summaryrefslogtreecommitdiffstats
path: root/src/crypto/elliptic/p384.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:16:40 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:16:40 +0000
commit47ab3d4a42e9ab51c465c4322d2ec233f6324e6b (patch)
treea61a0ffd83f4a3def4b36e5c8e99630c559aa723 /src/crypto/elliptic/p384.go
parentInitial commit. (diff)
downloadgolang-1.18-47ab3d4a42e9ab51c465c4322d2ec233f6324e6b.tar.xz
golang-1.18-47ab3d4a42e9ab51c465c4322d2ec233f6324e6b.zip
Adding upstream version 1.18.10.upstream/1.18.10upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/crypto/elliptic/p384.go')
-rw-r--r--src/crypto/elliptic/p384.go144
1 files changed, 144 insertions, 0 deletions
diff --git a/src/crypto/elliptic/p384.go b/src/crypto/elliptic/p384.go
new file mode 100644
index 0000000..33a441d
--- /dev/null
+++ b/src/crypto/elliptic/p384.go
@@ -0,0 +1,144 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package elliptic
+
+import (
+ "crypto/elliptic/internal/nistec"
+ "crypto/rand"
+ "math/big"
+)
+
+// p384Curve is a Curve implementation based on nistec.P384Point.
+//
+// It's a wrapper that exposes the big.Int-based Curve interface and encodes the
+// legacy idiosyncrasies it requires, such as invalid and infinity point
+// handling.
+//
+// To interact with the nistec package, points are encoded into and decoded from
+// properly formatted byte slices. All big.Int use is limited to this package.
+// Encoding and decoding is 1/1000th of the runtime of a scalar multiplication,
+// so the overhead is acceptable.
+type p384Curve struct {
+ params *CurveParams
+}
+
+var p384 p384Curve
+var _ Curve = p384
+
+func initP384() {
+ p384.params = &CurveParams{
+ Name: "P-384",
+ BitSize: 384,
+ // FIPS 186-4, section D.1.2.4
+ P: bigFromDecimal("394020061963944792122790401001436138050797392704654" +
+ "46667948293404245721771496870329047266088258938001861606973112319"),
+ N: bigFromDecimal("394020061963944792122790401001436138050797392704654" +
+ "46667946905279627659399113263569398956308152294913554433653942643"),
+ B: bigFromHex("b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088" +
+ "f5013875ac656398d8a2ed19d2a85c8edd3ec2aef"),
+ Gx: bigFromHex("aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741" +
+ "e082542a385502f25dbf55296c3a545e3872760ab7"),
+ Gy: bigFromHex("3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da31" +
+ "13b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f"),
+ }
+}
+
+func (curve p384Curve) Params() *CurveParams {
+ return curve.params
+}
+
+func (curve p384Curve) IsOnCurve(x, y *big.Int) bool {
+ // IsOnCurve is documented to reject (0, 0), the conventional point at
+ // infinity, which however is accepted by p384PointFromAffine.
+ if x.Sign() == 0 && y.Sign() == 0 {
+ return false
+ }
+ _, ok := p384PointFromAffine(x, y)
+ return ok
+}
+
+func p384PointFromAffine(x, y *big.Int) (p *nistec.P384Point, ok bool) {
+ // (0, 0) is by convention the point at infinity, which can't be represented
+ // in affine coordinates. Marshal incorrectly encodes it as an uncompressed
+ // point, which SetBytes would correctly reject. See Issue 37294.
+ if x.Sign() == 0 && y.Sign() == 0 {
+ return nistec.NewP384Point(), true
+ }
+ if x.Sign() < 0 || y.Sign() < 0 {
+ return nil, false
+ }
+ if x.BitLen() > 384 || y.BitLen() > 384 {
+ return nil, false
+ }
+ p, err := nistec.NewP384Point().SetBytes(Marshal(P384(), x, y))
+ if err != nil {
+ return nil, false
+ }
+ return p, true
+}
+
+func p384PointToAffine(p *nistec.P384Point) (x, y *big.Int) {
+ out := p.Bytes()
+ if len(out) == 1 && out[0] == 0 {
+ // This is the correct encoding of the point at infinity, which
+ // Unmarshal does not support. See Issue 37294.
+ return new(big.Int), new(big.Int)
+ }
+ x, y = Unmarshal(P384(), out)
+ if x == nil {
+ panic("crypto/elliptic: internal error: Unmarshal rejected a valid point encoding")
+ }
+ return x, y
+}
+
+// p384RandomPoint returns a random point on the curve. It's used when Add,
+// Double, or ScalarMult are fed a point not on the curve, which is undefined
+// behavior. Originally, we used to do the math on it anyway (which allows
+// invalid curve attacks) and relied on the caller and Unmarshal to avoid this
+// happening in the first place. Now, we just can't construct a nistec.P384Point
+// for an invalid pair of coordinates, because that API is safer. If we panic,
+// we risk introducing a DoS. If we return nil, we risk a panic. If we return
+// the input, ecdsa.Verify might fail open. The safest course seems to be to
+// return a valid, random point, which hopefully won't help the attacker.
+func p384RandomPoint() (x, y *big.Int) {
+ _, x, y, err := GenerateKey(P384(), rand.Reader)
+ if err != nil {
+ panic("crypto/elliptic: failed to generate random point")
+ }
+ return x, y
+}
+
+func (p384Curve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
+ p1, ok := p384PointFromAffine(x1, y1)
+ if !ok {
+ return p384RandomPoint()
+ }
+ p2, ok := p384PointFromAffine(x2, y2)
+ if !ok {
+ return p384RandomPoint()
+ }
+ return p384PointToAffine(p1.Add(p1, p2))
+}
+
+func (p384Curve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
+ p, ok := p384PointFromAffine(x1, y1)
+ if !ok {
+ return p384RandomPoint()
+ }
+ return p384PointToAffine(p.Double(p))
+}
+
+func (p384Curve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) {
+ p, ok := p384PointFromAffine(Bx, By)
+ if !ok {
+ return p384RandomPoint()
+ }
+ return p384PointToAffine(p.ScalarMult(p, scalar))
+}
+
+func (p384Curve) ScalarBaseMult(scalar []byte) (*big.Int, *big.Int) {
+ p := nistec.NewP384Generator()
+ return p384PointToAffine(p.ScalarMult(p, scalar))
+}