summaryrefslogtreecommitdiffstats
path: root/src/crypto/elliptic/p521.go
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/crypto/elliptic/p521.go165
1 files changed, 165 insertions, 0 deletions
diff --git a/src/crypto/elliptic/p521.go b/src/crypto/elliptic/p521.go
new file mode 100644
index 0000000..6a3ade3
--- /dev/null
+++ b/src/crypto/elliptic/p521.go
@@ -0,0 +1,165 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package elliptic
+
+import (
+ "crypto/elliptic/internal/nistec"
+ "crypto/rand"
+ "math/big"
+)
+
+// p521Curve is a Curve implementation based on nistec.P521Point.
+//
+// It's a wrapper that exposes the big.Int-based Curve interface and encodes the
+// legacy idiosyncrasies it requires, such as invalid and infinity point
+// handling.
+//
+// To interact with the nistec package, points are encoded into and decoded from
+// properly formatted byte slices. All big.Int use is limited to this package.
+// Encoding and decoding is 1/1000th of the runtime of a scalar multiplication,
+// so the overhead is acceptable.
+type p521Curve struct {
+ params *CurveParams
+}
+
+var p521 p521Curve
+var _ Curve = p521
+
+func initP521() {
+ p521.params = &CurveParams{
+ Name: "P-521",
+ BitSize: 521,
+ // FIPS 186-4, section D.1.2.5
+ P: bigFromDecimal("68647976601306097149819007990813932172694353001433" +
+ "0540939446345918554318339765605212255964066145455497729631139148" +
+ "0858037121987999716643812574028291115057151"),
+ N: bigFromDecimal("68647976601306097149819007990813932172694353001433" +
+ "0540939446345918554318339765539424505774633321719753296399637136" +
+ "3321113864768612440380340372808892707005449"),
+ B: bigFromHex("0051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8" +
+ "b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef" +
+ "451fd46b503f00"),
+ Gx: bigFromHex("00c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f8" +
+ "28af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf9" +
+ "7e7e31c2e5bd66"),
+ Gy: bigFromHex("011839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817" +
+ "afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088" +
+ "be94769fd16650"),
+ }
+}
+
+func (curve p521Curve) Params() *CurveParams {
+ return curve.params
+}
+
+func (curve p521Curve) IsOnCurve(x, y *big.Int) bool {
+ // IsOnCurve is documented to reject (0, 0), the conventional point at
+ // infinity, which however is accepted by p521PointFromAffine.
+ if x.Sign() == 0 && y.Sign() == 0 {
+ return false
+ }
+ _, ok := p521PointFromAffine(x, y)
+ return ok
+}
+
+func p521PointFromAffine(x, y *big.Int) (p *nistec.P521Point, ok bool) {
+ // (0, 0) is by convention the point at infinity, which can't be represented
+ // in affine coordinates. Marshal incorrectly encodes it as an uncompressed
+ // point, which SetBytes would correctly reject. See Issue 37294.
+ if x.Sign() == 0 && y.Sign() == 0 {
+ return nistec.NewP521Point(), true
+ }
+ if x.Sign() < 0 || y.Sign() < 0 {
+ return nil, false
+ }
+ if x.BitLen() > 521 || y.BitLen() > 521 {
+ return nil, false
+ }
+ p, err := nistec.NewP521Point().SetBytes(Marshal(P521(), x, y))
+ if err != nil {
+ return nil, false
+ }
+ return p, true
+}
+
+func p521PointToAffine(p *nistec.P521Point) (x, y *big.Int) {
+ out := p.Bytes()
+ if len(out) == 1 && out[0] == 0 {
+ // This is the correct encoding of the point at infinity, which
+ // Unmarshal does not support. See Issue 37294.
+ return new(big.Int), new(big.Int)
+ }
+ x, y = Unmarshal(P521(), out)
+ if x == nil {
+ panic("crypto/elliptic: internal error: Unmarshal rejected a valid point encoding")
+ }
+ return x, y
+}
+
+// p521RandomPoint returns a random point on the curve. It's used when Add,
+// Double, or ScalarMult are fed a point not on the curve, which is undefined
+// behavior. Originally, we used to do the math on it anyway (which allows
+// invalid curve attacks) and relied on the caller and Unmarshal to avoid this
+// happening in the first place. Now, we just can't construct a nistec.P521Point
+// for an invalid pair of coordinates, because that API is safer. If we panic,
+// we risk introducing a DoS. If we return nil, we risk a panic. If we return
+// the input, ecdsa.Verify might fail open. The safest course seems to be to
+// return a valid, random point, which hopefully won't help the attacker.
+func p521RandomPoint() (x, y *big.Int) {
+ _, x, y, err := GenerateKey(P521(), rand.Reader)
+ if err != nil {
+ panic("crypto/elliptic: failed to generate random point")
+ }
+ return x, y
+}
+
+func (p521Curve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
+ p1, ok := p521PointFromAffine(x1, y1)
+ if !ok {
+ return p521RandomPoint()
+ }
+ p2, ok := p521PointFromAffine(x2, y2)
+ if !ok {
+ return p521RandomPoint()
+ }
+ return p521PointToAffine(p1.Add(p1, p2))
+}
+
+func (p521Curve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
+ p, ok := p521PointFromAffine(x1, y1)
+ if !ok {
+ return p521RandomPoint()
+ }
+ return p521PointToAffine(p.Double(p))
+}
+
+func (p521Curve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) {
+ p, ok := p521PointFromAffine(Bx, By)
+ if !ok {
+ return p521RandomPoint()
+ }
+ return p521PointToAffine(p.ScalarMult(p, scalar))
+}
+
+func (p521Curve) ScalarBaseMult(scalar []byte) (*big.Int, *big.Int) {
+ p := nistec.NewP521Generator()
+ return p521PointToAffine(p.ScalarMult(p, scalar))
+}
+
+func bigFromDecimal(s string) *big.Int {
+ b, ok := new(big.Int).SetString(s, 10)
+ if !ok {
+ panic("invalid encoding")
+ }
+ return b
+}
+
+func bigFromHex(s string) *big.Int {
+ b, ok := new(big.Int).SetString(s, 16)
+ if !ok {
+ panic("invalid encoding")
+ }
+ return b
+}