diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 13:16:40 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 13:16:40 +0000 |
commit | 47ab3d4a42e9ab51c465c4322d2ec233f6324e6b (patch) | |
tree | a61a0ffd83f4a3def4b36e5c8e99630c559aa723 /src/crypto/elliptic/p384.go | |
parent | Initial commit. (diff) | |
download | golang-1.18-47ab3d4a42e9ab51c465c4322d2ec233f6324e6b.tar.xz golang-1.18-47ab3d4a42e9ab51c465c4322d2ec233f6324e6b.zip |
Adding upstream version 1.18.10.upstream/1.18.10upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/crypto/elliptic/p384.go')
-rw-r--r-- | src/crypto/elliptic/p384.go | 144 |
1 files changed, 144 insertions, 0 deletions
diff --git a/src/crypto/elliptic/p384.go b/src/crypto/elliptic/p384.go new file mode 100644 index 0000000..33a441d --- /dev/null +++ b/src/crypto/elliptic/p384.go @@ -0,0 +1,144 @@ +// Copyright 2013 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package elliptic + +import ( + "crypto/elliptic/internal/nistec" + "crypto/rand" + "math/big" +) + +// p384Curve is a Curve implementation based on nistec.P384Point. +// +// It's a wrapper that exposes the big.Int-based Curve interface and encodes the +// legacy idiosyncrasies it requires, such as invalid and infinity point +// handling. +// +// To interact with the nistec package, points are encoded into and decoded from +// properly formatted byte slices. All big.Int use is limited to this package. +// Encoding and decoding is 1/1000th of the runtime of a scalar multiplication, +// so the overhead is acceptable. +type p384Curve struct { + params *CurveParams +} + +var p384 p384Curve +var _ Curve = p384 + +func initP384() { + p384.params = &CurveParams{ + Name: "P-384", + BitSize: 384, + // FIPS 186-4, section D.1.2.4 + P: bigFromDecimal("394020061963944792122790401001436138050797392704654" + + "46667948293404245721771496870329047266088258938001861606973112319"), + N: bigFromDecimal("394020061963944792122790401001436138050797392704654" + + "46667946905279627659399113263569398956308152294913554433653942643"), + B: bigFromHex("b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088" + + "f5013875ac656398d8a2ed19d2a85c8edd3ec2aef"), + Gx: bigFromHex("aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741" + + "e082542a385502f25dbf55296c3a545e3872760ab7"), + Gy: bigFromHex("3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da31" + + "13b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f"), + } +} + +func (curve p384Curve) Params() *CurveParams { + return curve.params +} + +func (curve p384Curve) IsOnCurve(x, y *big.Int) bool { + // IsOnCurve is documented to reject (0, 0), the conventional point at + // infinity, which however is accepted by p384PointFromAffine. + if x.Sign() == 0 && y.Sign() == 0 { + return false + } + _, ok := p384PointFromAffine(x, y) + return ok +} + +func p384PointFromAffine(x, y *big.Int) (p *nistec.P384Point, ok bool) { + // (0, 0) is by convention the point at infinity, which can't be represented + // in affine coordinates. Marshal incorrectly encodes it as an uncompressed + // point, which SetBytes would correctly reject. See Issue 37294. + if x.Sign() == 0 && y.Sign() == 0 { + return nistec.NewP384Point(), true + } + if x.Sign() < 0 || y.Sign() < 0 { + return nil, false + } + if x.BitLen() > 384 || y.BitLen() > 384 { + return nil, false + } + p, err := nistec.NewP384Point().SetBytes(Marshal(P384(), x, y)) + if err != nil { + return nil, false + } + return p, true +} + +func p384PointToAffine(p *nistec.P384Point) (x, y *big.Int) { + out := p.Bytes() + if len(out) == 1 && out[0] == 0 { + // This is the correct encoding of the point at infinity, which + // Unmarshal does not support. See Issue 37294. + return new(big.Int), new(big.Int) + } + x, y = Unmarshal(P384(), out) + if x == nil { + panic("crypto/elliptic: internal error: Unmarshal rejected a valid point encoding") + } + return x, y +} + +// p384RandomPoint returns a random point on the curve. It's used when Add, +// Double, or ScalarMult are fed a point not on the curve, which is undefined +// behavior. Originally, we used to do the math on it anyway (which allows +// invalid curve attacks) and relied on the caller and Unmarshal to avoid this +// happening in the first place. Now, we just can't construct a nistec.P384Point +// for an invalid pair of coordinates, because that API is safer. If we panic, +// we risk introducing a DoS. If we return nil, we risk a panic. If we return +// the input, ecdsa.Verify might fail open. The safest course seems to be to +// return a valid, random point, which hopefully won't help the attacker. +func p384RandomPoint() (x, y *big.Int) { + _, x, y, err := GenerateKey(P384(), rand.Reader) + if err != nil { + panic("crypto/elliptic: failed to generate random point") + } + return x, y +} + +func (p384Curve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { + p1, ok := p384PointFromAffine(x1, y1) + if !ok { + return p384RandomPoint() + } + p2, ok := p384PointFromAffine(x2, y2) + if !ok { + return p384RandomPoint() + } + return p384PointToAffine(p1.Add(p1, p2)) +} + +func (p384Curve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { + p, ok := p384PointFromAffine(x1, y1) + if !ok { + return p384RandomPoint() + } + return p384PointToAffine(p.Double(p)) +} + +func (p384Curve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) { + p, ok := p384PointFromAffine(Bx, By) + if !ok { + return p384RandomPoint() + } + return p384PointToAffine(p.ScalarMult(p, scalar)) +} + +func (p384Curve) ScalarBaseMult(scalar []byte) (*big.Int, *big.Int) { + p := nistec.NewP384Generator() + return p384PointToAffine(p.ScalarMult(p, scalar)) +} |