diff options
Diffstat (limited to 'src/crypto/elliptic/p224.go')
-rw-r--r-- | src/crypto/elliptic/p224.go | 139 |
1 files changed, 139 insertions, 0 deletions
diff --git a/src/crypto/elliptic/p224.go b/src/crypto/elliptic/p224.go new file mode 100644 index 0000000..8a431c4 --- /dev/null +++ b/src/crypto/elliptic/p224.go @@ -0,0 +1,139 @@ +// Copyright 2013 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package elliptic + +import ( + "crypto/elliptic/internal/nistec" + "crypto/rand" + "math/big" +) + +// p224Curve is a Curve implementation based on nistec.P224Point. +// +// It's a wrapper that exposes the big.Int-based Curve interface and encodes the +// legacy idiosyncrasies it requires, such as invalid and infinity point +// handling. +// +// To interact with the nistec package, points are encoded into and decoded from +// properly formatted byte slices. All big.Int use is limited to this package. +// Encoding and decoding is 1/1000th of the runtime of a scalar multiplication, +// so the overhead is acceptable. +type p224Curve struct { + params *CurveParams +} + +var p224 p224Curve +var _ Curve = p224 + +func initP224() { + p224.params = &CurveParams{ + Name: "P-224", + BitSize: 224, + // FIPS 186-4, section D.1.2.2 + P: bigFromDecimal("26959946667150639794667015087019630673557916260026308143510066298881"), + N: bigFromDecimal("26959946667150639794667015087019625940457807714424391721682722368061"), + B: bigFromHex("b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4"), + Gx: bigFromHex("b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21"), + Gy: bigFromHex("bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34"), + } +} + +func (curve p224Curve) Params() *CurveParams { + return curve.params +} + +func (curve p224Curve) IsOnCurve(x, y *big.Int) bool { + // IsOnCurve is documented to reject (0, 0), the conventional point at + // infinity, which however is accepted by p224PointFromAffine. + if x.Sign() == 0 && y.Sign() == 0 { + return false + } + _, ok := p224PointFromAffine(x, y) + return ok +} + +func p224PointFromAffine(x, y *big.Int) (p *nistec.P224Point, ok bool) { + // (0, 0) is by convention the point at infinity, which can't be represented + // in affine coordinates. Marshal incorrectly encodes it as an uncompressed + // point, which SetBytes would correctly reject. See Issue 37294. + if x.Sign() == 0 && y.Sign() == 0 { + return nistec.NewP224Point(), true + } + if x.Sign() < 0 || y.Sign() < 0 { + return nil, false + } + if x.BitLen() > 224 || y.BitLen() > 224 { + return nil, false + } + p, err := nistec.NewP224Point().SetBytes(Marshal(P224(), x, y)) + if err != nil { + return nil, false + } + return p, true +} + +func p224PointToAffine(p *nistec.P224Point) (x, y *big.Int) { + out := p.Bytes() + if len(out) == 1 && out[0] == 0 { + // This is the correct encoding of the point at infinity, which + // Unmarshal does not support. See Issue 37294. + return new(big.Int), new(big.Int) + } + x, y = Unmarshal(P224(), out) + if x == nil { + panic("crypto/elliptic: internal error: Unmarshal rejected a valid point encoding") + } + return x, y +} + +// p224RandomPoint returns a random point on the curve. It's used when Add, +// Double, or ScalarMult are fed a point not on the curve, which is undefined +// behavior. Originally, we used to do the math on it anyway (which allows +// invalid curve attacks) and relied on the caller and Unmarshal to avoid this +// happening in the first place. Now, we just can't construct a nistec.P224Point +// for an invalid pair of coordinates, because that API is safer. If we panic, +// we risk introducing a DoS. If we return nil, we risk a panic. If we return +// the input, ecdsa.Verify might fail open. The safest course seems to be to +// return a valid, random point, which hopefully won't help the attacker. +func p224RandomPoint() (x, y *big.Int) { + _, x, y, err := GenerateKey(P224(), rand.Reader) + if err != nil { + panic("crypto/elliptic: failed to generate random point") + } + return x, y +} + +func (p224Curve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { + p1, ok := p224PointFromAffine(x1, y1) + if !ok { + return p224RandomPoint() + } + p2, ok := p224PointFromAffine(x2, y2) + if !ok { + return p224RandomPoint() + } + return p224PointToAffine(p1.Add(p1, p2)) +} + +func (p224Curve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { + p, ok := p224PointFromAffine(x1, y1) + if !ok { + return p224RandomPoint() + } + return p224PointToAffine(p.Double(p)) +} + +func (p224Curve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) { + p, ok := p224PointFromAffine(Bx, By) + if !ok { + return p224RandomPoint() + } + return p224PointToAffine(p.ScalarMult(p, scalar)) +} + +func (p224Curve) ScalarBaseMult(scalar []byte) (*big.Int, *big.Int) { + p := nistec.NewP224Generator() + return p224PointToAffine(p.ScalarMult(p, scalar)) +} |