summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/ssa/loopbce.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/cmd/compile/internal/ssa/loopbce.go')
-rw-r--r--src/cmd/compile/internal/ssa/loopbce.go353
1 files changed, 353 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/ssa/loopbce.go b/src/cmd/compile/internal/ssa/loopbce.go
new file mode 100644
index 0000000..fd03efb
--- /dev/null
+++ b/src/cmd/compile/internal/ssa/loopbce.go
@@ -0,0 +1,353 @@
+// Copyright 2018 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssa
+
+import (
+ "fmt"
+ "math"
+)
+
+type indVarFlags uint8
+
+const (
+ indVarMinExc indVarFlags = 1 << iota // minimum value is exclusive (default: inclusive)
+ indVarMaxInc // maximum value is inclusive (default: exclusive)
+)
+
+type indVar struct {
+ ind *Value // induction variable
+ min *Value // minimum value, inclusive/exclusive depends on flags
+ max *Value // maximum value, inclusive/exclusive depends on flags
+ entry *Block // entry block in the loop.
+ flags indVarFlags
+ // Invariant: for all blocks strictly dominated by entry:
+ // min <= ind < max [if flags == 0]
+ // min < ind < max [if flags == indVarMinExc]
+ // min <= ind <= max [if flags == indVarMaxInc]
+ // min < ind <= max [if flags == indVarMinExc|indVarMaxInc]
+}
+
+// parseIndVar checks whether the SSA value passed as argument is a valid induction
+// variable, and, if so, extracts:
+// * the minimum bound
+// * the increment value
+// * the "next" value (SSA value that is Phi'd into the induction variable every loop)
+// Currently, we detect induction variables that match (Phi min nxt),
+// with nxt being (Add inc ind).
+// If it can't parse the induction variable correctly, it returns (nil, nil, nil).
+func parseIndVar(ind *Value) (min, inc, nxt *Value) {
+ if ind.Op != OpPhi {
+ return
+ }
+
+ if n := ind.Args[0]; n.Op == OpAdd64 && (n.Args[0] == ind || n.Args[1] == ind) {
+ min, nxt = ind.Args[1], n
+ } else if n := ind.Args[1]; n.Op == OpAdd64 && (n.Args[0] == ind || n.Args[1] == ind) {
+ min, nxt = ind.Args[0], n
+ } else {
+ // Not a recognized induction variable.
+ return
+ }
+
+ if nxt.Args[0] == ind { // nxt = ind + inc
+ inc = nxt.Args[1]
+ } else if nxt.Args[1] == ind { // nxt = inc + ind
+ inc = nxt.Args[0]
+ } else {
+ panic("unreachable") // one of the cases must be true from the above.
+ }
+
+ return
+}
+
+// findIndVar finds induction variables in a function.
+//
+// Look for variables and blocks that satisfy the following
+//
+// loop:
+// ind = (Phi min nxt),
+// if ind < max
+// then goto enter_loop
+// else goto exit_loop
+//
+// enter_loop:
+// do something
+// nxt = inc + ind
+// goto loop
+//
+// exit_loop:
+//
+//
+// TODO: handle 32 bit operations
+func findIndVar(f *Func) []indVar {
+ var iv []indVar
+ sdom := f.Sdom()
+
+ for _, b := range f.Blocks {
+ if b.Kind != BlockIf || len(b.Preds) != 2 {
+ continue
+ }
+
+ var flags indVarFlags
+ var ind, max *Value // induction, and maximum
+
+ // Check thet the control if it either ind </<= max or max >/>= ind.
+ // TODO: Handle 32-bit comparisons.
+ // TODO: Handle unsigned comparisons?
+ c := b.Controls[0]
+ switch c.Op {
+ case OpLeq64:
+ flags |= indVarMaxInc
+ fallthrough
+ case OpLess64:
+ ind, max = c.Args[0], c.Args[1]
+ default:
+ continue
+ }
+
+ // See if this is really an induction variable
+ less := true
+ min, inc, nxt := parseIndVar(ind)
+ if min == nil {
+ // We failed to parse the induction variable. Before punting, we want to check
+ // whether the control op was written with arguments in non-idiomatic order,
+ // so that we believe being "max" (the upper bound) is actually the induction
+ // variable itself. This would happen for code like:
+ // for i := 0; len(n) > i; i++
+ min, inc, nxt = parseIndVar(max)
+ if min == nil {
+ // No recognied induction variable on either operand
+ continue
+ }
+
+ // Ok, the arguments were reversed. Swap them, and remember that we're
+ // looking at a ind >/>= loop (so the induction must be decrementing).
+ ind, max = max, ind
+ less = false
+ }
+
+ // Expect the increment to be a nonzero constant.
+ if inc.Op != OpConst64 {
+ continue
+ }
+ step := inc.AuxInt
+ if step == 0 {
+ continue
+ }
+
+ // Increment sign must match comparison direction.
+ // When incrementing, the termination comparison must be ind </<= max.
+ // When decrementing, the termination comparison must be ind >/>= max.
+ // See issue 26116.
+ if step > 0 && !less {
+ continue
+ }
+ if step < 0 && less {
+ continue
+ }
+
+ // If the increment is negative, swap min/max and their flags
+ if step < 0 {
+ min, max = max, min
+ oldf := flags
+ flags = indVarMaxInc
+ if oldf&indVarMaxInc == 0 {
+ flags |= indVarMinExc
+ }
+ step = -step
+ }
+
+ if flags&indVarMaxInc != 0 && max.Op == OpConst64 && max.AuxInt+step < max.AuxInt {
+ // For a <= comparison, we need to make sure that a value equal to
+ // max can be incremented without overflowing.
+ // (For a < comparison, the %step check below ensures no overflow.)
+ continue
+ }
+
+ // Up to now we extracted the induction variable (ind),
+ // the increment delta (inc), the temporary sum (nxt),
+ // the mininum value (min) and the maximum value (max).
+ //
+ // We also know that ind has the form (Phi min nxt) where
+ // nxt is (Add inc nxt) which means: 1) inc dominates nxt
+ // and 2) there is a loop starting at inc and containing nxt.
+ //
+ // We need to prove that the induction variable is incremented
+ // only when it's smaller than the maximum value.
+ // Two conditions must happen listed below to accept ind
+ // as an induction variable.
+
+ // First condition: loop entry has a single predecessor, which
+ // is the header block. This implies that b.Succs[0] is
+ // reached iff ind < max.
+ if len(b.Succs[0].b.Preds) != 1 {
+ // b.Succs[1] must exit the loop.
+ continue
+ }
+
+ // Second condition: b.Succs[0] dominates nxt so that
+ // nxt is computed when inc < max, meaning nxt <= max.
+ if !sdom.IsAncestorEq(b.Succs[0].b, nxt.Block) {
+ // inc+ind can only be reached through the branch that enters the loop.
+ continue
+ }
+
+ // We can only guarantee that the loop runs within limits of induction variable
+ // if (one of)
+ // (1) the increment is ±1
+ // (2) the limits are constants
+ // (3) loop is of the form k0 upto Known_not_negative-k inclusive, step <= k
+ // (4) loop is of the form k0 upto Known_not_negative-k exclusive, step <= k+1
+ // (5) loop is of the form Known_not_negative downto k0, minint+step < k0
+ if step > 1 {
+ ok := false
+ if min.Op == OpConst64 && max.Op == OpConst64 {
+ if max.AuxInt > min.AuxInt && max.AuxInt%step == min.AuxInt%step { // handle overflow
+ ok = true
+ }
+ }
+ // Handle induction variables of these forms.
+ // KNN is known-not-negative.
+ // SIGNED ARITHMETIC ONLY. (see switch on c above)
+ // Possibilities for KNN are len and cap; perhaps we can infer others.
+ // for i := 0; i <= KNN-k ; i += k
+ // for i := 0; i < KNN-(k-1); i += k
+ // Also handle decreasing.
+
+ // "Proof" copied from https://go-review.googlesource.com/c/go/+/104041/10/src/cmd/compile/internal/ssa/loopbce.go#164
+ //
+ // In the case of
+ // // PC is Positive Constant
+ // L := len(A)-PC
+ // for i := 0; i < L; i = i+PC
+ //
+ // we know:
+ //
+ // 0 + PC does not over/underflow.
+ // len(A)-PC does not over/underflow
+ // maximum value for L is MaxInt-PC
+ // i < L <= MaxInt-PC means i + PC < MaxInt hence no overflow.
+
+ // To match in SSA:
+ // if (a) min.Op == OpConst64(k0)
+ // and (b) k0 >= MININT + step
+ // and (c) max.Op == OpSubtract(Op{StringLen,SliceLen,SliceCap}, k)
+ // or (c) max.Op == OpAdd(Op{StringLen,SliceLen,SliceCap}, -k)
+ // or (c) max.Op == Op{StringLen,SliceLen,SliceCap}
+ // and (d) if upto loop, require indVarMaxInc && step <= k or !indVarMaxInc && step-1 <= k
+
+ if min.Op == OpConst64 && min.AuxInt >= step+math.MinInt64 {
+ knn := max
+ k := int64(0)
+ var kArg *Value
+
+ switch max.Op {
+ case OpSub64:
+ knn = max.Args[0]
+ kArg = max.Args[1]
+
+ case OpAdd64:
+ knn = max.Args[0]
+ kArg = max.Args[1]
+ if knn.Op == OpConst64 {
+ knn, kArg = kArg, knn
+ }
+ }
+ switch knn.Op {
+ case OpSliceLen, OpStringLen, OpSliceCap:
+ default:
+ knn = nil
+ }
+
+ if kArg != nil && kArg.Op == OpConst64 {
+ k = kArg.AuxInt
+ if max.Op == OpAdd64 {
+ k = -k
+ }
+ }
+ if k >= 0 && knn != nil {
+ if inc.AuxInt > 0 { // increasing iteration
+ // The concern for the relation between step and k is to ensure that iv never exceeds knn
+ // i.e., iv < knn-(K-1) ==> iv + K <= knn; iv <= knn-K ==> iv +K < knn
+ if step <= k || flags&indVarMaxInc == 0 && step-1 == k {
+ ok = true
+ }
+ } else { // decreasing iteration
+ // Will be decrementing from max towards min; max is knn-k; will only attempt decrement if
+ // knn-k >[=] min; underflow is only a concern if min-step is not smaller than min.
+ // This all assumes signed integer arithmetic
+ // This is already assured by the test above: min.AuxInt >= step+math.MinInt64
+ ok = true
+ }
+ }
+ }
+
+ // TODO: other unrolling idioms
+ // for i := 0; i < KNN - KNN % k ; i += k
+ // for i := 0; i < KNN&^(k-1) ; i += k // k a power of 2
+ // for i := 0; i < KNN&(-k) ; i += k // k a power of 2
+
+ if !ok {
+ continue
+ }
+ }
+
+ if f.pass.debug >= 1 {
+ printIndVar(b, ind, min, max, step, flags)
+ }
+
+ iv = append(iv, indVar{
+ ind: ind,
+ min: min,
+ max: max,
+ entry: b.Succs[0].b,
+ flags: flags,
+ })
+ b.Logf("found induction variable %v (inc = %v, min = %v, max = %v)\n", ind, inc, min, max)
+ }
+
+ return iv
+}
+
+func dropAdd64(v *Value) (*Value, int64) {
+ if v.Op == OpAdd64 && v.Args[0].Op == OpConst64 {
+ return v.Args[1], v.Args[0].AuxInt
+ }
+ if v.Op == OpAdd64 && v.Args[1].Op == OpConst64 {
+ return v.Args[0], v.Args[1].AuxInt
+ }
+ return v, 0
+}
+
+func printIndVar(b *Block, i, min, max *Value, inc int64, flags indVarFlags) {
+ mb1, mb2 := "[", "]"
+ if flags&indVarMinExc != 0 {
+ mb1 = "("
+ }
+ if flags&indVarMaxInc == 0 {
+ mb2 = ")"
+ }
+
+ mlim1, mlim2 := fmt.Sprint(min.AuxInt), fmt.Sprint(max.AuxInt)
+ if !min.isGenericIntConst() {
+ if b.Func.pass.debug >= 2 {
+ mlim1 = fmt.Sprint(min)
+ } else {
+ mlim1 = "?"
+ }
+ }
+ if !max.isGenericIntConst() {
+ if b.Func.pass.debug >= 2 {
+ mlim2 = fmt.Sprint(max)
+ } else {
+ mlim2 = "?"
+ }
+ }
+ extra := ""
+ if b.Func.pass.debug >= 2 {
+ extra = fmt.Sprintf(" (%s)", i)
+ }
+ b.Func.Warnl(b.Pos, "Induction variable: limits %v%v,%v%v, increment %d%s", mb1, mlim1, mlim2, mb2, inc, extra)
+}