summaryrefslogtreecommitdiffstats
path: root/src/crypto/elliptic/p224.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/crypto/elliptic/p224.go')
-rw-r--r--src/crypto/elliptic/p224.go139
1 files changed, 139 insertions, 0 deletions
diff --git a/src/crypto/elliptic/p224.go b/src/crypto/elliptic/p224.go
new file mode 100644
index 0000000..8a431c4
--- /dev/null
+++ b/src/crypto/elliptic/p224.go
@@ -0,0 +1,139 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package elliptic
+
+import (
+ "crypto/elliptic/internal/nistec"
+ "crypto/rand"
+ "math/big"
+)
+
+// p224Curve is a Curve implementation based on nistec.P224Point.
+//
+// It's a wrapper that exposes the big.Int-based Curve interface and encodes the
+// legacy idiosyncrasies it requires, such as invalid and infinity point
+// handling.
+//
+// To interact with the nistec package, points are encoded into and decoded from
+// properly formatted byte slices. All big.Int use is limited to this package.
+// Encoding and decoding is 1/1000th of the runtime of a scalar multiplication,
+// so the overhead is acceptable.
+type p224Curve struct {
+ params *CurveParams
+}
+
+var p224 p224Curve
+var _ Curve = p224
+
+func initP224() {
+ p224.params = &CurveParams{
+ Name: "P-224",
+ BitSize: 224,
+ // FIPS 186-4, section D.1.2.2
+ P: bigFromDecimal("26959946667150639794667015087019630673557916260026308143510066298881"),
+ N: bigFromDecimal("26959946667150639794667015087019625940457807714424391721682722368061"),
+ B: bigFromHex("b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4"),
+ Gx: bigFromHex("b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21"),
+ Gy: bigFromHex("bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34"),
+ }
+}
+
+func (curve p224Curve) Params() *CurveParams {
+ return curve.params
+}
+
+func (curve p224Curve) IsOnCurve(x, y *big.Int) bool {
+ // IsOnCurve is documented to reject (0, 0), the conventional point at
+ // infinity, which however is accepted by p224PointFromAffine.
+ if x.Sign() == 0 && y.Sign() == 0 {
+ return false
+ }
+ _, ok := p224PointFromAffine(x, y)
+ return ok
+}
+
+func p224PointFromAffine(x, y *big.Int) (p *nistec.P224Point, ok bool) {
+ // (0, 0) is by convention the point at infinity, which can't be represented
+ // in affine coordinates. Marshal incorrectly encodes it as an uncompressed
+ // point, which SetBytes would correctly reject. See Issue 37294.
+ if x.Sign() == 0 && y.Sign() == 0 {
+ return nistec.NewP224Point(), true
+ }
+ if x.Sign() < 0 || y.Sign() < 0 {
+ return nil, false
+ }
+ if x.BitLen() > 224 || y.BitLen() > 224 {
+ return nil, false
+ }
+ p, err := nistec.NewP224Point().SetBytes(Marshal(P224(), x, y))
+ if err != nil {
+ return nil, false
+ }
+ return p, true
+}
+
+func p224PointToAffine(p *nistec.P224Point) (x, y *big.Int) {
+ out := p.Bytes()
+ if len(out) == 1 && out[0] == 0 {
+ // This is the correct encoding of the point at infinity, which
+ // Unmarshal does not support. See Issue 37294.
+ return new(big.Int), new(big.Int)
+ }
+ x, y = Unmarshal(P224(), out)
+ if x == nil {
+ panic("crypto/elliptic: internal error: Unmarshal rejected a valid point encoding")
+ }
+ return x, y
+}
+
+// p224RandomPoint returns a random point on the curve. It's used when Add,
+// Double, or ScalarMult are fed a point not on the curve, which is undefined
+// behavior. Originally, we used to do the math on it anyway (which allows
+// invalid curve attacks) and relied on the caller and Unmarshal to avoid this
+// happening in the first place. Now, we just can't construct a nistec.P224Point
+// for an invalid pair of coordinates, because that API is safer. If we panic,
+// we risk introducing a DoS. If we return nil, we risk a panic. If we return
+// the input, ecdsa.Verify might fail open. The safest course seems to be to
+// return a valid, random point, which hopefully won't help the attacker.
+func p224RandomPoint() (x, y *big.Int) {
+ _, x, y, err := GenerateKey(P224(), rand.Reader)
+ if err != nil {
+ panic("crypto/elliptic: failed to generate random point")
+ }
+ return x, y
+}
+
+func (p224Curve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
+ p1, ok := p224PointFromAffine(x1, y1)
+ if !ok {
+ return p224RandomPoint()
+ }
+ p2, ok := p224PointFromAffine(x2, y2)
+ if !ok {
+ return p224RandomPoint()
+ }
+ return p224PointToAffine(p1.Add(p1, p2))
+}
+
+func (p224Curve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
+ p, ok := p224PointFromAffine(x1, y1)
+ if !ok {
+ return p224RandomPoint()
+ }
+ return p224PointToAffine(p.Double(p))
+}
+
+func (p224Curve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) {
+ p, ok := p224PointFromAffine(Bx, By)
+ if !ok {
+ return p224RandomPoint()
+ }
+ return p224PointToAffine(p.ScalarMult(p, scalar))
+}
+
+func (p224Curve) ScalarBaseMult(scalar []byte) (*big.Int, *big.Int) {
+ p := nistec.NewP224Generator()
+ return p224PointToAffine(p.ScalarMult(p, scalar))
+}