diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 13:16:40 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 13:16:40 +0000 |
commit | 47ab3d4a42e9ab51c465c4322d2ec233f6324e6b (patch) | |
tree | a61a0ffd83f4a3def4b36e5c8e99630c559aa723 /src/cmd/internal/obj/pcln.go | |
parent | Initial commit. (diff) | |
download | golang-1.18-47ab3d4a42e9ab51c465c4322d2ec233f6324e6b.tar.xz golang-1.18-47ab3d4a42e9ab51c465c4322d2ec233f6324e6b.zip |
Adding upstream version 1.18.10.upstream/1.18.10upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/cmd/internal/obj/pcln.go')
-rw-r--r-- | src/cmd/internal/obj/pcln.go | 425 |
1 files changed, 425 insertions, 0 deletions
diff --git a/src/cmd/internal/obj/pcln.go b/src/cmd/internal/obj/pcln.go new file mode 100644 index 0000000..49b425b --- /dev/null +++ b/src/cmd/internal/obj/pcln.go @@ -0,0 +1,425 @@ +// Copyright 2013 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package obj + +import ( + "cmd/internal/goobj" + "cmd/internal/objabi" + "encoding/binary" + "fmt" + "log" +) + +// funcpctab writes to dst a pc-value table mapping the code in func to the values +// returned by valfunc parameterized by arg. The invocation of valfunc to update the +// current value is, for each p, +// +// sym = valfunc(func, p, 0, arg); +// record sym.P as value at p->pc; +// sym = valfunc(func, p, 1, arg); +// +// where func is the function, val is the current value, p is the instruction being +// considered, and arg can be used to further parameterize valfunc. +func funcpctab(ctxt *Link, func_ *LSym, desc string, valfunc func(*Link, *LSym, int32, *Prog, int32, interface{}) int32, arg interface{}) *LSym { + dbg := desc == ctxt.Debugpcln + dst := []byte{} + sym := &LSym{ + Type: objabi.SRODATA, + Attribute: AttrContentAddressable | AttrPcdata, + } + + if dbg { + ctxt.Logf("funcpctab %s [valfunc=%s]\n", func_.Name, desc) + } + + val := int32(-1) + oldval := val + fn := func_.Func() + if fn.Text == nil { + // Return the empty symbol we've built so far. + return sym + } + + pc := fn.Text.Pc + + if dbg { + ctxt.Logf("%6x %6d %v\n", uint64(pc), val, fn.Text) + } + + buf := make([]byte, binary.MaxVarintLen32) + started := false + for p := fn.Text; p != nil; p = p.Link { + // Update val. If it's not changing, keep going. + val = valfunc(ctxt, func_, val, p, 0, arg) + + if val == oldval && started { + val = valfunc(ctxt, func_, val, p, 1, arg) + if dbg { + ctxt.Logf("%6x %6s %v\n", uint64(p.Pc), "", p) + } + continue + } + + // If the pc of the next instruction is the same as the + // pc of this instruction, this instruction is not a real + // instruction. Keep going, so that we only emit a delta + // for a true instruction boundary in the program. + if p.Link != nil && p.Link.Pc == p.Pc { + val = valfunc(ctxt, func_, val, p, 1, arg) + if dbg { + ctxt.Logf("%6x %6s %v\n", uint64(p.Pc), "", p) + } + continue + } + + // The table is a sequence of (value, pc) pairs, where each + // pair states that the given value is in effect from the current position + // up to the given pc, which becomes the new current position. + // To generate the table as we scan over the program instructions, + // we emit a "(value" when pc == func->value, and then + // each time we observe a change in value we emit ", pc) (value". + // When the scan is over, we emit the closing ", pc)". + // + // The table is delta-encoded. The value deltas are signed and + // transmitted in zig-zag form, where a complement bit is placed in bit 0, + // and the pc deltas are unsigned. Both kinds of deltas are sent + // as variable-length little-endian base-128 integers, + // where the 0x80 bit indicates that the integer continues. + + if dbg { + ctxt.Logf("%6x %6d %v\n", uint64(p.Pc), val, p) + } + + if started { + pcdelta := (p.Pc - pc) / int64(ctxt.Arch.MinLC) + n := binary.PutUvarint(buf, uint64(pcdelta)) + dst = append(dst, buf[:n]...) + pc = p.Pc + } + + delta := val - oldval + n := binary.PutVarint(buf, int64(delta)) + dst = append(dst, buf[:n]...) + oldval = val + started = true + val = valfunc(ctxt, func_, val, p, 1, arg) + } + + if started { + if dbg { + ctxt.Logf("%6x done\n", uint64(fn.Text.Pc+func_.Size)) + } + v := (func_.Size - pc) / int64(ctxt.Arch.MinLC) + if v < 0 { + ctxt.Diag("negative pc offset: %v", v) + } + n := binary.PutUvarint(buf, uint64(v)) + dst = append(dst, buf[:n]...) + // add terminating varint-encoded 0, which is just 0 + dst = append(dst, 0) + } + + if dbg { + ctxt.Logf("wrote %d bytes to %p\n", len(dst), dst) + for _, p := range dst { + ctxt.Logf(" %02x", p) + } + ctxt.Logf("\n") + } + + sym.Size = int64(len(dst)) + sym.P = dst + return sym +} + +// pctofileline computes either the file number (arg == 0) +// or the line number (arg == 1) to use at p. +// Because p.Pos applies to p, phase == 0 (before p) +// takes care of the update. +func pctofileline(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 { + if p.As == ATEXT || p.As == ANOP || p.Pos.Line() == 0 || phase == 1 { + return oldval + } + f, l := getFileIndexAndLine(ctxt, p.Pos) + if arg == nil { + return l + } + pcln := arg.(*Pcln) + pcln.UsedFiles[goobj.CUFileIndex(f)] = struct{}{} + return int32(f) +} + +// pcinlineState holds the state used to create a function's inlining +// tree and the PC-value table that maps PCs to nodes in that tree. +type pcinlineState struct { + globalToLocal map[int]int + localTree InlTree +} + +// addBranch adds a branch from the global inlining tree in ctxt to +// the function's local inlining tree, returning the index in the local tree. +func (s *pcinlineState) addBranch(ctxt *Link, globalIndex int) int { + if globalIndex < 0 { + return -1 + } + + localIndex, ok := s.globalToLocal[globalIndex] + if ok { + return localIndex + } + + // Since tracebacks don't include column information, we could + // use one node for multiple calls of the same function on the + // same line (e.g., f(x) + f(y)). For now, we use one node for + // each inlined call. + call := ctxt.InlTree.nodes[globalIndex] + call.Parent = s.addBranch(ctxt, call.Parent) + localIndex = len(s.localTree.nodes) + s.localTree.nodes = append(s.localTree.nodes, call) + s.globalToLocal[globalIndex] = localIndex + return localIndex +} + +func (s *pcinlineState) setParentPC(ctxt *Link, globalIndex int, pc int32) { + localIndex, ok := s.globalToLocal[globalIndex] + if !ok { + // We know where to unwind to when we need to unwind a body identified + // by globalIndex. But there may be no instructions generated by that + // body (it's empty, or its instructions were CSEd with other things, etc.). + // In that case, we don't need an unwind entry. + // TODO: is this really right? Seems to happen a whole lot... + return + } + s.localTree.setParentPC(localIndex, pc) +} + +// pctoinline computes the index into the local inlining tree to use at p. +// If p is not the result of inlining, pctoinline returns -1. Because p.Pos +// applies to p, phase == 0 (before p) takes care of the update. +func (s *pcinlineState) pctoinline(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 { + if phase == 1 { + return oldval + } + + posBase := ctxt.PosTable.Pos(p.Pos).Base() + if posBase == nil { + return -1 + } + + globalIndex := posBase.InliningIndex() + if globalIndex < 0 { + return -1 + } + + if s.globalToLocal == nil { + s.globalToLocal = make(map[int]int) + } + + return int32(s.addBranch(ctxt, globalIndex)) +} + +// pctospadj computes the sp adjustment in effect. +// It is oldval plus any adjustment made by p itself. +// The adjustment by p takes effect only after p, so we +// apply the change during phase == 1. +func pctospadj(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 { + if oldval == -1 { // starting + oldval = 0 + } + if phase == 0 { + return oldval + } + if oldval+p.Spadj < -10000 || oldval+p.Spadj > 1100000000 { + ctxt.Diag("overflow in spadj: %d + %d = %d", oldval, p.Spadj, oldval+p.Spadj) + ctxt.DiagFlush() + log.Fatalf("bad code") + } + + return oldval + p.Spadj +} + +// pctopcdata computes the pcdata value in effect at p. +// A PCDATA instruction sets the value in effect at future +// non-PCDATA instructions. +// Since PCDATA instructions have no width in the final code, +// it does not matter which phase we use for the update. +func pctopcdata(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 { + if phase == 0 || p.As != APCDATA || p.From.Offset != int64(arg.(uint32)) { + return oldval + } + if int64(int32(p.To.Offset)) != p.To.Offset { + ctxt.Diag("overflow in PCDATA instruction: %v", p) + ctxt.DiagFlush() + log.Fatalf("bad code") + } + + return int32(p.To.Offset) +} + +func linkpcln(ctxt *Link, cursym *LSym) { + pcln := &cursym.Func().Pcln + pcln.UsedFiles = make(map[goobj.CUFileIndex]struct{}) + + npcdata := 0 + nfuncdata := 0 + for p := cursym.Func().Text; p != nil; p = p.Link { + // Find the highest ID of any used PCDATA table. This ignores PCDATA table + // that consist entirely of "-1", since that's the assumed default value. + // From.Offset is table ID + // To.Offset is data + if p.As == APCDATA && p.From.Offset >= int64(npcdata) && p.To.Offset != -1 { // ignore -1 as we start at -1, if we only see -1, nothing changed + npcdata = int(p.From.Offset + 1) + } + // Find the highest ID of any FUNCDATA table. + // From.Offset is table ID + if p.As == AFUNCDATA && p.From.Offset >= int64(nfuncdata) { + nfuncdata = int(p.From.Offset + 1) + } + } + + pcln.Pcdata = make([]*LSym, npcdata) + pcln.Funcdata = make([]*LSym, nfuncdata) + + pcln.Pcsp = funcpctab(ctxt, cursym, "pctospadj", pctospadj, nil) + pcln.Pcfile = funcpctab(ctxt, cursym, "pctofile", pctofileline, pcln) + pcln.Pcline = funcpctab(ctxt, cursym, "pctoline", pctofileline, nil) + + // Check that all the Progs used as inline markers are still reachable. + // See issue #40473. + fn := cursym.Func() + inlMarkProgs := make(map[*Prog]struct{}, len(fn.InlMarks)) + for _, inlMark := range fn.InlMarks { + inlMarkProgs[inlMark.p] = struct{}{} + } + for p := fn.Text; p != nil; p = p.Link { + if _, ok := inlMarkProgs[p]; ok { + delete(inlMarkProgs, p) + } + } + if len(inlMarkProgs) > 0 { + ctxt.Diag("one or more instructions used as inline markers are no longer reachable") + } + + pcinlineState := new(pcinlineState) + pcln.Pcinline = funcpctab(ctxt, cursym, "pctoinline", pcinlineState.pctoinline, nil) + for _, inlMark := range fn.InlMarks { + pcinlineState.setParentPC(ctxt, int(inlMark.id), int32(inlMark.p.Pc)) + } + pcln.InlTree = pcinlineState.localTree + if ctxt.Debugpcln == "pctoinline" && len(pcln.InlTree.nodes) > 0 { + ctxt.Logf("-- inlining tree for %s:\n", cursym) + dumpInlTree(ctxt, pcln.InlTree) + ctxt.Logf("--\n") + } + + // tabulate which pc and func data we have. + havepc := make([]uint32, (npcdata+31)/32) + havefunc := make([]uint32, (nfuncdata+31)/32) + for p := fn.Text; p != nil; p = p.Link { + if p.As == AFUNCDATA { + if (havefunc[p.From.Offset/32]>>uint64(p.From.Offset%32))&1 != 0 { + ctxt.Diag("multiple definitions for FUNCDATA $%d", p.From.Offset) + } + havefunc[p.From.Offset/32] |= 1 << uint64(p.From.Offset%32) + } + + if p.As == APCDATA && p.To.Offset != -1 { + havepc[p.From.Offset/32] |= 1 << uint64(p.From.Offset%32) + } + } + + // pcdata. + for i := 0; i < npcdata; i++ { + if (havepc[i/32]>>uint(i%32))&1 == 0 { + // use an empty symbol. + pcln.Pcdata[i] = &LSym{ + Type: objabi.SRODATA, + Attribute: AttrContentAddressable | AttrPcdata, + } + } else { + pcln.Pcdata[i] = funcpctab(ctxt, cursym, "pctopcdata", pctopcdata, interface{}(uint32(i))) + } + } + + // funcdata + if nfuncdata > 0 { + for p := fn.Text; p != nil; p = p.Link { + if p.As != AFUNCDATA { + continue + } + i := int(p.From.Offset) + if p.To.Type != TYPE_MEM || p.To.Offset != 0 { + panic(fmt.Sprintf("bad funcdata: %v", p)) + } + pcln.Funcdata[i] = p.To.Sym + } + } +} + +// PCIter iterates over encoded pcdata tables. +type PCIter struct { + p []byte + PC uint32 + NextPC uint32 + PCScale uint32 + Value int32 + start bool + Done bool +} + +// newPCIter creates a PCIter with a scale factor for the PC step size. +func NewPCIter(pcScale uint32) *PCIter { + it := new(PCIter) + it.PCScale = pcScale + return it +} + +// Next advances it to the Next pc. +func (it *PCIter) Next() { + it.PC = it.NextPC + if it.Done { + return + } + if len(it.p) == 0 { + it.Done = true + return + } + + // Value delta + val, n := binary.Varint(it.p) + if n <= 0 { + log.Fatalf("bad Value varint in pciterNext: read %v", n) + } + it.p = it.p[n:] + + if val == 0 && !it.start { + it.Done = true + return + } + + it.start = false + it.Value += int32(val) + + // pc delta + pc, n := binary.Uvarint(it.p) + if n <= 0 { + log.Fatalf("bad pc varint in pciterNext: read %v", n) + } + it.p = it.p[n:] + + it.NextPC = it.PC + uint32(pc)*it.PCScale +} + +// init prepares it to iterate over p, +// and advances it to the first pc. +func (it *PCIter) Init(p []byte) { + it.p = p + it.PC = 0 + it.NextPC = 0 + it.Value = -1 + it.start = true + it.Done = false + it.Next() +} |