = &LSym{
+ Type: objabi.SRODATA,
+ Attribute: AttrContentAddressable | AttrPcdata,
+ }
+ } else {
+ pcln.Pcdata[i] = funcpctab(ctxt, cursym, "pctopcdata", pctopcdata, interface{}(uint32(i)))
+ }
+ }
+
+ // funcdata
+ if nfuncdata > 0 {
+ for p := fn.Text; p != nil; p = p.Link {
+ if p.As != AFUNCDATA {
+ continue
+ }
+ i := int(p.From.Offset)
+ if p.To.Type != TYPE_MEM || p.To.Offset != 0 {
+ panic(fmt.Sprintf("bad funcdata: %v", p))
+ }
+ pcln.Funcdata[i] = p.To.Sym
+ }
+ }
+}
+
+// PCIter iterates over encoded pcdata tables.
+type PCIter struct {
+ p []byte
+ PC uint32
+ NextPC uint32
+ PCScale uint32
+ Value int32
+ start bool
+ Done bool
+}
+
+// newPCIter creates a PCIter with a scale factor for the PC step size.
+func NewPCIter(pcScale uint32) *PCIter {
+ it := new(PCIter)
+ it.PCScale = pcScale
+ return it
+}
+
+// Next advances it to the Next pc.
+func (it *PCIter) Next() {
+ it.PC = it.NextPC
+ if it.Done {
+ return
+ }
+ if len(it.p) == 0 {
+ it.Done = true
+ return
+ }
+
+ // Value delta
+ val, n := binary.Varint(it.p)
+ if n <= 0 {
+ log.Fatalf("bad Value varint in pciterNext: read %v", n)
+ }
+ it.p = it.p[n:]
+
+ if val == 0 && !it.start {
+ it.Done = true
+ return
+ }
+
+ it.start = false
+ it.Value += int32(val)
+
+ // pc delta
+ pc, n := binary.Uvarint(it.p)
+ if n <= 0 {
+ log.Fatalf("bad pc varint in pciterNext: read %v", n)
+ }
+ it.p = it.p[n:]
+
+ it.NextPC = it.PC + uint32(pc)*it.PCScale
+}
+
+// init prepares it to iterate over p,
+// and advances it to the first pc.
+func (it *PCIter) Init(p []byte) {
+ it.p = p
+ it.PC = 0
+ it.NextPC = 0
+ it.Value = -1
+ it.start = true
+ it.Done = false
+ it.Next()
+}