diff options
Diffstat (limited to '')
-rw-r--r-- | src/crypto/elliptic/p521.go | 165 |
1 files changed, 165 insertions, 0 deletions
diff --git a/src/crypto/elliptic/p521.go b/src/crypto/elliptic/p521.go new file mode 100644 index 0000000..6a3ade3 --- /dev/null +++ b/src/crypto/elliptic/p521.go @@ -0,0 +1,165 @@ +// Copyright 2013 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package elliptic + +import ( + "crypto/elliptic/internal/nistec" + "crypto/rand" + "math/big" +) + +// p521Curve is a Curve implementation based on nistec.P521Point. +// +// It's a wrapper that exposes the big.Int-based Curve interface and encodes the +// legacy idiosyncrasies it requires, such as invalid and infinity point +// handling. +// +// To interact with the nistec package, points are encoded into and decoded from +// properly formatted byte slices. All big.Int use is limited to this package. +// Encoding and decoding is 1/1000th of the runtime of a scalar multiplication, +// so the overhead is acceptable. +type p521Curve struct { + params *CurveParams +} + +var p521 p521Curve +var _ Curve = p521 + +func initP521() { + p521.params = &CurveParams{ + Name: "P-521", + BitSize: 521, + // FIPS 186-4, section D.1.2.5 + P: bigFromDecimal("68647976601306097149819007990813932172694353001433" + + "0540939446345918554318339765605212255964066145455497729631139148" + + "0858037121987999716643812574028291115057151"), + N: bigFromDecimal("68647976601306097149819007990813932172694353001433" + + "0540939446345918554318339765539424505774633321719753296399637136" + + "3321113864768612440380340372808892707005449"), + B: bigFromHex("0051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8" + + "b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef" + + "451fd46b503f00"), + Gx: bigFromHex("00c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f8" + + "28af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf9" + + "7e7e31c2e5bd66"), + Gy: bigFromHex("011839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817" + + "afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088" + + "be94769fd16650"), + } +} + +func (curve p521Curve) Params() *CurveParams { + return curve.params +} + +func (curve p521Curve) IsOnCurve(x, y *big.Int) bool { + // IsOnCurve is documented to reject (0, 0), the conventional point at + // infinity, which however is accepted by p521PointFromAffine. + if x.Sign() == 0 && y.Sign() == 0 { + return false + } + _, ok := p521PointFromAffine(x, y) + return ok +} + +func p521PointFromAffine(x, y *big.Int) (p *nistec.P521Point, ok bool) { + // (0, 0) is by convention the point at infinity, which can't be represented + // in affine coordinates. Marshal incorrectly encodes it as an uncompressed + // point, which SetBytes would correctly reject. See Issue 37294. + if x.Sign() == 0 && y.Sign() == 0 { + return nistec.NewP521Point(), true + } + if x.Sign() < 0 || y.Sign() < 0 { + return nil, false + } + if x.BitLen() > 521 || y.BitLen() > 521 { + return nil, false + } + p, err := nistec.NewP521Point().SetBytes(Marshal(P521(), x, y)) + if err != nil { + return nil, false + } + return p, true +} + +func p521PointToAffine(p *nistec.P521Point) (x, y *big.Int) { + out := p.Bytes() + if len(out) == 1 && out[0] == 0 { + // This is the correct encoding of the point at infinity, which + // Unmarshal does not support. See Issue 37294. + return new(big.Int), new(big.Int) + } + x, y = Unmarshal(P521(), out) + if x == nil { + panic("crypto/elliptic: internal error: Unmarshal rejected a valid point encoding") + } + return x, y +} + +// p521RandomPoint returns a random point on the curve. It's used when Add, +// Double, or ScalarMult are fed a point not on the curve, which is undefined +// behavior. Originally, we used to do the math on it anyway (which allows +// invalid curve attacks) and relied on the caller and Unmarshal to avoid this +// happening in the first place. Now, we just can't construct a nistec.P521Point +// for an invalid pair of coordinates, because that API is safer. If we panic, +// we risk introducing a DoS. If we return nil, we risk a panic. If we return +// the input, ecdsa.Verify might fail open. The safest course seems to be to +// return a valid, random point, which hopefully won't help the attacker. +func p521RandomPoint() (x, y *big.Int) { + _, x, y, err := GenerateKey(P521(), rand.Reader) + if err != nil { + panic("crypto/elliptic: failed to generate random point") + } + return x, y +} + +func (p521Curve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { + p1, ok := p521PointFromAffine(x1, y1) + if !ok { + return p521RandomPoint() + } + p2, ok := p521PointFromAffine(x2, y2) + if !ok { + return p521RandomPoint() + } + return p521PointToAffine(p1.Add(p1, p2)) +} + +func (p521Curve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { + p, ok := p521PointFromAffine(x1, y1) + if !ok { + return p521RandomPoint() + } + return p521PointToAffine(p.Double(p)) +} + +func (p521Curve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) { + p, ok := p521PointFromAffine(Bx, By) + if !ok { + return p521RandomPoint() + } + return p521PointToAffine(p.ScalarMult(p, scalar)) +} + +func (p521Curve) ScalarBaseMult(scalar []byte) (*big.Int, *big.Int) { + p := nistec.NewP521Generator() + return p521PointToAffine(p.ScalarMult(p, scalar)) +} + +func bigFromDecimal(s string) *big.Int { + b, ok := new(big.Int).SetString(s, 10) + if !ok { + panic("invalid encoding") + } + return b +} + +func bigFromHex(s string) *big.Int { + b, ok := new(big.Int).SetString(s, 16) + if !ok { + panic("invalid encoding") + } + return b +} |