diff options
Diffstat (limited to 'src/cmd/compile/internal/escape/expr.go')
-rw-r--r-- | src/cmd/compile/internal/escape/expr.go | 335 |
1 files changed, 335 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/escape/expr.go b/src/cmd/compile/internal/escape/expr.go new file mode 100644 index 0000000..ced90a4 --- /dev/null +++ b/src/cmd/compile/internal/escape/expr.go @@ -0,0 +1,335 @@ +// Copyright 2018 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package escape + +import ( + "cmd/compile/internal/base" + "cmd/compile/internal/ir" + "cmd/compile/internal/types" +) + +// expr models evaluating an expression n and flowing the result into +// hole k. +func (e *escape) expr(k hole, n ir.Node) { + if n == nil { + return + } + e.stmts(n.Init()) + e.exprSkipInit(k, n) +} + +func (e *escape) exprSkipInit(k hole, n ir.Node) { + if n == nil { + return + } + + lno := ir.SetPos(n) + defer func() { + base.Pos = lno + }() + + if k.derefs >= 0 && !n.Type().IsUntyped() && !n.Type().HasPointers() { + k.dst = &e.blankLoc + } + + switch n.Op() { + default: + base.Fatalf("unexpected expr: %s %v", n.Op().String(), n) + + case ir.OLITERAL, ir.ONIL, ir.OGETG, ir.OGETCALLERPC, ir.OGETCALLERSP, ir.OTYPE, ir.OMETHEXPR, ir.OLINKSYMOFFSET: + // nop + + case ir.ONAME: + n := n.(*ir.Name) + if n.Class == ir.PFUNC || n.Class == ir.PEXTERN { + return + } + e.flow(k, e.oldLoc(n)) + + case ir.OPLUS, ir.ONEG, ir.OBITNOT, ir.ONOT: + n := n.(*ir.UnaryExpr) + e.discard(n.X) + case ir.OADD, ir.OSUB, ir.OOR, ir.OXOR, ir.OMUL, ir.ODIV, ir.OMOD, ir.OLSH, ir.ORSH, ir.OAND, ir.OANDNOT, ir.OEQ, ir.ONE, ir.OLT, ir.OLE, ir.OGT, ir.OGE: + n := n.(*ir.BinaryExpr) + e.discard(n.X) + e.discard(n.Y) + case ir.OANDAND, ir.OOROR: + n := n.(*ir.LogicalExpr) + e.discard(n.X) + e.discard(n.Y) + case ir.OADDR: + n := n.(*ir.AddrExpr) + e.expr(k.addr(n, "address-of"), n.X) // "address-of" + case ir.ODEREF: + n := n.(*ir.StarExpr) + e.expr(k.deref(n, "indirection"), n.X) // "indirection" + case ir.ODOT, ir.ODOTMETH, ir.ODOTINTER: + n := n.(*ir.SelectorExpr) + e.expr(k.note(n, "dot"), n.X) + case ir.ODOTPTR: + n := n.(*ir.SelectorExpr) + e.expr(k.deref(n, "dot of pointer"), n.X) // "dot of pointer" + case ir.ODOTTYPE, ir.ODOTTYPE2: + n := n.(*ir.TypeAssertExpr) + e.expr(k.dotType(n.Type(), n, "dot"), n.X) + case ir.ODYNAMICDOTTYPE, ir.ODYNAMICDOTTYPE2: + n := n.(*ir.DynamicTypeAssertExpr) + e.expr(k.dotType(n.Type(), n, "dot"), n.X) + // n.T doesn't need to be tracked; it always points to read-only storage. + case ir.OINDEX: + n := n.(*ir.IndexExpr) + if n.X.Type().IsArray() { + e.expr(k.note(n, "fixed-array-index-of"), n.X) + } else { + // TODO(mdempsky): Fix why reason text. + e.expr(k.deref(n, "dot of pointer"), n.X) + } + e.discard(n.Index) + case ir.OINDEXMAP: + n := n.(*ir.IndexExpr) + e.discard(n.X) + e.discard(n.Index) + case ir.OSLICE, ir.OSLICEARR, ir.OSLICE3, ir.OSLICE3ARR, ir.OSLICESTR: + n := n.(*ir.SliceExpr) + e.expr(k.note(n, "slice"), n.X) + e.discard(n.Low) + e.discard(n.High) + e.discard(n.Max) + + case ir.OCONV, ir.OCONVNOP: + n := n.(*ir.ConvExpr) + if ir.ShouldCheckPtr(e.curfn, 2) && n.Type().IsUnsafePtr() && n.X.Type().IsPtr() { + // When -d=checkptr=2 is enabled, treat + // conversions to unsafe.Pointer as an + // escaping operation. This allows better + // runtime instrumentation, since we can more + // easily detect object boundaries on the heap + // than the stack. + e.assignHeap(n.X, "conversion to unsafe.Pointer", n) + } else if n.Type().IsUnsafePtr() && n.X.Type().IsUintptr() { + e.unsafeValue(k, n.X) + } else { + e.expr(k, n.X) + } + case ir.OCONVIFACE, ir.OCONVIDATA: + n := n.(*ir.ConvExpr) + if !n.X.Type().IsInterface() && !types.IsDirectIface(n.X.Type()) { + k = e.spill(k, n) + } + e.expr(k.note(n, "interface-converted"), n.X) + case ir.OEFACE: + n := n.(*ir.BinaryExpr) + // Note: n.X is not needed because it can never point to memory that might escape. + e.expr(k, n.Y) + case ir.OIDATA, ir.OSPTR: + n := n.(*ir.UnaryExpr) + e.expr(k, n.X) + case ir.OSLICE2ARRPTR: + // the slice pointer flows directly to the result + n := n.(*ir.ConvExpr) + e.expr(k, n.X) + case ir.ORECV: + n := n.(*ir.UnaryExpr) + e.discard(n.X) + + case ir.OCALLMETH, ir.OCALLFUNC, ir.OCALLINTER, ir.OINLCALL, ir.OLEN, ir.OCAP, ir.OCOMPLEX, ir.OREAL, ir.OIMAG, ir.OAPPEND, ir.OCOPY, ir.ORECOVER, ir.OUNSAFEADD, ir.OUNSAFESLICE: + e.call([]hole{k}, n) + + case ir.ONEW: + n := n.(*ir.UnaryExpr) + e.spill(k, n) + + case ir.OMAKESLICE: + n := n.(*ir.MakeExpr) + e.spill(k, n) + e.discard(n.Len) + e.discard(n.Cap) + case ir.OMAKECHAN: + n := n.(*ir.MakeExpr) + e.discard(n.Len) + case ir.OMAKEMAP: + n := n.(*ir.MakeExpr) + e.spill(k, n) + e.discard(n.Len) + + case ir.OMETHVALUE: + // Flow the receiver argument to both the closure and + // to the receiver parameter. + + n := n.(*ir.SelectorExpr) + closureK := e.spill(k, n) + + m := n.Selection + + // We don't know how the method value will be called + // later, so conservatively assume the result + // parameters all flow to the heap. + // + // TODO(mdempsky): Change ks into a callback, so that + // we don't have to create this slice? + var ks []hole + for i := m.Type.NumResults(); i > 0; i-- { + ks = append(ks, e.heapHole()) + } + name, _ := m.Nname.(*ir.Name) + paramK := e.tagHole(ks, name, m.Type.Recv()) + + e.expr(e.teeHole(paramK, closureK), n.X) + + case ir.OPTRLIT: + n := n.(*ir.AddrExpr) + e.expr(e.spill(k, n), n.X) + + case ir.OARRAYLIT: + n := n.(*ir.CompLitExpr) + for _, elt := range n.List { + if elt.Op() == ir.OKEY { + elt = elt.(*ir.KeyExpr).Value + } + e.expr(k.note(n, "array literal element"), elt) + } + + case ir.OSLICELIT: + n := n.(*ir.CompLitExpr) + k = e.spill(k, n) + + for _, elt := range n.List { + if elt.Op() == ir.OKEY { + elt = elt.(*ir.KeyExpr).Value + } + e.expr(k.note(n, "slice-literal-element"), elt) + } + + case ir.OSTRUCTLIT: + n := n.(*ir.CompLitExpr) + for _, elt := range n.List { + e.expr(k.note(n, "struct literal element"), elt.(*ir.StructKeyExpr).Value) + } + + case ir.OMAPLIT: + n := n.(*ir.CompLitExpr) + e.spill(k, n) + + // Map keys and values are always stored in the heap. + for _, elt := range n.List { + elt := elt.(*ir.KeyExpr) + e.assignHeap(elt.Key, "map literal key", n) + e.assignHeap(elt.Value, "map literal value", n) + } + + case ir.OCLOSURE: + n := n.(*ir.ClosureExpr) + k = e.spill(k, n) + e.closures = append(e.closures, closure{k, n}) + + if fn := n.Func; fn.IsHiddenClosure() { + for _, cv := range fn.ClosureVars { + if loc := e.oldLoc(cv); !loc.captured { + loc.captured = true + + // Ignore reassignments to the variable in straightline code + // preceding the first capture by a closure. + if loc.loopDepth == e.loopDepth { + loc.reassigned = false + } + } + } + + for _, n := range fn.Dcl { + // Add locations for local variables of the + // closure, if needed, in case we're not including + // the closure func in the batch for escape + // analysis (happens for escape analysis called + // from reflectdata.methodWrapper) + if n.Op() == ir.ONAME && n.Opt == nil { + e.with(fn).newLoc(n, false) + } + } + e.walkFunc(fn) + } + + case ir.ORUNES2STR, ir.OBYTES2STR, ir.OSTR2RUNES, ir.OSTR2BYTES, ir.ORUNESTR: + n := n.(*ir.ConvExpr) + e.spill(k, n) + e.discard(n.X) + + case ir.OADDSTR: + n := n.(*ir.AddStringExpr) + e.spill(k, n) + + // Arguments of OADDSTR never escape; + // runtime.concatstrings makes sure of that. + e.discards(n.List) + + case ir.ODYNAMICTYPE: + // Nothing to do - argument is a *runtime._type (+ maybe a *runtime.itab) pointing to static data section + } +} + +// unsafeValue evaluates a uintptr-typed arithmetic expression looking +// for conversions from an unsafe.Pointer. +func (e *escape) unsafeValue(k hole, n ir.Node) { + if n.Type().Kind() != types.TUINTPTR { + base.Fatalf("unexpected type %v for %v", n.Type(), n) + } + if k.addrtaken { + base.Fatalf("unexpected addrtaken") + } + + e.stmts(n.Init()) + + switch n.Op() { + case ir.OCONV, ir.OCONVNOP: + n := n.(*ir.ConvExpr) + if n.X.Type().IsUnsafePtr() { + e.expr(k, n.X) + } else { + e.discard(n.X) + } + case ir.ODOTPTR: + n := n.(*ir.SelectorExpr) + if ir.IsReflectHeaderDataField(n) { + e.expr(k.deref(n, "reflect.Header.Data"), n.X) + } else { + e.discard(n.X) + } + case ir.OPLUS, ir.ONEG, ir.OBITNOT: + n := n.(*ir.UnaryExpr) + e.unsafeValue(k, n.X) + case ir.OADD, ir.OSUB, ir.OOR, ir.OXOR, ir.OMUL, ir.ODIV, ir.OMOD, ir.OAND, ir.OANDNOT: + n := n.(*ir.BinaryExpr) + e.unsafeValue(k, n.X) + e.unsafeValue(k, n.Y) + case ir.OLSH, ir.ORSH: + n := n.(*ir.BinaryExpr) + e.unsafeValue(k, n.X) + // RHS need not be uintptr-typed (#32959) and can't meaningfully + // flow pointers anyway. + e.discard(n.Y) + default: + e.exprSkipInit(e.discardHole(), n) + } +} + +// discard evaluates an expression n for side-effects, but discards +// its value. +func (e *escape) discard(n ir.Node) { + e.expr(e.discardHole(), n) +} + +func (e *escape) discards(l ir.Nodes) { + for _, n := range l { + e.discard(n) + } +} + +// spill allocates a new location associated with expression n, flows +// its address to k, and returns a hole that flows values to it. It's +// intended for use with most expressions that allocate storage. +func (e *escape) spill(k hole, n ir.Node) hole { + loc := e.newLoc(n, true) + e.flow(k.addr(n, "spill"), loc) + return loc.asHole() +} |