diff options
Diffstat (limited to 'src/crypto/elliptic/p256_s390x.go')
-rw-r--r-- | src/crypto/elliptic/p256_s390x.go | 576 |
1 files changed, 576 insertions, 0 deletions
diff --git a/src/crypto/elliptic/p256_s390x.go b/src/crypto/elliptic/p256_s390x.go new file mode 100644 index 0000000..735e9f5 --- /dev/null +++ b/src/crypto/elliptic/p256_s390x.go @@ -0,0 +1,576 @@ +// Copyright 2016 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +//go:build s390x + +package elliptic + +import ( + "crypto/subtle" + "internal/cpu" + "math/big" + "unsafe" +) + +const ( + offsetS390xHasVX = unsafe.Offsetof(cpu.S390X.HasVX) + offsetS390xHasVE1 = unsafe.Offsetof(cpu.S390X.HasVXE) +) + +type p256CurveFast struct { + *CurveParams +} + +type p256Point struct { + x [32]byte + y [32]byte + z [32]byte +} + +var ( + p256 Curve + p256PreFast *[37][64]p256Point +) + +//go:noescape +func p256MulInternalTrampolineSetup() + +//go:noescape +func p256SqrInternalTrampolineSetup() + +//go:noescape +func p256MulInternalVX() + +//go:noescape +func p256MulInternalVMSL() + +//go:noescape +func p256SqrInternalVX() + +//go:noescape +func p256SqrInternalVMSL() + +func initP256Arch() { + if cpu.S390X.HasVX { + p256 = p256CurveFast{p256Params} + initTable() + return + } + + // No vector support, use pure Go implementation. + p256 = p256Curve{p256Params} + return +} + +func (curve p256CurveFast) Params() *CurveParams { + return curve.CurveParams +} + +// Functions implemented in p256_asm_s390x.s +// Montgomery multiplication modulo P256 +// +//go:noescape +func p256SqrAsm(res, in1 []byte) + +//go:noescape +func p256MulAsm(res, in1, in2 []byte) + +// Montgomery square modulo P256 +func p256Sqr(res, in []byte) { + p256SqrAsm(res, in) +} + +// Montgomery multiplication by 1 +// +//go:noescape +func p256FromMont(res, in []byte) + +// iff cond == 1 val <- -val +// +//go:noescape +func p256NegCond(val *p256Point, cond int) + +// if cond == 0 res <- b; else res <- a +// +//go:noescape +func p256MovCond(res, a, b *p256Point, cond int) + +// Constant time table access +// +//go:noescape +func p256Select(point *p256Point, table []p256Point, idx int) + +//go:noescape +func p256SelectBase(point *p256Point, table []p256Point, idx int) + +// Montgomery multiplication modulo Ord(G) +// +//go:noescape +func p256OrdMul(res, in1, in2 []byte) + +// Montgomery square modulo Ord(G), repeated n times +func p256OrdSqr(res, in []byte, n int) { + copy(res, in) + for i := 0; i < n; i += 1 { + p256OrdMul(res, res, res) + } +} + +// Point add with P2 being affine point +// If sign == 1 -> P2 = -P2 +// If sel == 0 -> P3 = P1 +// if zero == 0 -> P3 = P2 +// +//go:noescape +func p256PointAddAffineAsm(P3, P1, P2 *p256Point, sign, sel, zero int) + +// Point add +// +//go:noescape +func p256PointAddAsm(P3, P1, P2 *p256Point) int + +//go:noescape +func p256PointDoubleAsm(P3, P1 *p256Point) + +func (curve p256CurveFast) Inverse(k *big.Int) *big.Int { + if k.Cmp(p256Params.N) >= 0 { + // This should never happen. + reducedK := new(big.Int).Mod(k, p256Params.N) + k = reducedK + } + + // table will store precomputed powers of x. The 32 bytes at index + // i store x^(i+1). + var table [15][32]byte + + x := fromBig(k) + // This code operates in the Montgomery domain where R = 2^256 mod n + // and n is the order of the scalar field. (See initP256 for the + // value.) Elements in the Montgomery domain take the form a×R and + // multiplication of x and y in the calculates (x × y × R^-1) mod n. RR + // is R×R mod n thus the Montgomery multiplication x and RR gives x×R, + // i.e. converts x into the Montgomery domain. Stored in BigEndian form + RR := []byte{0x66, 0xe1, 0x2d, 0x94, 0xf3, 0xd9, 0x56, 0x20, 0x28, 0x45, 0xb2, 0x39, 0x2b, 0x6b, 0xec, 0x59, + 0x46, 0x99, 0x79, 0x9c, 0x49, 0xbd, 0x6f, 0xa6, 0x83, 0x24, 0x4c, 0x95, 0xbe, 0x79, 0xee, 0xa2} + + p256OrdMul(table[0][:], x, RR) + + // Prepare the table, no need in constant time access, because the + // power is not a secret. (Entry 0 is never used.) + for i := 2; i < 16; i += 2 { + p256OrdSqr(table[i-1][:], table[(i/2)-1][:], 1) + p256OrdMul(table[i][:], table[i-1][:], table[0][:]) + } + + copy(x, table[14][:]) // f + + p256OrdSqr(x[0:32], x[0:32], 4) + p256OrdMul(x[0:32], x[0:32], table[14][:]) // ff + t := make([]byte, 32) + copy(t, x) + + p256OrdSqr(x, x, 8) + p256OrdMul(x, x, t) // ffff + copy(t, x) + + p256OrdSqr(x, x, 16) + p256OrdMul(x, x, t) // ffffffff + copy(t, x) + + p256OrdSqr(x, x, 64) // ffffffff0000000000000000 + p256OrdMul(x, x, t) // ffffffff00000000ffffffff + p256OrdSqr(x, x, 32) // ffffffff00000000ffffffff00000000 + p256OrdMul(x, x, t) // ffffffff00000000ffffffffffffffff + + // Remaining 32 windows + expLo := [32]byte{0xb, 0xc, 0xe, 0x6, 0xf, 0xa, 0xa, 0xd, 0xa, 0x7, 0x1, 0x7, 0x9, 0xe, 0x8, 0x4, + 0xf, 0x3, 0xb, 0x9, 0xc, 0xa, 0xc, 0x2, 0xf, 0xc, 0x6, 0x3, 0x2, 0x5, 0x4, 0xf} + for i := 0; i < 32; i++ { + p256OrdSqr(x, x, 4) + p256OrdMul(x, x, table[expLo[i]-1][:]) + } + + // Multiplying by one in the Montgomery domain converts a Montgomery + // value out of the domain. + one := []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} + p256OrdMul(x, x, one) + + return new(big.Int).SetBytes(x) +} + +// fromBig converts a *big.Int into a format used by this code. +func fromBig(big *big.Int) []byte { + // This could be done a lot more efficiently... + res := big.Bytes() + if 32 == len(res) { + return res + } + t := make([]byte, 32) + offset := 32 - len(res) + for i := len(res) - 1; i >= 0; i-- { + t[i+offset] = res[i] + } + return t +} + +// p256GetMultiplier makes sure byte array will have 32 byte elements, If the scalar +// is equal or greater than the order of the group, it's reduced modulo that order. +func p256GetMultiplier(in []byte) []byte { + n := new(big.Int).SetBytes(in) + + if n.Cmp(p256Params.N) >= 0 { + n.Mod(n, p256Params.N) + } + return fromBig(n) +} + +// p256MulAsm operates in a Montgomery domain with R = 2^256 mod p, where p is the +// underlying field of the curve. (See initP256 for the value.) Thus rr here is +// R×R mod p. See comment in Inverse about how this is used. +var rr = []byte{0x00, 0x00, 0x00, 0x04, 0xff, 0xff, 0xff, 0xfd, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, + 0xff, 0xff, 0xff, 0xfb, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03} + +// (This is one, in the Montgomery domain.) +var one = []byte{0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01} + +func maybeReduceModP(in *big.Int) *big.Int { + if in.Cmp(p256Params.P) < 0 { + return in + } + return new(big.Int).Mod(in, p256Params.P) +} + +func (curve p256CurveFast) CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int) { + var r1, r2 p256Point + scalarReduced := p256GetMultiplier(baseScalar) + r1IsInfinity := scalarIsZero(scalarReduced) + r1.p256BaseMult(scalarReduced) + + copy(r2.x[:], fromBig(maybeReduceModP(bigX))) + copy(r2.y[:], fromBig(maybeReduceModP(bigY))) + copy(r2.z[:], one) + p256MulAsm(r2.x[:], r2.x[:], rr[:]) + p256MulAsm(r2.y[:], r2.y[:], rr[:]) + + scalarReduced = p256GetMultiplier(scalar) + r2IsInfinity := scalarIsZero(scalarReduced) + r2.p256ScalarMult(p256GetMultiplier(scalar)) + + var sum, double p256Point + pointsEqual := p256PointAddAsm(&sum, &r1, &r2) + p256PointDoubleAsm(&double, &r1) + p256MovCond(&sum, &double, &sum, pointsEqual) + p256MovCond(&sum, &r1, &sum, r2IsInfinity) + p256MovCond(&sum, &r2, &sum, r1IsInfinity) + return sum.p256PointToAffine() +} + +func (curve p256CurveFast) ScalarBaseMult(scalar []byte) (x, y *big.Int) { + var r p256Point + r.p256BaseMult(p256GetMultiplier(scalar)) + return r.p256PointToAffine() +} + +func (curve p256CurveFast) ScalarMult(bigX, bigY *big.Int, scalar []byte) (x, y *big.Int) { + var r p256Point + copy(r.x[:], fromBig(maybeReduceModP(bigX))) + copy(r.y[:], fromBig(maybeReduceModP(bigY))) + copy(r.z[:], one) + p256MulAsm(r.x[:], r.x[:], rr[:]) + p256MulAsm(r.y[:], r.y[:], rr[:]) + r.p256ScalarMult(p256GetMultiplier(scalar)) + return r.p256PointToAffine() +} + +// scalarIsZero returns 1 if scalar represents the zero value, and zero +// otherwise. +func scalarIsZero(scalar []byte) int { + b := byte(0) + for _, s := range scalar { + b |= s + } + return subtle.ConstantTimeByteEq(b, 0) +} + +func (p *p256Point) p256PointToAffine() (x, y *big.Int) { + zInv := make([]byte, 32) + zInvSq := make([]byte, 32) + + p256Inverse(zInv, p.z[:]) + p256Sqr(zInvSq, zInv) + p256MulAsm(zInv, zInv, zInvSq) + + p256MulAsm(zInvSq, p.x[:], zInvSq) + p256MulAsm(zInv, p.y[:], zInv) + + p256FromMont(zInvSq, zInvSq) + p256FromMont(zInv, zInv) + + return new(big.Int).SetBytes(zInvSq), new(big.Int).SetBytes(zInv) +} + +// p256Inverse sets out to in^-1 mod p. +func p256Inverse(out, in []byte) { + var stack [6 * 32]byte + p2 := stack[32*0 : 32*0+32] + p4 := stack[32*1 : 32*1+32] + p8 := stack[32*2 : 32*2+32] + p16 := stack[32*3 : 32*3+32] + p32 := stack[32*4 : 32*4+32] + + p256Sqr(out, in) + p256MulAsm(p2, out, in) // 3*p + + p256Sqr(out, p2) + p256Sqr(out, out) + p256MulAsm(p4, out, p2) // f*p + + p256Sqr(out, p4) + p256Sqr(out, out) + p256Sqr(out, out) + p256Sqr(out, out) + p256MulAsm(p8, out, p4) // ff*p + + p256Sqr(out, p8) + + for i := 0; i < 7; i++ { + p256Sqr(out, out) + } + p256MulAsm(p16, out, p8) // ffff*p + + p256Sqr(out, p16) + for i := 0; i < 15; i++ { + p256Sqr(out, out) + } + p256MulAsm(p32, out, p16) // ffffffff*p + + p256Sqr(out, p32) + + for i := 0; i < 31; i++ { + p256Sqr(out, out) + } + p256MulAsm(out, out, in) + + for i := 0; i < 32*4; i++ { + p256Sqr(out, out) + } + p256MulAsm(out, out, p32) + + for i := 0; i < 32; i++ { + p256Sqr(out, out) + } + p256MulAsm(out, out, p32) + + for i := 0; i < 16; i++ { + p256Sqr(out, out) + } + p256MulAsm(out, out, p16) + + for i := 0; i < 8; i++ { + p256Sqr(out, out) + } + p256MulAsm(out, out, p8) + + p256Sqr(out, out) + p256Sqr(out, out) + p256Sqr(out, out) + p256Sqr(out, out) + p256MulAsm(out, out, p4) + + p256Sqr(out, out) + p256Sqr(out, out) + p256MulAsm(out, out, p2) + + p256Sqr(out, out) + p256Sqr(out, out) + p256MulAsm(out, out, in) +} + +func boothW5(in uint) (int, int) { + var s uint = ^((in >> 5) - 1) + var d uint = (1 << 6) - in - 1 + d = (d & s) | (in & (^s)) + d = (d >> 1) + (d & 1) + return int(d), int(s & 1) +} + +func boothW7(in uint) (int, int) { + var s uint = ^((in >> 7) - 1) + var d uint = (1 << 8) - in - 1 + d = (d & s) | (in & (^s)) + d = (d >> 1) + (d & 1) + return int(d), int(s & 1) +} + +func initTable() { + p256PreFast = new([37][64]p256Point) //z coordinate not used + basePoint := p256Point{ + x: [32]byte{0x18, 0x90, 0x5f, 0x76, 0xa5, 0x37, 0x55, 0xc6, 0x79, 0xfb, 0x73, 0x2b, 0x77, 0x62, 0x25, 0x10, + 0x75, 0xba, 0x95, 0xfc, 0x5f, 0xed, 0xb6, 0x01, 0x79, 0xe7, 0x30, 0xd4, 0x18, 0xa9, 0x14, 0x3c}, //(p256.x*2^256)%p + y: [32]byte{0x85, 0x71, 0xff, 0x18, 0x25, 0x88, 0x5d, 0x85, 0xd2, 0xe8, 0x86, 0x88, 0xdd, 0x21, 0xf3, 0x25, + 0x8b, 0x4a, 0xb8, 0xe4, 0xba, 0x19, 0xe4, 0x5c, 0xdd, 0xf2, 0x53, 0x57, 0xce, 0x95, 0x56, 0x0a}, //(p256.y*2^256)%p + z: [32]byte{0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, //(p256.z*2^256)%p + } + + t1 := new(p256Point) + t2 := new(p256Point) + *t2 = basePoint + + zInv := make([]byte, 32) + zInvSq := make([]byte, 32) + for j := 0; j < 64; j++ { + *t1 = *t2 + for i := 0; i < 37; i++ { + // The window size is 7 so we need to double 7 times. + if i != 0 { + for k := 0; k < 7; k++ { + p256PointDoubleAsm(t1, t1) + } + } + // Convert the point to affine form. (Its values are + // still in Montgomery form however.) + p256Inverse(zInv, t1.z[:]) + p256Sqr(zInvSq, zInv) + p256MulAsm(zInv, zInv, zInvSq) + + p256MulAsm(t1.x[:], t1.x[:], zInvSq) + p256MulAsm(t1.y[:], t1.y[:], zInv) + + copy(t1.z[:], basePoint.z[:]) + // Update the table entry + copy(p256PreFast[i][j].x[:], t1.x[:]) + copy(p256PreFast[i][j].y[:], t1.y[:]) + } + if j == 0 { + p256PointDoubleAsm(t2, &basePoint) + } else { + p256PointAddAsm(t2, t2, &basePoint) + } + } +} + +func (p *p256Point) p256BaseMult(scalar []byte) { + wvalue := (uint(scalar[31]) << 1) & 0xff + sel, sign := boothW7(uint(wvalue)) + p256SelectBase(p, p256PreFast[0][:], sel) + p256NegCond(p, sign) + + copy(p.z[:], one[:]) + var t0 p256Point + + copy(t0.z[:], one[:]) + + index := uint(6) + zero := sel + + for i := 1; i < 37; i++ { + if index < 247 { + wvalue = ((uint(scalar[31-index/8]) >> (index % 8)) + (uint(scalar[31-index/8-1]) << (8 - (index % 8)))) & 0xff + } else { + wvalue = (uint(scalar[31-index/8]) >> (index % 8)) & 0xff + } + index += 7 + sel, sign = boothW7(uint(wvalue)) + p256SelectBase(&t0, p256PreFast[i][:], sel) + p256PointAddAffineAsm(p, p, &t0, sign, sel, zero) + zero |= sel + } +} + +func (p *p256Point) p256ScalarMult(scalar []byte) { + // precomp is a table of precomputed points that stores powers of p + // from p^1 to p^16. + var precomp [16]p256Point + var t0, t1, t2, t3 p256Point + + // Prepare the table + *&precomp[0] = *p + + p256PointDoubleAsm(&t0, p) + p256PointDoubleAsm(&t1, &t0) + p256PointDoubleAsm(&t2, &t1) + p256PointDoubleAsm(&t3, &t2) + *&precomp[1] = t0 // 2 + *&precomp[3] = t1 // 4 + *&precomp[7] = t2 // 8 + *&precomp[15] = t3 // 16 + + p256PointAddAsm(&t0, &t0, p) + p256PointAddAsm(&t1, &t1, p) + p256PointAddAsm(&t2, &t2, p) + *&precomp[2] = t0 // 3 + *&precomp[4] = t1 // 5 + *&precomp[8] = t2 // 9 + + p256PointDoubleAsm(&t0, &t0) + p256PointDoubleAsm(&t1, &t1) + *&precomp[5] = t0 // 6 + *&precomp[9] = t1 // 10 + + p256PointAddAsm(&t2, &t0, p) + p256PointAddAsm(&t1, &t1, p) + *&precomp[6] = t2 // 7 + *&precomp[10] = t1 // 11 + + p256PointDoubleAsm(&t0, &t0) + p256PointDoubleAsm(&t2, &t2) + *&precomp[11] = t0 // 12 + *&precomp[13] = t2 // 14 + + p256PointAddAsm(&t0, &t0, p) + p256PointAddAsm(&t2, &t2, p) + *&precomp[12] = t0 // 13 + *&precomp[14] = t2 // 15 + + // Start scanning the window from top bit + index := uint(254) + var sel, sign int + + wvalue := (uint(scalar[31-index/8]) >> (index % 8)) & 0x3f + sel, _ = boothW5(uint(wvalue)) + p256Select(p, precomp[:], sel) + zero := sel + + for index > 4 { + index -= 5 + p256PointDoubleAsm(p, p) + p256PointDoubleAsm(p, p) + p256PointDoubleAsm(p, p) + p256PointDoubleAsm(p, p) + p256PointDoubleAsm(p, p) + + if index < 247 { + wvalue = ((uint(scalar[31-index/8]) >> (index % 8)) + (uint(scalar[31-index/8-1]) << (8 - (index % 8)))) & 0x3f + } else { + wvalue = (uint(scalar[31-index/8]) >> (index % 8)) & 0x3f + } + + sel, sign = boothW5(uint(wvalue)) + + p256Select(&t0, precomp[:], sel) + p256NegCond(&t0, sign) + p256PointAddAsm(&t1, p, &t0) + p256MovCond(&t1, &t1, p, sel) + p256MovCond(p, &t1, &t0, zero) + zero |= sel + } + + p256PointDoubleAsm(p, p) + p256PointDoubleAsm(p, p) + p256PointDoubleAsm(p, p) + p256PointDoubleAsm(p, p) + p256PointDoubleAsm(p, p) + + wvalue = (uint(scalar[31]) << 1) & 0x3f + sel, sign = boothW5(uint(wvalue)) + + p256Select(&t0, precomp[:], sel) + p256NegCond(&t0, sign) + p256PointAddAsm(&t1, p, &t0) + p256MovCond(&t1, &t1, p, sel) + p256MovCond(p, &t1, &t0, zero) +} |