diff options
Diffstat (limited to 'src/math/all_test.go')
-rw-r--r-- | src/math/all_test.go | 3855 |
1 files changed, 3855 insertions, 0 deletions
diff --git a/src/math/all_test.go b/src/math/all_test.go new file mode 100644 index 0000000..c11d823 --- /dev/null +++ b/src/math/all_test.go @@ -0,0 +1,3855 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package math_test + +import ( + "fmt" + . "math" + "testing" + "unsafe" +) + +var vf = []float64{ + 4.9790119248836735e+00, + 7.7388724745781045e+00, + -2.7688005719200159e-01, + -5.0106036182710749e+00, + 9.6362937071984173e+00, + 2.9263772392439646e+00, + 5.2290834314593066e+00, + 2.7279399104360102e+00, + 1.8253080916808550e+00, + -8.6859247685756013e+00, +} + +// The expected results below were computed by the high precision calculators +// at https://keisan.casio.com/. More exact input values (array vf[], above) +// were obtained by printing them with "%.26f". The answers were calculated +// to 26 digits (by using the "Digit number" drop-down control of each +// calculator). +var acos = []float64{ + 1.0496193546107222142571536e+00, + 6.8584012813664425171660692e-01, + 1.5984878714577160325521819e+00, + 2.0956199361475859327461799e+00, + 2.7053008467824138592616927e-01, + 1.2738121680361776018155625e+00, + 1.0205369421140629186287407e+00, + 1.2945003481781246062157835e+00, + 1.3872364345374451433846657e+00, + 2.6231510803970463967294145e+00, +} +var acosh = []float64{ + 2.4743347004159012494457618e+00, + 2.8576385344292769649802701e+00, + 7.2796961502981066190593175e-01, + 2.4796794418831451156471977e+00, + 3.0552020742306061857212962e+00, + 2.044238592688586588942468e+00, + 2.5158701513104513595766636e+00, + 1.99050839282411638174299e+00, + 1.6988625798424034227205445e+00, + 2.9611454842470387925531875e+00, +} +var asin = []float64{ + 5.2117697218417440497416805e-01, + 8.8495619865825236751471477e-01, + -02.769154466281941332086016e-02, + -5.2482360935268931351485822e-01, + 1.3002662421166552333051524e+00, + 2.9698415875871901741575922e-01, + 5.5025938468083370060258102e-01, + 2.7629597861677201301553823e-01, + 1.83559892257451475846656e-01, + -1.0523547536021497774980928e+00, +} +var asinh = []float64{ + 2.3083139124923523427628243e+00, + 2.743551594301593620039021e+00, + -2.7345908534880091229413487e-01, + -2.3145157644718338650499085e+00, + 2.9613652154015058521951083e+00, + 1.7949041616585821933067568e+00, + 2.3564032905983506405561554e+00, + 1.7287118790768438878045346e+00, + 1.3626658083714826013073193e+00, + -2.8581483626513914445234004e+00, +} +var atan = []float64{ + 1.372590262129621651920085e+00, + 1.442290609645298083020664e+00, + -2.7011324359471758245192595e-01, + -1.3738077684543379452781531e+00, + 1.4673921193587666049154681e+00, + 1.2415173565870168649117764e+00, + 1.3818396865615168979966498e+00, + 1.2194305844639670701091426e+00, + 1.0696031952318783760193244e+00, + -1.4561721938838084990898679e+00, +} +var atanh = []float64{ + 5.4651163712251938116878204e-01, + 1.0299474112843111224914709e+00, + -2.7695084420740135145234906e-02, + -5.5072096119207195480202529e-01, + 1.9943940993171843235906642e+00, + 3.01448604578089708203017e-01, + 5.8033427206942188834370595e-01, + 2.7987997499441511013958297e-01, + 1.8459947964298794318714228e-01, + -1.3273186910532645867272502e+00, +} +var atan2 = []float64{ + 1.1088291730037004444527075e+00, + 9.1218183188715804018797795e-01, + 1.5984772603216203736068915e+00, + 2.0352918654092086637227327e+00, + 8.0391819139044720267356014e-01, + 1.2861075249894661588866752e+00, + 1.0889904479131695712182587e+00, + 1.3044821793397925293797357e+00, + 1.3902530903455392306872261e+00, + 2.2859857424479142655411058e+00, +} +var cbrt = []float64{ + 1.7075799841925094446722675e+00, + 1.9779982212970353936691498e+00, + -6.5177429017779910853339447e-01, + -1.7111838886544019873338113e+00, + 2.1279920909827937423960472e+00, + 1.4303536770460741452312367e+00, + 1.7357021059106154902341052e+00, + 1.3972633462554328350552916e+00, + 1.2221149580905388454977636e+00, + -2.0556003730500069110343596e+00, +} +var ceil = []float64{ + 5.0000000000000000e+00, + 8.0000000000000000e+00, + Copysign(0, -1), + -5.0000000000000000e+00, + 1.0000000000000000e+01, + 3.0000000000000000e+00, + 6.0000000000000000e+00, + 3.0000000000000000e+00, + 2.0000000000000000e+00, + -8.0000000000000000e+00, +} +var copysign = []float64{ + -4.9790119248836735e+00, + -7.7388724745781045e+00, + -2.7688005719200159e-01, + -5.0106036182710749e+00, + -9.6362937071984173e+00, + -2.9263772392439646e+00, + -5.2290834314593066e+00, + -2.7279399104360102e+00, + -1.8253080916808550e+00, + -8.6859247685756013e+00, +} +var cos = []float64{ + 2.634752140995199110787593e-01, + 1.148551260848219865642039e-01, + 9.6191297325640768154550453e-01, + 2.938141150061714816890637e-01, + -9.777138189897924126294461e-01, + -9.7693041344303219127199518e-01, + 4.940088096948647263961162e-01, + -9.1565869021018925545016502e-01, + -2.517729313893103197176091e-01, + -7.39241351595676573201918e-01, +} + +// Results for 100000 * Pi + vf[i] +var cosLarge = []float64{ + 2.634752141185559426744e-01, + 1.14855126055543100712e-01, + 9.61912973266488928113e-01, + 2.9381411499556122552e-01, + -9.777138189880161924641e-01, + -9.76930413445147608049e-01, + 4.940088097314976789841e-01, + -9.15658690217517835002e-01, + -2.51772931436786954751e-01, + -7.3924135157173099849e-01, +} + +var cosh = []float64{ + 7.2668796942212842775517446e+01, + 1.1479413465659254502011135e+03, + 1.0385767908766418550935495e+00, + 7.5000957789658051428857788e+01, + 7.655246669605357888468613e+03, + 9.3567491758321272072888257e+00, + 9.331351599270605471131735e+01, + 7.6833430994624643209296404e+00, + 3.1829371625150718153881164e+00, + 2.9595059261916188501640911e+03, +} +var erf = []float64{ + 5.1865354817738701906913566e-01, + 7.2623875834137295116929844e-01, + -3.123458688281309990629839e-02, + -5.2143121110253302920437013e-01, + 8.2704742671312902508629582e-01, + 3.2101767558376376743993945e-01, + 5.403990312223245516066252e-01, + 3.0034702916738588551174831e-01, + 2.0369924417882241241559589e-01, + -7.8069386968009226729944677e-01, +} +var erfc = []float64{ + 4.8134645182261298093086434e-01, + 2.7376124165862704883070156e-01, + 1.0312345868828130999062984e+00, + 1.5214312111025330292043701e+00, + 1.7295257328687097491370418e-01, + 6.7898232441623623256006055e-01, + 4.596009687776754483933748e-01, + 6.9965297083261411448825169e-01, + 7.9630075582117758758440411e-01, + 1.7806938696800922672994468e+00, +} +var erfinv = []float64{ + 4.746037673358033586786350696e-01, + 8.559054432692110956388764172e-01, + -2.45427830571707336251331946e-02, + -4.78116683518973366268905506e-01, + 1.479804430319470983648120853e+00, + 2.654485787128896161882650211e-01, + 5.027444534221520197823192493e-01, + 2.466703532707627818954585670e-01, + 1.632011465103005426240343116e-01, + -1.06672334642196900710000389e+00, +} +var exp = []float64{ + 1.4533071302642137507696589e+02, + 2.2958822575694449002537581e+03, + 7.5814542574851666582042306e-01, + 6.6668778421791005061482264e-03, + 1.5310493273896033740861206e+04, + 1.8659907517999328638667732e+01, + 1.8662167355098714543942057e+02, + 1.5301332413189378961665788e+01, + 6.2047063430646876349125085e+00, + 1.6894712385826521111610438e-04, +} +var expm1 = []float64{ + 5.105047796122957327384770212e-02, + 8.046199708567344080562675439e-02, + -2.764970978891639815187418703e-03, + -4.8871434888875355394330300273e-02, + 1.0115864277221467777117227494e-01, + 2.969616407795910726014621657e-02, + 5.368214487944892300914037972e-02, + 2.765488851131274068067445335e-02, + 1.842068661871398836913874273e-02, + -8.3193870863553801814961137573e-02, +} +var expm1Large = []float64{ + 4.2031418113550844e+21, + 4.0690789717473863e+33, + -0.9372627915981363e+00, + -1.0, + 7.077694784145933e+41, + 5.117936223839153e+12, + 5.124137759001189e+22, + 7.03546003972584e+11, + 8.456921800389698e+07, + -1.0, +} +var exp2 = []float64{ + 3.1537839463286288034313104e+01, + 2.1361549283756232296144849e+02, + 8.2537402562185562902577219e-01, + 3.1021158628740294833424229e-02, + 7.9581744110252191462569661e+02, + 7.6019905892596359262696423e+00, + 3.7506882048388096973183084e+01, + 6.6250893439173561733216375e+00, + 3.5438267900243941544605339e+00, + 2.4281533133513300984289196e-03, +} +var fabs = []float64{ + 4.9790119248836735e+00, + 7.7388724745781045e+00, + 2.7688005719200159e-01, + 5.0106036182710749e+00, + 9.6362937071984173e+00, + 2.9263772392439646e+00, + 5.2290834314593066e+00, + 2.7279399104360102e+00, + 1.8253080916808550e+00, + 8.6859247685756013e+00, +} +var fdim = []float64{ + 4.9790119248836735e+00, + 7.7388724745781045e+00, + 0.0000000000000000e+00, + 0.0000000000000000e+00, + 9.6362937071984173e+00, + 2.9263772392439646e+00, + 5.2290834314593066e+00, + 2.7279399104360102e+00, + 1.8253080916808550e+00, + 0.0000000000000000e+00, +} +var floor = []float64{ + 4.0000000000000000e+00, + 7.0000000000000000e+00, + -1.0000000000000000e+00, + -6.0000000000000000e+00, + 9.0000000000000000e+00, + 2.0000000000000000e+00, + 5.0000000000000000e+00, + 2.0000000000000000e+00, + 1.0000000000000000e+00, + -9.0000000000000000e+00, +} +var fmod = []float64{ + 4.197615023265299782906368e-02, + 2.261127525421895434476482e+00, + 3.231794108794261433104108e-02, + 4.989396381728925078391512e+00, + 3.637062928015826201999516e-01, + 1.220868282268106064236690e+00, + 4.770916568540693347699744e+00, + 1.816180268691969246219742e+00, + 8.734595415957246977711748e-01, + 1.314075231424398637614104e+00, +} + +type fi struct { + f float64 + i int +} + +var frexp = []fi{ + {6.2237649061045918750e-01, 3}, + {9.6735905932226306250e-01, 3}, + {-5.5376011438400318000e-01, -1}, + {-6.2632545228388436250e-01, 3}, + {6.02268356699901081250e-01, 4}, + {7.3159430981099115000e-01, 2}, + {6.5363542893241332500e-01, 3}, + {6.8198497760900255000e-01, 2}, + {9.1265404584042750000e-01, 1}, + {-5.4287029803597508250e-01, 4}, +} +var gamma = []float64{ + 2.3254348370739963835386613898e+01, + 2.991153837155317076427529816e+03, + -4.561154336726758060575129109e+00, + 7.719403468842639065959210984e-01, + 1.6111876618855418534325755566e+05, + 1.8706575145216421164173224946e+00, + 3.4082787447257502836734201635e+01, + 1.579733951448952054898583387e+00, + 9.3834586598354592860187267089e-01, + -2.093995902923148389186189429e-05, +} +var j0 = []float64{ + -1.8444682230601672018219338e-01, + 2.27353668906331975435892e-01, + 9.809259936157051116270273e-01, + -1.741170131426226587841181e-01, + -2.1389448451144143352039069e-01, + -2.340905848928038763337414e-01, + -1.0029099691890912094586326e-01, + -1.5466726714884328135358907e-01, + 3.252650187653420388714693e-01, + -8.72218484409407250005360235e-03, +} +var j1 = []float64{ + -3.251526395295203422162967e-01, + 1.893581711430515718062564e-01, + -1.3711761352467242914491514e-01, + 3.287486536269617297529617e-01, + 1.3133899188830978473849215e-01, + 3.660243417832986825301766e-01, + -3.4436769271848174665420672e-01, + 4.329481396640773768835036e-01, + 5.8181350531954794639333955e-01, + -2.7030574577733036112996607e-01, +} +var j2 = []float64{ + 5.3837518920137802565192769e-02, + -1.7841678003393207281244667e-01, + 9.521746934916464142495821e-03, + 4.28958355470987397983072e-02, + 2.4115371837854494725492872e-01, + 4.842458532394520316844449e-01, + -3.142145220618633390125946e-02, + 4.720849184745124761189957e-01, + 3.122312022520957042957497e-01, + 7.096213118930231185707277e-02, +} +var jM3 = []float64{ + -3.684042080996403091021151e-01, + 2.8157665936340887268092661e-01, + 4.401005480841948348343589e-04, + 3.629926999056814081597135e-01, + 3.123672198825455192489266e-02, + -2.958805510589623607540455e-01, + -3.2033177696533233403289416e-01, + -2.592737332129663376736604e-01, + -1.0241334641061485092351251e-01, + -2.3762660886100206491674503e-01, +} +var lgamma = []fi{ + {3.146492141244545774319734e+00, 1}, + {8.003414490659126375852113e+00, 1}, + {1.517575735509779707488106e+00, -1}, + {-2.588480028182145853558748e-01, 1}, + {1.1989897050205555002007985e+01, 1}, + {6.262899811091257519386906e-01, 1}, + {3.5287924899091566764846037e+00, 1}, + {4.5725644770161182299423372e-01, 1}, + {-6.363667087767961257654854e-02, 1}, + {-1.077385130910300066425564e+01, -1}, +} +var log = []float64{ + 1.605231462693062999102599e+00, + 2.0462560018708770653153909e+00, + -1.2841708730962657801275038e+00, + 1.6115563905281545116286206e+00, + 2.2655365644872016636317461e+00, + 1.0737652208918379856272735e+00, + 1.6542360106073546632707956e+00, + 1.0035467127723465801264487e+00, + 6.0174879014578057187016475e-01, + 2.161703872847352815363655e+00, +} +var logb = []float64{ + 2.0000000000000000e+00, + 2.0000000000000000e+00, + -2.0000000000000000e+00, + 2.0000000000000000e+00, + 3.0000000000000000e+00, + 1.0000000000000000e+00, + 2.0000000000000000e+00, + 1.0000000000000000e+00, + 0.0000000000000000e+00, + 3.0000000000000000e+00, +} +var log10 = []float64{ + 6.9714316642508290997617083e-01, + 8.886776901739320576279124e-01, + -5.5770832400658929815908236e-01, + 6.998900476822994346229723e-01, + 9.8391002850684232013281033e-01, + 4.6633031029295153334285302e-01, + 7.1842557117242328821552533e-01, + 4.3583479968917773161304553e-01, + 2.6133617905227038228626834e-01, + 9.3881606348649405716214241e-01, +} +var log1p = []float64{ + 4.8590257759797794104158205e-02, + 7.4540265965225865330849141e-02, + -2.7726407903942672823234024e-03, + -5.1404917651627649094953380e-02, + 9.1998280672258624681335010e-02, + 2.8843762576593352865894824e-02, + 5.0969534581863707268992645e-02, + 2.6913947602193238458458594e-02, + 1.8088493239630770262045333e-02, + -9.0865245631588989681559268e-02, +} +var log2 = []float64{ + 2.3158594707062190618898251e+00, + 2.9521233862883917703341018e+00, + -1.8526669502700329984917062e+00, + 2.3249844127278861543568029e+00, + 3.268478366538305087466309e+00, + 1.5491157592596970278166492e+00, + 2.3865580889631732407886495e+00, + 1.447811865817085365540347e+00, + 8.6813999540425116282815557e-01, + 3.118679457227342224364709e+00, +} +var modf = [][2]float64{ + {4.0000000000000000e+00, 9.7901192488367350108546816e-01}, + {7.0000000000000000e+00, 7.3887247457810456552351752e-01}, + {Copysign(0, -1), -2.7688005719200159404635997e-01}, + {-5.0000000000000000e+00, -1.060361827107492160848778e-02}, + {9.0000000000000000e+00, 6.3629370719841737980004837e-01}, + {2.0000000000000000e+00, 9.2637723924396464525443662e-01}, + {5.0000000000000000e+00, 2.2908343145930665230025625e-01}, + {2.0000000000000000e+00, 7.2793991043601025126008608e-01}, + {1.0000000000000000e+00, 8.2530809168085506044576505e-01}, + {-8.0000000000000000e+00, -6.8592476857560136238589621e-01}, +} +var nextafter32 = []float32{ + 4.979012489318848e+00, + 7.738873004913330e+00, + -2.768800258636475e-01, + -5.010602951049805e+00, + 9.636294364929199e+00, + 2.926377534866333e+00, + 5.229084014892578e+00, + 2.727940082550049e+00, + 1.825308203697205e+00, + -8.685923576354980e+00, +} +var nextafter64 = []float64{ + 4.97901192488367438926388786e+00, + 7.73887247457810545370193722e+00, + -2.7688005719200153853520874e-01, + -5.01060361827107403343006808e+00, + 9.63629370719841915615688777e+00, + 2.92637723924396508934364647e+00, + 5.22908343145930754047867595e+00, + 2.72793991043601069534929593e+00, + 1.82530809168085528249036997e+00, + -8.68592476857559958602905681e+00, +} +var pow = []float64{ + 9.5282232631648411840742957e+04, + 5.4811599352999901232411871e+07, + 5.2859121715894396531132279e-01, + 9.7587991957286474464259698e-06, + 4.328064329346044846740467e+09, + 8.4406761805034547437659092e+02, + 1.6946633276191194947742146e+05, + 5.3449040147551939075312879e+02, + 6.688182138451414936380374e+01, + 2.0609869004248742886827439e-09, +} +var remainder = []float64{ + 4.197615023265299782906368e-02, + 2.261127525421895434476482e+00, + 3.231794108794261433104108e-02, + -2.120723654214984321697556e-02, + 3.637062928015826201999516e-01, + 1.220868282268106064236690e+00, + -4.581668629186133046005125e-01, + -9.117596417440410050403443e-01, + 8.734595415957246977711748e-01, + 1.314075231424398637614104e+00, +} +var round = []float64{ + 5, + 8, + Copysign(0, -1), + -5, + 10, + 3, + 5, + 3, + 2, + -9, +} +var signbit = []bool{ + false, + false, + true, + true, + false, + false, + false, + false, + false, + true, +} +var sin = []float64{ + -9.6466616586009283766724726e-01, + 9.9338225271646545763467022e-01, + -2.7335587039794393342449301e-01, + 9.5586257685042792878173752e-01, + -2.099421066779969164496634e-01, + 2.135578780799860532750616e-01, + -8.694568971167362743327708e-01, + 4.019566681155577786649878e-01, + 9.6778633541687993721617774e-01, + -6.734405869050344734943028e-01, +} + +// Results for 100000 * Pi + vf[i] +var sinLarge = []float64{ + -9.646661658548936063912e-01, + 9.933822527198506903752e-01, + -2.7335587036246899796e-01, + 9.55862576853689321268e-01, + -2.099421066862688873691e-01, + 2.13557878070308981163e-01, + -8.694568970959221300497e-01, + 4.01956668098863248917e-01, + 9.67786335404528727927e-01, + -6.7344058693131973066e-01, +} +var sinh = []float64{ + 7.2661916084208532301448439e+01, + 1.1479409110035194500526446e+03, + -2.8043136512812518927312641e-01, + -7.499429091181587232835164e+01, + 7.6552466042906758523925934e+03, + 9.3031583421672014313789064e+00, + 9.330815755828109072810322e+01, + 7.6179893137269146407361477e+00, + 3.021769180549615819524392e+00, + -2.95950575724449499189888e+03, +} +var sqrt = []float64{ + 2.2313699659365484748756904e+00, + 2.7818829009464263511285458e+00, + 5.2619393496314796848143251e-01, + 2.2384377628763938724244104e+00, + 3.1042380236055381099288487e+00, + 1.7106657298385224403917771e+00, + 2.286718922705479046148059e+00, + 1.6516476350711159636222979e+00, + 1.3510396336454586262419247e+00, + 2.9471892997524949215723329e+00, +} +var tan = []float64{ + -3.661316565040227801781974e+00, + 8.64900232648597589369854e+00, + -2.8417941955033612725238097e-01, + 3.253290185974728640827156e+00, + 2.147275640380293804770778e-01, + -2.18600910711067004921551e-01, + -1.760002817872367935518928e+00, + -4.389808914752818126249079e-01, + -3.843885560201130679995041e+00, + 9.10988793377685105753416e-01, +} + +// Results for 100000 * Pi + vf[i] +var tanLarge = []float64{ + -3.66131656475596512705e+00, + 8.6490023287202547927e+00, + -2.841794195104782406e-01, + 3.2532901861033120983e+00, + 2.14727564046880001365e-01, + -2.18600910700688062874e-01, + -1.760002817699722747043e+00, + -4.38980891453536115952e-01, + -3.84388555942723509071e+00, + 9.1098879344275101051e-01, +} +var tanh = []float64{ + 9.9990531206936338549262119e-01, + 9.9999962057085294197613294e-01, + -2.7001505097318677233756845e-01, + -9.9991110943061718603541401e-01, + 9.9999999146798465745022007e-01, + 9.9427249436125236705001048e-01, + 9.9994257600983138572705076e-01, + 9.9149409509772875982054701e-01, + 9.4936501296239685514466577e-01, + -9.9999994291374030946055701e-01, +} +var trunc = []float64{ + 4.0000000000000000e+00, + 7.0000000000000000e+00, + Copysign(0, -1), + -5.0000000000000000e+00, + 9.0000000000000000e+00, + 2.0000000000000000e+00, + 5.0000000000000000e+00, + 2.0000000000000000e+00, + 1.0000000000000000e+00, + -8.0000000000000000e+00, +} +var y0 = []float64{ + -3.053399153780788357534855e-01, + 1.7437227649515231515503649e-01, + -8.6221781263678836910392572e-01, + -3.100664880987498407872839e-01, + 1.422200649300982280645377e-01, + 4.000004067997901144239363e-01, + -3.3340749753099352392332536e-01, + 4.5399790746668954555205502e-01, + 4.8290004112497761007536522e-01, + 2.7036697826604756229601611e-01, +} +var y1 = []float64{ + 0.15494213737457922210218611, + -0.2165955142081145245075746, + -2.4644949631241895201032829, + 0.1442740489541836405154505, + 0.2215379960518984777080163, + 0.3038800915160754150565448, + 0.0691107642452362383808547, + 0.2380116417809914424860165, + -0.20849492979459761009678934, + 0.0242503179793232308250804, +} +var y2 = []float64{ + 0.3675780219390303613394936, + -0.23034826393250119879267257, + -16.939677983817727205631397, + 0.367653980523052152867791, + -0.0962401471767804440353136, + -0.1923169356184851105200523, + 0.35984072054267882391843766, + -0.2794987252299739821654982, + -0.7113490692587462579757954, + -0.2647831587821263302087457, +} +var yM3 = []float64{ + -0.14035984421094849100895341, + -0.097535139617792072703973, + 242.25775994555580176377379, + -0.1492267014802818619511046, + 0.26148702629155918694500469, + 0.56675383593895176530394248, + -0.206150264009006981070575, + 0.64784284687568332737963658, + 1.3503631555901938037008443, + 0.1461869756579956803341844, +} + +// arguments and expected results for special cases +var vfacosSC = []float64{ + -Pi, + 1, + Pi, + NaN(), +} +var acosSC = []float64{ + NaN(), + 0, + NaN(), + NaN(), +} + +var vfacoshSC = []float64{ + Inf(-1), + 0.5, + 1, + Inf(1), + NaN(), +} +var acoshSC = []float64{ + NaN(), + NaN(), + 0, + Inf(1), + NaN(), +} + +var vfasinSC = []float64{ + -Pi, + Copysign(0, -1), + 0, + Pi, + NaN(), +} +var asinSC = []float64{ + NaN(), + Copysign(0, -1), + 0, + NaN(), + NaN(), +} + +var vfasinhSC = []float64{ + Inf(-1), + Copysign(0, -1), + 0, + Inf(1), + NaN(), +} +var asinhSC = []float64{ + Inf(-1), + Copysign(0, -1), + 0, + Inf(1), + NaN(), +} + +var vfatanSC = []float64{ + Inf(-1), + Copysign(0, -1), + 0, + Inf(1), + NaN(), +} +var atanSC = []float64{ + -Pi / 2, + Copysign(0, -1), + 0, + Pi / 2, + NaN(), +} + +var vfatanhSC = []float64{ + Inf(-1), + -Pi, + -1, + Copysign(0, -1), + 0, + 1, + Pi, + Inf(1), + NaN(), +} +var atanhSC = []float64{ + NaN(), + NaN(), + Inf(-1), + Copysign(0, -1), + 0, + Inf(1), + NaN(), + NaN(), + NaN(), +} +var vfatan2SC = [][2]float64{ + {Inf(-1), Inf(-1)}, + {Inf(-1), -Pi}, + {Inf(-1), 0}, + {Inf(-1), +Pi}, + {Inf(-1), Inf(1)}, + {Inf(-1), NaN()}, + {-Pi, Inf(-1)}, + {-Pi, 0}, + {-Pi, Inf(1)}, + {-Pi, NaN()}, + {Copysign(0, -1), Inf(-1)}, + {Copysign(0, -1), -Pi}, + {Copysign(0, -1), Copysign(0, -1)}, + {Copysign(0, -1), 0}, + {Copysign(0, -1), +Pi}, + {Copysign(0, -1), Inf(1)}, + {Copysign(0, -1), NaN()}, + {0, Inf(-1)}, + {0, -Pi}, + {0, Copysign(0, -1)}, + {0, 0}, + {0, +Pi}, + {0, Inf(1)}, + {0, NaN()}, + {+Pi, Inf(-1)}, + {+Pi, 0}, + {+Pi, Inf(1)}, + {1.0, Inf(1)}, + {-1.0, Inf(1)}, + {+Pi, NaN()}, + {Inf(1), Inf(-1)}, + {Inf(1), -Pi}, + {Inf(1), 0}, + {Inf(1), +Pi}, + {Inf(1), Inf(1)}, + {Inf(1), NaN()}, + {NaN(), NaN()}, +} +var atan2SC = []float64{ + -3 * Pi / 4, // atan2(-Inf, -Inf) + -Pi / 2, // atan2(-Inf, -Pi) + -Pi / 2, // atan2(-Inf, +0) + -Pi / 2, // atan2(-Inf, +Pi) + -Pi / 4, // atan2(-Inf, +Inf) + NaN(), // atan2(-Inf, NaN) + -Pi, // atan2(-Pi, -Inf) + -Pi / 2, // atan2(-Pi, +0) + Copysign(0, -1), // atan2(-Pi, Inf) + NaN(), // atan2(-Pi, NaN) + -Pi, // atan2(-0, -Inf) + -Pi, // atan2(-0, -Pi) + -Pi, // atan2(-0, -0) + Copysign(0, -1), // atan2(-0, +0) + Copysign(0, -1), // atan2(-0, +Pi) + Copysign(0, -1), // atan2(-0, +Inf) + NaN(), // atan2(-0, NaN) + Pi, // atan2(+0, -Inf) + Pi, // atan2(+0, -Pi) + Pi, // atan2(+0, -0) + 0, // atan2(+0, +0) + 0, // atan2(+0, +Pi) + 0, // atan2(+0, +Inf) + NaN(), // atan2(+0, NaN) + Pi, // atan2(+Pi, -Inf) + Pi / 2, // atan2(+Pi, +0) + 0, // atan2(+Pi, +Inf) + 0, // atan2(+1, +Inf) + Copysign(0, -1), // atan2(-1, +Inf) + NaN(), // atan2(+Pi, NaN) + 3 * Pi / 4, // atan2(+Inf, -Inf) + Pi / 2, // atan2(+Inf, -Pi) + Pi / 2, // atan2(+Inf, +0) + Pi / 2, // atan2(+Inf, +Pi) + Pi / 4, // atan2(+Inf, +Inf) + NaN(), // atan2(+Inf, NaN) + NaN(), // atan2(NaN, NaN) +} + +var vfcbrtSC = []float64{ + Inf(-1), + Copysign(0, -1), + 0, + Inf(1), + NaN(), +} +var cbrtSC = []float64{ + Inf(-1), + Copysign(0, -1), + 0, + Inf(1), + NaN(), +} + +var vfceilSC = []float64{ + Inf(-1), + Copysign(0, -1), + 0, + Inf(1), + NaN(), +} +var ceilSC = []float64{ + Inf(-1), + Copysign(0, -1), + 0, + Inf(1), + NaN(), +} + +var vfcopysignSC = []float64{ + Inf(-1), + Inf(1), + NaN(), +} +var copysignSC = []float64{ + Inf(-1), + Inf(-1), + NaN(), +} + +var vfcosSC = []float64{ + Inf(-1), + Inf(1), + NaN(), +} +var cosSC = []float64{ + NaN(), + NaN(), + NaN(), +} + +var vfcoshSC = []float64{ + Inf(-1), + Copysign(0, -1), + 0, + Inf(1), + NaN(), +} +var coshSC = []float64{ + Inf(1), + 1, + 1, + Inf(1), + NaN(), +} + +var vferfSC = []float64{ + Inf(-1), + Copysign(0, -1), + 0, + Inf(1), + NaN(), + -1000, + 1000, +} +var erfSC = []float64{ + -1, + Copysign(0, -1), + 0, + 1, + NaN(), + -1, + 1, +} + +var vferfcSC = []float64{ + Inf(-1), + Inf(1), + NaN(), + -1000, + 1000, +} +var erfcSC = []float64{ + 2, + 0, + NaN(), + 2, + 0, +} + +var vferfinvSC = []float64{ + 1, + -1, + 0, + Inf(-1), + Inf(1), + NaN(), +} +var erfinvSC = []float64{ + Inf(+1), + Inf(-1), + 0, + NaN(), + NaN(), + NaN(), +} + +var vferfcinvSC = []float64{ + 0, + 2, + 1, + Inf(1), + Inf(-1), + NaN(), +} +var erfcinvSC = []float64{ + Inf(+1), + Inf(-1), + 0, + NaN(), + NaN(), + NaN(), +} + +var vfexpSC = []float64{ + Inf(-1), + -2000, + 2000, + Inf(1), + NaN(), + // smallest float64 that overflows Exp(x) + 7.097827128933841e+02, + // Issue 18912 + 1.48852223e+09, + 1.4885222e+09, + 1, + // near zero + 3.725290298461915e-09, + // denormal + -740, +} +var expSC = []float64{ + 0, + 0, + Inf(1), + Inf(1), + NaN(), + Inf(1), + Inf(1), + Inf(1), + 2.718281828459045, + 1.0000000037252903, + 4.2e-322, +} + +var vfexp2SC = []float64{ + Inf(-1), + -2000, + 2000, + Inf(1), + NaN(), + // smallest float64 that overflows Exp2(x) + 1024, + // near underflow + -1.07399999999999e+03, + // near zero + 3.725290298461915e-09, +} +var exp2SC = []float64{ + 0, + 0, + Inf(1), + Inf(1), + NaN(), + Inf(1), + 5e-324, + 1.0000000025821745, +} + +var vfexpm1SC = []float64{ + Inf(-1), + -710, + Copysign(0, -1), + 0, + 710, + Inf(1), + NaN(), +} +var expm1SC = []float64{ + -1, + -1, + Copysign(0, -1), + 0, + Inf(1), + Inf(1), + NaN(), +} + +var vffabsSC = []float64{ + Inf(-1), + Copysign(0, -1), + 0, + Inf(1), + NaN(), +} +var fabsSC = []float64{ + Inf(1), + 0, + 0, + Inf(1), + NaN(), +} + +var vffdimSC = [][2]float64{ + {Inf(-1), Inf(-1)}, + {Inf(-1), Inf(1)}, + {Inf(-1), NaN()}, + {Copysign(0, -1), Copysign(0, -1)}, + {Copysign(0, -1), 0}, + {0, Copysign(0, -1)}, + {0, 0}, + {Inf(1), Inf(-1)}, + {Inf(1), Inf(1)}, + {Inf(1), NaN()}, + {NaN(), Inf(-1)}, + {NaN(), Copysign(0, -1)}, + {NaN(), 0}, + {NaN(), Inf(1)}, + {NaN(), NaN()}, +} +var nan = Float64frombits(0xFFF8000000000000) // SSE2 DIVSD 0/0 +var vffdim2SC = [][2]float64{ + {Inf(-1), Inf(-1)}, + {Inf(-1), Inf(1)}, + {Inf(-1), nan}, + {Copysign(0, -1), Copysign(0, -1)}, + {Copysign(0, -1), 0}, + {0, Copysign(0, -1)}, + {0, 0}, + {Inf(1), Inf(-1)}, + {Inf(1), Inf(1)}, + {Inf(1), nan}, + {nan, Inf(-1)}, + {nan, Copysign(0, -1)}, + {nan, 0}, + {nan, Inf(1)}, + {nan, nan}, +} +var fdimSC = []float64{ + NaN(), + 0, + NaN(), + 0, + 0, + 0, + 0, + Inf(1), + NaN(), + NaN(), + NaN(), + NaN(), + NaN(), + NaN(), + NaN(), +} +var fmaxSC = []float64{ + Inf(-1), + Inf(1), + NaN(), + Copysign(0, -1), + 0, + 0, + 0, + Inf(1), + Inf(1), + Inf(1), + NaN(), + NaN(), + NaN(), + Inf(1), + NaN(), +} +var fminSC = []float64{ + Inf(-1), + Inf(-1), + Inf(-1), + Copysign(0, -1), + Copysign(0, -1), + Copysign(0, -1), + 0, + Inf(-1), + Inf(1), + NaN(), + Inf(-1), + NaN(), + NaN(), + NaN(), + NaN(), +} + +var vffmodSC = [][2]float64{ + {Inf(-1), Inf(-1)}, + {Inf(-1), -Pi}, + {Inf(-1), 0}, + {Inf(-1), Pi}, + {Inf(-1), Inf(1)}, + {Inf(-1), NaN()}, + {-Pi, Inf(-1)}, + {-Pi, 0}, + {-Pi, Inf(1)}, + {-Pi, NaN()}, + {Copysign(0, -1), Inf(-1)}, + {Copysign(0, -1), 0}, + {Copysign(0, -1), Inf(1)}, + {Copysign(0, -1), NaN()}, + {0, Inf(-1)}, + {0, 0}, + {0, Inf(1)}, + {0, NaN()}, + {Pi, Inf(-1)}, + {Pi, 0}, + {Pi, Inf(1)}, + {Pi, NaN()}, + {Inf(1), Inf(-1)}, + {Inf(1), -Pi}, + {Inf(1), 0}, + {Inf(1), Pi}, + {Inf(1), Inf(1)}, + {Inf(1), NaN()}, + {NaN(), Inf(-1)}, + {NaN(), -Pi}, + {NaN(), 0}, + {NaN(), Pi}, + {NaN(), Inf(1)}, + {NaN(), NaN()}, +} +var fmodSC = []float64{ + NaN(), // fmod(-Inf, -Inf) + NaN(), // fmod(-Inf, -Pi) + NaN(), // fmod(-Inf, 0) + NaN(), // fmod(-Inf, Pi) + NaN(), // fmod(-Inf, +Inf) + NaN(), // fmod(-Inf, NaN) + -Pi, // fmod(-Pi, -Inf) + NaN(), // fmod(-Pi, 0) + -Pi, // fmod(-Pi, +Inf) + NaN(), // fmod(-Pi, NaN) + Copysign(0, -1), // fmod(-0, -Inf) + NaN(), // fmod(-0, 0) + Copysign(0, -1), // fmod(-0, Inf) + NaN(), // fmod(-0, NaN) + 0, // fmod(0, -Inf) + NaN(), // fmod(0, 0) + 0, // fmod(0, +Inf) + NaN(), // fmod(0, NaN) + Pi, // fmod(Pi, -Inf) + NaN(), // fmod(Pi, 0) + Pi, // fmod(Pi, +Inf) + NaN(), // fmod(Pi, NaN) + NaN(), // fmod(+Inf, -Inf) + NaN(), // fmod(+Inf, -Pi) + NaN(), // fmod(+Inf, 0) + NaN(), // fmod(+Inf, Pi) + NaN(), // fmod(+Inf, +Inf) + NaN(), // fmod(+Inf, NaN) + NaN(), // fmod(NaN, -Inf) + NaN(), // fmod(NaN, -Pi) + NaN(), // fmod(NaN, 0) + NaN(), // fmod(NaN, Pi) + NaN(), // fmod(NaN, +Inf) + NaN(), // fmod(NaN, NaN) +} + +var vffrexpSC = []float64{ + Inf(-1), + Copysign(0, -1), + 0, + Inf(1), + NaN(), +} +var frexpSC = []fi{ + {Inf(-1), 0}, + {Copysign(0, -1), 0}, + {0, 0}, + {Inf(1), 0}, + {NaN(), 0}, +} + +var vfgamma = [][2]float64{ + {Inf(1), Inf(1)}, + {Inf(-1), NaN()}, + {0, Inf(1)}, + {Copysign(0, -1), Inf(-1)}, + {NaN(), NaN()}, + {-1, NaN()}, + {-2, NaN()}, + {-3, NaN()}, + {-1e16, NaN()}, + {-1e300, NaN()}, + {1.7e308, Inf(1)}, + + // Test inputs inspired by Python test suite. + // Outputs computed at high precision by PARI/GP. + // If recomputing table entries, be careful to use + // high-precision (%.1000g) formatting of the float64 inputs. + // For example, -2.0000000000000004 is the float64 with exact value + // -2.00000000000000044408920985626161695, and + // gamma(-2.0000000000000004) = -1249999999999999.5386078562728167651513, while + // gamma(-2.00000000000000044408920985626161695) = -1125899906826907.2044875028130093136826. + // Thus the table lists -1.1258999068426235e+15 as the answer. + {0.5, 1.772453850905516}, + {1.5, 0.886226925452758}, + {2.5, 1.329340388179137}, + {3.5, 3.3233509704478426}, + {-0.5, -3.544907701811032}, + {-1.5, 2.363271801207355}, + {-2.5, -0.9453087204829419}, + {-3.5, 0.2700882058522691}, + {0.1, 9.51350769866873}, + {0.01, 99.4325851191506}, + {1e-08, 9.999999942278434e+07}, + {1e-16, 1e+16}, + {0.001, 999.4237724845955}, + {1e-16, 1e+16}, + {1e-308, 1e+308}, + {5.6e-309, 1.7857142857142864e+308}, + {5.5e-309, Inf(1)}, + {1e-309, Inf(1)}, + {1e-323, Inf(1)}, + {5e-324, Inf(1)}, + {-0.1, -10.686287021193193}, + {-0.01, -100.58719796441078}, + {-1e-08, -1.0000000057721567e+08}, + {-1e-16, -1e+16}, + {-0.001, -1000.5782056293586}, + {-1e-16, -1e+16}, + {-1e-308, -1e+308}, + {-5.6e-309, -1.7857142857142864e+308}, + {-5.5e-309, Inf(-1)}, + {-1e-309, Inf(-1)}, + {-1e-323, Inf(-1)}, + {-5e-324, Inf(-1)}, + {-0.9999999999999999, -9.007199254740992e+15}, + {-1.0000000000000002, 4.5035996273704955e+15}, + {-1.9999999999999998, 2.2517998136852485e+15}, + {-2.0000000000000004, -1.1258999068426235e+15}, + {-100.00000000000001, -7.540083334883109e-145}, + {-99.99999999999999, 7.540083334884096e-145}, + {17, 2.0922789888e+13}, + {171, 7.257415615307999e+306}, + {171.6, 1.5858969096672565e+308}, + {171.624, 1.7942117599248104e+308}, + {171.625, Inf(1)}, + {172, Inf(1)}, + {2000, Inf(1)}, + {-100.5, -3.3536908198076787e-159}, + {-160.5, -5.255546447007829e-286}, + {-170.5, -3.3127395215386074e-308}, + {-171.5, 1.9316265431712e-310}, + {-176.5, -1.196e-321}, + {-177.5, 5e-324}, + {-178.5, Copysign(0, -1)}, + {-179.5, 0}, + {-201.0001, 0}, + {-202.9999, Copysign(0, -1)}, + {-1000.5, Copysign(0, -1)}, + {-1.0000000003e+09, Copysign(0, -1)}, + {-4.5035996273704955e+15, 0}, + {-63.349078729022985, 4.177797167776188e-88}, + {-127.45117632943295, 1.183111089623681e-214}, +} + +var vfhypotSC = [][2]float64{ + {Inf(-1), Inf(-1)}, + {Inf(-1), 0}, + {Inf(-1), Inf(1)}, + {Inf(-1), NaN()}, + {Copysign(0, -1), Copysign(0, -1)}, + {Copysign(0, -1), 0}, + {0, Copysign(0, -1)}, + {0, 0}, // +0, +0 + {0, Inf(-1)}, + {0, Inf(1)}, + {0, NaN()}, + {Inf(1), Inf(-1)}, + {Inf(1), 0}, + {Inf(1), Inf(1)}, + {Inf(1), NaN()}, + {NaN(), Inf(-1)}, + {NaN(), 0}, + {NaN(), Inf(1)}, + {NaN(), NaN()}, +} +var hypotSC = []float64{ + Inf(1), + Inf(1), + Inf(1), + Inf(1), + 0, + 0, + 0, + 0, + Inf(1), + Inf(1), + NaN(), + Inf(1), + Inf(1), + Inf(1), + Inf(1), + Inf(1), + NaN(), + Inf(1), + NaN(), +} + +var ilogbSC = []int{ + MaxInt32, + MinInt32, + MaxInt32, + MaxInt32, +} + +var vfj0SC = []float64{ + Inf(-1), + 0, + Inf(1), + NaN(), +} +var j0SC = []float64{ + 0, + 1, + 0, + NaN(), +} +var j1SC = []float64{ + 0, + 0, + 0, + NaN(), +} +var j2SC = []float64{ + 0, + 0, + 0, + NaN(), +} +var jM3SC = []float64{ + 0, + 0, + 0, + NaN(), +} + +var vfldexpSC = []fi{ + {0, 0}, + {0, -1075}, + {0, 1024}, + {Copysign(0, -1), 0}, + {Copysign(0, -1), -1075}, + {Copysign(0, -1), 1024}, + {Inf(1), 0}, + {Inf(1), -1024}, + {Inf(-1), 0}, + {Inf(-1), -1024}, + {NaN(), -1024}, + {10, int(1) << (uint64(unsafe.Sizeof(0)-1) * 8)}, + {10, -(int(1) << (uint64(unsafe.Sizeof(0)-1) * 8))}, +} +var ldexpSC = []float64{ + 0, + 0, + 0, + Copysign(0, -1), + Copysign(0, -1), + Copysign(0, -1), + Inf(1), + Inf(1), + Inf(-1), + Inf(-1), + NaN(), + Inf(1), + 0, +} + +var vflgammaSC = []float64{ + Inf(-1), + -3, + 0, + 1, + 2, + Inf(1), + NaN(), +} +var lgammaSC = []fi{ + {Inf(-1), 1}, + {Inf(1), 1}, + {Inf(1), 1}, + {0, 1}, + {0, 1}, + {Inf(1), 1}, + {NaN(), 1}, +} + +var vflogSC = []float64{ + Inf(-1), + -Pi, + Copysign(0, -1), + 0, + 1, + Inf(1), + NaN(), +} +var logSC = []float64{ + NaN(), + NaN(), + Inf(-1), + Inf(-1), + 0, + Inf(1), + NaN(), +} + +var vflogbSC = []float64{ + Inf(-1), + 0, + Inf(1), + NaN(), +} +var logbSC = []float64{ + Inf(1), + Inf(-1), + Inf(1), + NaN(), +} + +var vflog1pSC = []float64{ + Inf(-1), + -Pi, + -1, + Copysign(0, -1), + 0, + Inf(1), + NaN(), + 4503599627370496.5, // Issue #29488 +} +var log1pSC = []float64{ + NaN(), + NaN(), + Inf(-1), + Copysign(0, -1), + 0, + Inf(1), + NaN(), + 36.04365338911715, // Issue #29488 +} + +var vfmodfSC = []float64{ + Inf(-1), + Copysign(0, -1), + Inf(1), + NaN(), +} +var modfSC = [][2]float64{ + {Inf(-1), NaN()}, // [2]float64{Copysign(0, -1), Inf(-1)}, + {Copysign(0, -1), Copysign(0, -1)}, + {Inf(1), NaN()}, // [2]float64{0, Inf(1)}, + {NaN(), NaN()}, +} + +var vfnextafter32SC = [][2]float32{ + {0, 0}, + {0, float32(Copysign(0, -1))}, + {0, -1}, + {0, float32(NaN())}, + {float32(Copysign(0, -1)), 1}, + {float32(Copysign(0, -1)), 0}, + {float32(Copysign(0, -1)), float32(Copysign(0, -1))}, + {float32(Copysign(0, -1)), -1}, + {float32(NaN()), 0}, + {float32(NaN()), float32(NaN())}, +} +var nextafter32SC = []float32{ + 0, + 0, + -1.401298464e-45, // Float32frombits(0x80000001) + float32(NaN()), + 1.401298464e-45, // Float32frombits(0x00000001) + float32(Copysign(0, -1)), + float32(Copysign(0, -1)), + -1.401298464e-45, // Float32frombits(0x80000001) + float32(NaN()), + float32(NaN()), +} + +var vfnextafter64SC = [][2]float64{ + {0, 0}, + {0, Copysign(0, -1)}, + {0, -1}, + {0, NaN()}, + {Copysign(0, -1), 1}, + {Copysign(0, -1), 0}, + {Copysign(0, -1), Copysign(0, -1)}, + {Copysign(0, -1), -1}, + {NaN(), 0}, + {NaN(), NaN()}, +} +var nextafter64SC = []float64{ + 0, + 0, + -4.9406564584124654418e-324, // Float64frombits(0x8000000000000001) + NaN(), + 4.9406564584124654418e-324, // Float64frombits(0x0000000000000001) + Copysign(0, -1), + Copysign(0, -1), + -4.9406564584124654418e-324, // Float64frombits(0x8000000000000001) + NaN(), + NaN(), +} + +var vfpowSC = [][2]float64{ + {Inf(-1), -Pi}, + {Inf(-1), -3}, + {Inf(-1), Copysign(0, -1)}, + {Inf(-1), 0}, + {Inf(-1), 1}, + {Inf(-1), 3}, + {Inf(-1), Pi}, + {Inf(-1), 0.5}, + {Inf(-1), NaN()}, + + {-Pi, Inf(-1)}, + {-Pi, -Pi}, + {-Pi, Copysign(0, -1)}, + {-Pi, 0}, + {-Pi, 1}, + {-Pi, Pi}, + {-Pi, Inf(1)}, + {-Pi, NaN()}, + + {-1, Inf(-1)}, + {-1, Inf(1)}, + {-1, NaN()}, + {-1 / 2, Inf(-1)}, + {-1 / 2, Inf(1)}, + {Copysign(0, -1), Inf(-1)}, + {Copysign(0, -1), -Pi}, + {Copysign(0, -1), -0.5}, + {Copysign(0, -1), -3}, + {Copysign(0, -1), 3}, + {Copysign(0, -1), Pi}, + {Copysign(0, -1), 0.5}, + {Copysign(0, -1), Inf(1)}, + + {0, Inf(-1)}, + {0, -Pi}, + {0, -3}, + {0, Copysign(0, -1)}, + {0, 0}, + {0, 3}, + {0, Pi}, + {0, Inf(1)}, + {0, NaN()}, + + {1 / 2, Inf(-1)}, + {1 / 2, Inf(1)}, + {1, Inf(-1)}, + {1, Inf(1)}, + {1, NaN()}, + + {Pi, Inf(-1)}, + {Pi, Copysign(0, -1)}, + {Pi, 0}, + {Pi, 1}, + {Pi, Inf(1)}, + {Pi, NaN()}, + {Inf(1), -Pi}, + {Inf(1), Copysign(0, -1)}, + {Inf(1), 0}, + {Inf(1), 1}, + {Inf(1), Pi}, + {Inf(1), NaN()}, + {NaN(), -Pi}, + {NaN(), Copysign(0, -1)}, + {NaN(), 0}, + {NaN(), 1}, + {NaN(), Pi}, + {NaN(), NaN()}, + + // Issue #7394 overflow checks + {2, float64(1 << 32)}, + {2, -float64(1 << 32)}, + {-2, float64(1<<32 + 1)}, + {1 / 2, float64(1 << 45)}, + {1 / 2, -float64(1 << 45)}, + {Nextafter(1, 2), float64(1 << 63)}, + {Nextafter(1, -2), float64(1 << 63)}, + {Nextafter(-1, 2), float64(1 << 63)}, + {Nextafter(-1, -2), float64(1 << 63)}, +} +var powSC = []float64{ + 0, // pow(-Inf, -Pi) + Copysign(0, -1), // pow(-Inf, -3) + 1, // pow(-Inf, -0) + 1, // pow(-Inf, +0) + Inf(-1), // pow(-Inf, 1) + Inf(-1), // pow(-Inf, 3) + Inf(1), // pow(-Inf, Pi) + Inf(1), // pow(-Inf, 0.5) + NaN(), // pow(-Inf, NaN) + 0, // pow(-Pi, -Inf) + NaN(), // pow(-Pi, -Pi) + 1, // pow(-Pi, -0) + 1, // pow(-Pi, +0) + -Pi, // pow(-Pi, 1) + NaN(), // pow(-Pi, Pi) + Inf(1), // pow(-Pi, +Inf) + NaN(), // pow(-Pi, NaN) + 1, // pow(-1, -Inf) IEEE 754-2008 + 1, // pow(-1, +Inf) IEEE 754-2008 + NaN(), // pow(-1, NaN) + Inf(1), // pow(-1/2, -Inf) + 0, // pow(-1/2, +Inf) + Inf(1), // pow(-0, -Inf) + Inf(1), // pow(-0, -Pi) + Inf(1), // pow(-0, -0.5) + Inf(-1), // pow(-0, -3) IEEE 754-2008 + Copysign(0, -1), // pow(-0, 3) IEEE 754-2008 + 0, // pow(-0, +Pi) + 0, // pow(-0, 0.5) + 0, // pow(-0, +Inf) + Inf(1), // pow(+0, -Inf) + Inf(1), // pow(+0, -Pi) + Inf(1), // pow(+0, -3) + 1, // pow(+0, -0) + 1, // pow(+0, +0) + 0, // pow(+0, 3) + 0, // pow(+0, +Pi) + 0, // pow(+0, +Inf) + NaN(), // pow(+0, NaN) + Inf(1), // pow(1/2, -Inf) + 0, // pow(1/2, +Inf) + 1, // pow(1, -Inf) IEEE 754-2008 + 1, // pow(1, +Inf) IEEE 754-2008 + 1, // pow(1, NaN) IEEE 754-2008 + 0, // pow(+Pi, -Inf) + 1, // pow(+Pi, -0) + 1, // pow(+Pi, +0) + Pi, // pow(+Pi, 1) + Inf(1), // pow(+Pi, +Inf) + NaN(), // pow(+Pi, NaN) + 0, // pow(+Inf, -Pi) + 1, // pow(+Inf, -0) + 1, // pow(+Inf, +0) + Inf(1), // pow(+Inf, 1) + Inf(1), // pow(+Inf, Pi) + NaN(), // pow(+Inf, NaN) + NaN(), // pow(NaN, -Pi) + 1, // pow(NaN, -0) + 1, // pow(NaN, +0) + NaN(), // pow(NaN, 1) + NaN(), // pow(NaN, +Pi) + NaN(), // pow(NaN, NaN) + + // Issue #7394 overflow checks + Inf(1), // pow(2, float64(1 << 32)) + 0, // pow(2, -float64(1 << 32)) + Inf(-1), // pow(-2, float64(1<<32 + 1)) + 0, // pow(1/2, float64(1 << 45)) + Inf(1), // pow(1/2, -float64(1 << 45)) + Inf(1), // pow(Nextafter(1, 2), float64(1 << 63)) + 0, // pow(Nextafter(1, -2), float64(1 << 63)) + 0, // pow(Nextafter(-1, 2), float64(1 << 63)) + Inf(1), // pow(Nextafter(-1, -2), float64(1 << 63)) +} + +var vfpow10SC = []int{ + MinInt32, + -324, + -323, + -50, + -22, + -1, + 0, + 1, + 22, + 50, + 100, + 200, + 308, + 309, + MaxInt32, +} + +var pow10SC = []float64{ + 0, // pow10(MinInt32) + 0, // pow10(-324) + 1.0e-323, // pow10(-323) + 1.0e-50, // pow10(-50) + 1.0e-22, // pow10(-22) + 1.0e-1, // pow10(-1) + 1.0e0, // pow10(0) + 1.0e1, // pow10(1) + 1.0e22, // pow10(22) + 1.0e50, // pow10(50) + 1.0e100, // pow10(100) + 1.0e200, // pow10(200) + 1.0e308, // pow10(308) + Inf(1), // pow10(309) + Inf(1), // pow10(MaxInt32) +} + +var vfroundSC = [][2]float64{ + {0, 0}, + {1.390671161567e-309, 0}, // denormal + {0.49999999999999994, 0}, // 0.5-epsilon + {0.5, 1}, + {0.5000000000000001, 1}, // 0.5+epsilon + {-1.5, -2}, + {-2.5, -3}, + {NaN(), NaN()}, + {Inf(1), Inf(1)}, + {2251799813685249.5, 2251799813685250}, // 1 bit fraction + {2251799813685250.5, 2251799813685251}, + {4503599627370495.5, 4503599627370496}, // 1 bit fraction, rounding to 0 bit fraction + {4503599627370497, 4503599627370497}, // large integer +} +var vfroundEvenSC = [][2]float64{ + {0, 0}, + {1.390671161567e-309, 0}, // denormal + {0.49999999999999994, 0}, // 0.5-epsilon + {0.5, 0}, + {0.5000000000000001, 1}, // 0.5+epsilon + {-1.5, -2}, + {-2.5, -2}, + {NaN(), NaN()}, + {Inf(1), Inf(1)}, + {2251799813685249.5, 2251799813685250}, // 1 bit fraction + {2251799813685250.5, 2251799813685250}, + {4503599627370495.5, 4503599627370496}, // 1 bit fraction, rounding to 0 bit fraction + {4503599627370497, 4503599627370497}, // large integer +} + +var vfsignbitSC = []float64{ + Inf(-1), + Copysign(0, -1), + 0, + Inf(1), + NaN(), +} +var signbitSC = []bool{ + true, + true, + false, + false, + false, +} + +var vfsinSC = []float64{ + Inf(-1), + Copysign(0, -1), + 0, + Inf(1), + NaN(), +} +var sinSC = []float64{ + NaN(), + Copysign(0, -1), + 0, + NaN(), + NaN(), +} + +var vfsinhSC = []float64{ + Inf(-1), + Copysign(0, -1), + 0, + Inf(1), + NaN(), +} +var sinhSC = []float64{ + Inf(-1), + Copysign(0, -1), + 0, + Inf(1), + NaN(), +} + +var vfsqrtSC = []float64{ + Inf(-1), + -Pi, + Copysign(0, -1), + 0, + Inf(1), + NaN(), + Float64frombits(2), // subnormal; see https://golang.org/issue/13013 +} +var sqrtSC = []float64{ + NaN(), + NaN(), + Copysign(0, -1), + 0, + Inf(1), + NaN(), + 3.1434555694052576e-162, +} + +var vftanhSC = []float64{ + Inf(-1), + Copysign(0, -1), + 0, + Inf(1), + NaN(), +} +var tanhSC = []float64{ + -1, + Copysign(0, -1), + 0, + 1, + NaN(), +} + +var vfy0SC = []float64{ + Inf(-1), + 0, + Inf(1), + NaN(), + -1, +} +var y0SC = []float64{ + NaN(), + Inf(-1), + 0, + NaN(), + NaN(), +} +var y1SC = []float64{ + NaN(), + Inf(-1), + 0, + NaN(), + NaN(), +} +var y2SC = []float64{ + NaN(), + Inf(-1), + 0, + NaN(), + NaN(), +} +var yM3SC = []float64{ + NaN(), + Inf(1), + 0, + NaN(), + NaN(), +} + +// arguments and expected results for boundary cases +const ( + SmallestNormalFloat64 = 2.2250738585072014e-308 // 2**-1022 + LargestSubnormalFloat64 = SmallestNormalFloat64 - SmallestNonzeroFloat64 +) + +var vffrexpBC = []float64{ + SmallestNormalFloat64, + LargestSubnormalFloat64, + SmallestNonzeroFloat64, + MaxFloat64, + -SmallestNormalFloat64, + -LargestSubnormalFloat64, + -SmallestNonzeroFloat64, + -MaxFloat64, +} +var frexpBC = []fi{ + {0.5, -1021}, + {0.99999999999999978, -1022}, + {0.5, -1073}, + {0.99999999999999989, 1024}, + {-0.5, -1021}, + {-0.99999999999999978, -1022}, + {-0.5, -1073}, + {-0.99999999999999989, 1024}, +} + +var vfldexpBC = []fi{ + {SmallestNormalFloat64, -52}, + {LargestSubnormalFloat64, -51}, + {SmallestNonzeroFloat64, 1074}, + {MaxFloat64, -(1023 + 1074)}, + {1, -1075}, + {-1, -1075}, + {1, 1024}, + {-1, 1024}, + {1.0000000000000002, -1075}, + {1, -1075}, +} +var ldexpBC = []float64{ + SmallestNonzeroFloat64, + 1e-323, // 2**-1073 + 1, + 1e-323, // 2**-1073 + 0, + Copysign(0, -1), + Inf(1), + Inf(-1), + SmallestNonzeroFloat64, + 0, +} + +var logbBC = []float64{ + -1022, + -1023, + -1074, + 1023, + -1022, + -1023, + -1074, + 1023, +} + +// Test cases were generated with Berkeley TestFloat-3e/testfloat_gen. +// http://www.jhauser.us/arithmetic/TestFloat.html. +// The default rounding mode is selected (nearest/even), and exception flags are ignored. +var fmaC = []struct{ x, y, z, want float64 }{ + // Large exponent spread + {-3.999999999999087, -1.1123914289620494e-16, -7.999877929687506, -7.999877929687505}, + {-262112.0000004768, -0.06251525855623184, 1.1102230248837136e-16, 16385.99945072085}, + {-6.462348523533467e-27, -2.3763644720331857e-211, 4.000000000931324, 4.000000000931324}, + + // Effective addition + {-2.0000000037252907, 6.7904383376e-313, -3.3951933161e-313, -1.697607001654e-312}, + {-0.12499999999999999, 512.007568359375, -1.4193627164960366e-16, -64.00094604492188}, + {-2.7550648847397148e-39, -3.4028301595800694e+38, 0.9960937495343386, 1.9335955376735676}, + {5.723369164769208e+24, 3.8149300927159385e-06, 1.84489958778182e+19, 4.028324913621874e+19}, + {-0.4843749999990904, -3.6893487872543293e+19, 9.223653786709391e+18, 2.7093936974938993e+19}, + {-3.8146972665201165e-06, 4.2949672959999385e+09, -2.2204460489938386e-16, -16384.000003844263}, + {6.98156394130982e-309, -1.1072962560000002e+09, -4.4414561548793455e-308, -7.73065965765153e-300}, + + // Effective subtraction + {5e-324, 4.5, -2e-323, 0}, + {5e-324, 7, -3.5e-323, 0}, + {5e-324, 0.5000000000000001, -5e-324, Copysign(0, -1)}, + {-2.1240680525e-314, -1.233647078189316e+308, -0.25781249999954525, -0.25780987964919844}, + {8.579992955364441e-308, 0.6037391876780558, -4.4501307410480706e-308, 7.29947236107098e-309}, + {-4.450143471986689e-308, -0.9960937499927239, -4.450419332475649e-308, -1.7659233458788e-310}, + {1.4932076393918112, -2.2248022430460833e-308, 4.449875571054211e-308, 1.127783865601762e-308}, + + // Overflow + {-2.288020632214759e+38, -8.98846570988901e+307, 1.7696041796300924e+308, Inf(0)}, + {1.4888652783208255e+308, -9.007199254742012e+15, -6.807282911929205e+38, Inf(-1)}, + {9.142703268902826e+192, -1.3504889569802838e+296, -1.9082200803806996e-89, Inf(-1)}, + + // Finite x and y, but non-finite z. + {31.99218749627471, -1.7976930544991702e+308, Inf(0), Inf(0)}, + {-1.7976931281784667e+308, -2.0009765625002265, Inf(-1), Inf(-1)}, + + // Special + {0, 0, 0, 0}, + {-1.1754226043408471e-38, NaN(), Inf(0), NaN()}, + {0, 0, 2.22507385643494e-308, 2.22507385643494e-308}, + {-8.65697792e+09, NaN(), -7.516192799999999e+09, NaN()}, + {-0.00012207403779029757, 3.221225471996093e+09, NaN(), NaN()}, + {Inf(-1), 0.1252441407414153, -1.387184532981584e-76, Inf(-1)}, + {Inf(0), 1.525878907671432e-05, -9.214364835452549e+18, Inf(0)}, + + // Random + {0.1777916152213626, -32.000015266239636, -2.2204459148334633e-16, -5.689334401293007}, + {-2.0816681711722314e-16, -0.4997558592585846, -0.9465627129124969, -0.9465627129124968}, + {-1.9999997615814211, 1.8518819259933516e+19, 16.874999999999996, -3.703763410463646e+19}, + {-0.12499994039717421, 32767.99999976135, -2.0752587082923246e+19, -2.075258708292325e+19}, + {7.705600568510257e-34, -1.801432979000528e+16, -0.17224197722973714, -0.17224197722973716}, + {3.8988133103758913e-308, -0.9848632812499999, 3.893879244098556e-308, 5.40811742605814e-310}, + {-0.012651981190687427, 6.911985574912436e+38, 6.669240527007144e+18, -8.745031148409496e+36}, + {4.612811918325842e+18, 1.4901161193847641e-08, 2.6077032311277997e-08, 6.873625395187494e+10}, + {-9.094947033611148e-13, 4.450691014249257e-308, 2.086006742350485e-308, 2.086006742346437e-308}, + {-7.751454006381804e-05, 5.588653777189071e-308, -2.2207280111272877e-308, -2.2211612130544025e-308}, +} + +var sqrt32 = []float32{ + 0, + float32(Copysign(0, -1)), + float32(NaN()), + float32(Inf(1)), + float32(Inf(-1)), + 1, + 2, + -2, + 4.9790119248836735e+00, + 7.7388724745781045e+00, + -2.7688005719200159e-01, + -5.0106036182710749e+00, +} + +func tolerance(a, b, e float64) bool { + // Multiplying by e here can underflow denormal values to zero. + // Check a==b so that at least if a and b are small and identical + // we say they match. + if a == b { + return true + } + d := a - b + if d < 0 { + d = -d + } + + // note: b is correct (expected) value, a is actual value. + // make error tolerance a fraction of b, not a. + if b != 0 { + e = e * b + if e < 0 { + e = -e + } + } + return d < e +} +func close(a, b float64) bool { return tolerance(a, b, 1e-14) } +func veryclose(a, b float64) bool { return tolerance(a, b, 4e-16) } +func soclose(a, b, e float64) bool { return tolerance(a, b, e) } +func alike(a, b float64) bool { + switch { + case IsNaN(a) && IsNaN(b): + return true + case a == b: + return Signbit(a) == Signbit(b) + } + return false +} + +func TestNaN(t *testing.T) { + f64 := NaN() + if f64 == f64 { + t.Fatalf("NaN() returns %g, expected NaN", f64) + } + f32 := float32(f64) + if f32 == f32 { + t.Fatalf("float32(NaN()) is %g, expected NaN", f32) + } +} + +func TestAcos(t *testing.T) { + for i := 0; i < len(vf); i++ { + a := vf[i] / 10 + if f := Acos(a); !close(acos[i], f) { + t.Errorf("Acos(%g) = %g, want %g", a, f, acos[i]) + } + } + for i := 0; i < len(vfacosSC); i++ { + if f := Acos(vfacosSC[i]); !alike(acosSC[i], f) { + t.Errorf("Acos(%g) = %g, want %g", vfacosSC[i], f, acosSC[i]) + } + } +} + +func TestAcosh(t *testing.T) { + for i := 0; i < len(vf); i++ { + a := 1 + Abs(vf[i]) + if f := Acosh(a); !veryclose(acosh[i], f) { + t.Errorf("Acosh(%g) = %g, want %g", a, f, acosh[i]) + } + } + for i := 0; i < len(vfacoshSC); i++ { + if f := Acosh(vfacoshSC[i]); !alike(acoshSC[i], f) { + t.Errorf("Acosh(%g) = %g, want %g", vfacoshSC[i], f, acoshSC[i]) + } + } +} + +func TestAsin(t *testing.T) { + for i := 0; i < len(vf); i++ { + a := vf[i] / 10 + if f := Asin(a); !veryclose(asin[i], f) { + t.Errorf("Asin(%g) = %g, want %g", a, f, asin[i]) + } + } + for i := 0; i < len(vfasinSC); i++ { + if f := Asin(vfasinSC[i]); !alike(asinSC[i], f) { + t.Errorf("Asin(%g) = %g, want %g", vfasinSC[i], f, asinSC[i]) + } + } +} + +func TestAsinh(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f := Asinh(vf[i]); !veryclose(asinh[i], f) { + t.Errorf("Asinh(%g) = %g, want %g", vf[i], f, asinh[i]) + } + } + for i := 0; i < len(vfasinhSC); i++ { + if f := Asinh(vfasinhSC[i]); !alike(asinhSC[i], f) { + t.Errorf("Asinh(%g) = %g, want %g", vfasinhSC[i], f, asinhSC[i]) + } + } +} + +func TestAtan(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f := Atan(vf[i]); !veryclose(atan[i], f) { + t.Errorf("Atan(%g) = %g, want %g", vf[i], f, atan[i]) + } + } + for i := 0; i < len(vfatanSC); i++ { + if f := Atan(vfatanSC[i]); !alike(atanSC[i], f) { + t.Errorf("Atan(%g) = %g, want %g", vfatanSC[i], f, atanSC[i]) + } + } +} + +func TestAtanh(t *testing.T) { + for i := 0; i < len(vf); i++ { + a := vf[i] / 10 + if f := Atanh(a); !veryclose(atanh[i], f) { + t.Errorf("Atanh(%g) = %g, want %g", a, f, atanh[i]) + } + } + for i := 0; i < len(vfatanhSC); i++ { + if f := Atanh(vfatanhSC[i]); !alike(atanhSC[i], f) { + t.Errorf("Atanh(%g) = %g, want %g", vfatanhSC[i], f, atanhSC[i]) + } + } +} + +func TestAtan2(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f := Atan2(10, vf[i]); !veryclose(atan2[i], f) { + t.Errorf("Atan2(10, %g) = %g, want %g", vf[i], f, atan2[i]) + } + } + for i := 0; i < len(vfatan2SC); i++ { + if f := Atan2(vfatan2SC[i][0], vfatan2SC[i][1]); !alike(atan2SC[i], f) { + t.Errorf("Atan2(%g, %g) = %g, want %g", vfatan2SC[i][0], vfatan2SC[i][1], f, atan2SC[i]) + } + } +} + +func TestCbrt(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f := Cbrt(vf[i]); !veryclose(cbrt[i], f) { + t.Errorf("Cbrt(%g) = %g, want %g", vf[i], f, cbrt[i]) + } + } + for i := 0; i < len(vfcbrtSC); i++ { + if f := Cbrt(vfcbrtSC[i]); !alike(cbrtSC[i], f) { + t.Errorf("Cbrt(%g) = %g, want %g", vfcbrtSC[i], f, cbrtSC[i]) + } + } +} + +func TestCeil(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f := Ceil(vf[i]); !alike(ceil[i], f) { + t.Errorf("Ceil(%g) = %g, want %g", vf[i], f, ceil[i]) + } + } + for i := 0; i < len(vfceilSC); i++ { + if f := Ceil(vfceilSC[i]); !alike(ceilSC[i], f) { + t.Errorf("Ceil(%g) = %g, want %g", vfceilSC[i], f, ceilSC[i]) + } + } +} + +func TestCopysign(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f := Copysign(vf[i], -1); copysign[i] != f { + t.Errorf("Copysign(%g, -1) = %g, want %g", vf[i], f, copysign[i]) + } + } + for i := 0; i < len(vf); i++ { + if f := Copysign(vf[i], 1); -copysign[i] != f { + t.Errorf("Copysign(%g, 1) = %g, want %g", vf[i], f, -copysign[i]) + } + } + for i := 0; i < len(vfcopysignSC); i++ { + if f := Copysign(vfcopysignSC[i], -1); !alike(copysignSC[i], f) { + t.Errorf("Copysign(%g, -1) = %g, want %g", vfcopysignSC[i], f, copysignSC[i]) + } + } +} + +func TestCos(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f := Cos(vf[i]); !veryclose(cos[i], f) { + t.Errorf("Cos(%g) = %g, want %g", vf[i], f, cos[i]) + } + } + for i := 0; i < len(vfcosSC); i++ { + if f := Cos(vfcosSC[i]); !alike(cosSC[i], f) { + t.Errorf("Cos(%g) = %g, want %g", vfcosSC[i], f, cosSC[i]) + } + } +} + +func TestCosh(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f := Cosh(vf[i]); !close(cosh[i], f) { + t.Errorf("Cosh(%g) = %g, want %g", vf[i], f, cosh[i]) + } + } + for i := 0; i < len(vfcoshSC); i++ { + if f := Cosh(vfcoshSC[i]); !alike(coshSC[i], f) { + t.Errorf("Cosh(%g) = %g, want %g", vfcoshSC[i], f, coshSC[i]) + } + } +} + +func TestErf(t *testing.T) { + for i := 0; i < len(vf); i++ { + a := vf[i] / 10 + if f := Erf(a); !veryclose(erf[i], f) { + t.Errorf("Erf(%g) = %g, want %g", a, f, erf[i]) + } + } + for i := 0; i < len(vferfSC); i++ { + if f := Erf(vferfSC[i]); !alike(erfSC[i], f) { + t.Errorf("Erf(%g) = %g, want %g", vferfSC[i], f, erfSC[i]) + } + } +} + +func TestErfc(t *testing.T) { + for i := 0; i < len(vf); i++ { + a := vf[i] / 10 + if f := Erfc(a); !veryclose(erfc[i], f) { + t.Errorf("Erfc(%g) = %g, want %g", a, f, erfc[i]) + } + } + for i := 0; i < len(vferfcSC); i++ { + if f := Erfc(vferfcSC[i]); !alike(erfcSC[i], f) { + t.Errorf("Erfc(%g) = %g, want %g", vferfcSC[i], f, erfcSC[i]) + } + } +} + +func TestErfinv(t *testing.T) { + for i := 0; i < len(vf); i++ { + a := vf[i] / 10 + if f := Erfinv(a); !veryclose(erfinv[i], f) { + t.Errorf("Erfinv(%g) = %g, want %g", a, f, erfinv[i]) + } + } + for i := 0; i < len(vferfinvSC); i++ { + if f := Erfinv(vferfinvSC[i]); !alike(erfinvSC[i], f) { + t.Errorf("Erfinv(%g) = %g, want %g", vferfinvSC[i], f, erfinvSC[i]) + } + } + for x := -0.9; x <= 0.90; x += 1e-2 { + if f := Erf(Erfinv(x)); !close(x, f) { + t.Errorf("Erf(Erfinv(%g)) = %g, want %g", x, f, x) + } + } + for x := -0.9; x <= 0.90; x += 1e-2 { + if f := Erfinv(Erf(x)); !close(x, f) { + t.Errorf("Erfinv(Erf(%g)) = %g, want %g", x, f, x) + } + } +} + +func TestErfcinv(t *testing.T) { + for i := 0; i < len(vf); i++ { + a := 1.0 - (vf[i] / 10) + if f := Erfcinv(a); !veryclose(erfinv[i], f) { + t.Errorf("Erfcinv(%g) = %g, want %g", a, f, erfinv[i]) + } + } + for i := 0; i < len(vferfcinvSC); i++ { + if f := Erfcinv(vferfcinvSC[i]); !alike(erfcinvSC[i], f) { + t.Errorf("Erfcinv(%g) = %g, want %g", vferfcinvSC[i], f, erfcinvSC[i]) + } + } + for x := 0.1; x <= 1.9; x += 1e-2 { + if f := Erfc(Erfcinv(x)); !close(x, f) { + t.Errorf("Erfc(Erfcinv(%g)) = %g, want %g", x, f, x) + } + } + for x := 0.1; x <= 1.9; x += 1e-2 { + if f := Erfcinv(Erfc(x)); !close(x, f) { + t.Errorf("Erfcinv(Erfc(%g)) = %g, want %g", x, f, x) + } + } +} + +func TestExp(t *testing.T) { + testExp(t, Exp, "Exp") + testExp(t, ExpGo, "ExpGo") +} + +func testExp(t *testing.T, Exp func(float64) float64, name string) { + for i := 0; i < len(vf); i++ { + if f := Exp(vf[i]); !veryclose(exp[i], f) { + t.Errorf("%s(%g) = %g, want %g", name, vf[i], f, exp[i]) + } + } + for i := 0; i < len(vfexpSC); i++ { + if f := Exp(vfexpSC[i]); !alike(expSC[i], f) { + t.Errorf("%s(%g) = %g, want %g", name, vfexpSC[i], f, expSC[i]) + } + } +} + +func TestExpm1(t *testing.T) { + for i := 0; i < len(vf); i++ { + a := vf[i] / 100 + if f := Expm1(a); !veryclose(expm1[i], f) { + t.Errorf("Expm1(%g) = %g, want %g", a, f, expm1[i]) + } + } + for i := 0; i < len(vf); i++ { + a := vf[i] * 10 + if f := Expm1(a); !close(expm1Large[i], f) { + t.Errorf("Expm1(%g) = %g, want %g", a, f, expm1Large[i]) + } + } + for i := 0; i < len(vfexpm1SC); i++ { + if f := Expm1(vfexpm1SC[i]); !alike(expm1SC[i], f) { + t.Errorf("Expm1(%g) = %g, want %g", vfexpm1SC[i], f, expm1SC[i]) + } + } +} + +func TestExp2(t *testing.T) { + testExp2(t, Exp2, "Exp2") + testExp2(t, Exp2Go, "Exp2Go") +} + +func testExp2(t *testing.T, Exp2 func(float64) float64, name string) { + for i := 0; i < len(vf); i++ { + if f := Exp2(vf[i]); !close(exp2[i], f) { + t.Errorf("%s(%g) = %g, want %g", name, vf[i], f, exp2[i]) + } + } + for i := 0; i < len(vfexp2SC); i++ { + if f := Exp2(vfexp2SC[i]); !alike(exp2SC[i], f) { + t.Errorf("%s(%g) = %g, want %g", name, vfexp2SC[i], f, exp2SC[i]) + } + } + for n := -1074; n < 1024; n++ { + f := Exp2(float64(n)) + vf := Ldexp(1, n) + if f != vf { + t.Errorf("%s(%d) = %g, want %g", name, n, f, vf) + } + } +} + +func TestAbs(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f := Abs(vf[i]); fabs[i] != f { + t.Errorf("Abs(%g) = %g, want %g", vf[i], f, fabs[i]) + } + } + for i := 0; i < len(vffabsSC); i++ { + if f := Abs(vffabsSC[i]); !alike(fabsSC[i], f) { + t.Errorf("Abs(%g) = %g, want %g", vffabsSC[i], f, fabsSC[i]) + } + } +} + +func TestDim(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f := Dim(vf[i], 0); fdim[i] != f { + t.Errorf("Dim(%g, %g) = %g, want %g", vf[i], 0.0, f, fdim[i]) + } + } + for i := 0; i < len(vffdimSC); i++ { + if f := Dim(vffdimSC[i][0], vffdimSC[i][1]); !alike(fdimSC[i], f) { + t.Errorf("Dim(%g, %g) = %g, want %g", vffdimSC[i][0], vffdimSC[i][1], f, fdimSC[i]) + } + } + for i := 0; i < len(vffdim2SC); i++ { + if f := Dim(vffdim2SC[i][0], vffdim2SC[i][1]); !alike(fdimSC[i], f) { + t.Errorf("Dim(%g, %g) = %g, want %g", vffdim2SC[i][0], vffdim2SC[i][1], f, fdimSC[i]) + } + } +} + +func TestFloor(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f := Floor(vf[i]); !alike(floor[i], f) { + t.Errorf("Floor(%g) = %g, want %g", vf[i], f, floor[i]) + } + } + for i := 0; i < len(vfceilSC); i++ { + if f := Floor(vfceilSC[i]); !alike(ceilSC[i], f) { + t.Errorf("Floor(%g) = %g, want %g", vfceilSC[i], f, ceilSC[i]) + } + } +} + +func TestMax(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f := Max(vf[i], ceil[i]); ceil[i] != f { + t.Errorf("Max(%g, %g) = %g, want %g", vf[i], ceil[i], f, ceil[i]) + } + } + for i := 0; i < len(vffdimSC); i++ { + if f := Max(vffdimSC[i][0], vffdimSC[i][1]); !alike(fmaxSC[i], f) { + t.Errorf("Max(%g, %g) = %g, want %g", vffdimSC[i][0], vffdimSC[i][1], f, fmaxSC[i]) + } + } + for i := 0; i < len(vffdim2SC); i++ { + if f := Max(vffdim2SC[i][0], vffdim2SC[i][1]); !alike(fmaxSC[i], f) { + t.Errorf("Max(%g, %g) = %g, want %g", vffdim2SC[i][0], vffdim2SC[i][1], f, fmaxSC[i]) + } + } +} + +func TestMin(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f := Min(vf[i], floor[i]); floor[i] != f { + t.Errorf("Min(%g, %g) = %g, want %g", vf[i], floor[i], f, floor[i]) + } + } + for i := 0; i < len(vffdimSC); i++ { + if f := Min(vffdimSC[i][0], vffdimSC[i][1]); !alike(fminSC[i], f) { + t.Errorf("Min(%g, %g) = %g, want %g", vffdimSC[i][0], vffdimSC[i][1], f, fminSC[i]) + } + } + for i := 0; i < len(vffdim2SC); i++ { + if f := Min(vffdim2SC[i][0], vffdim2SC[i][1]); !alike(fminSC[i], f) { + t.Errorf("Min(%g, %g) = %g, want %g", vffdim2SC[i][0], vffdim2SC[i][1], f, fminSC[i]) + } + } +} + +func TestMod(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f := Mod(10, vf[i]); fmod[i] != f { + t.Errorf("Mod(10, %g) = %g, want %g", vf[i], f, fmod[i]) + } + } + for i := 0; i < len(vffmodSC); i++ { + if f := Mod(vffmodSC[i][0], vffmodSC[i][1]); !alike(fmodSC[i], f) { + t.Errorf("Mod(%g, %g) = %g, want %g", vffmodSC[i][0], vffmodSC[i][1], f, fmodSC[i]) + } + } + // verify precision of result for extreme inputs + if f := Mod(5.9790119248836734e+200, 1.1258465975523544); 0.6447968302508578 != f { + t.Errorf("Remainder(5.9790119248836734e+200, 1.1258465975523544) = %g, want 0.6447968302508578", f) + } +} + +func TestFrexp(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f, j := Frexp(vf[i]); !veryclose(frexp[i].f, f) || frexp[i].i != j { + t.Errorf("Frexp(%g) = %g, %d, want %g, %d", vf[i], f, j, frexp[i].f, frexp[i].i) + } + } + for i := 0; i < len(vffrexpSC); i++ { + if f, j := Frexp(vffrexpSC[i]); !alike(frexpSC[i].f, f) || frexpSC[i].i != j { + t.Errorf("Frexp(%g) = %g, %d, want %g, %d", vffrexpSC[i], f, j, frexpSC[i].f, frexpSC[i].i) + } + } + for i := 0; i < len(vffrexpBC); i++ { + if f, j := Frexp(vffrexpBC[i]); !alike(frexpBC[i].f, f) || frexpBC[i].i != j { + t.Errorf("Frexp(%g) = %g, %d, want %g, %d", vffrexpBC[i], f, j, frexpBC[i].f, frexpBC[i].i) + } + } +} + +func TestGamma(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f := Gamma(vf[i]); !close(gamma[i], f) { + t.Errorf("Gamma(%g) = %g, want %g", vf[i], f, gamma[i]) + } + } + for _, g := range vfgamma { + f := Gamma(g[0]) + var ok bool + if IsNaN(g[1]) || IsInf(g[1], 0) || g[1] == 0 || f == 0 { + ok = alike(g[1], f) + } else if g[0] > -50 && g[0] <= 171 { + ok = veryclose(g[1], f) + } else { + ok = close(g[1], f) + } + if !ok { + t.Errorf("Gamma(%g) = %g, want %g", g[0], f, g[1]) + } + } +} + +func TestHypot(t *testing.T) { + for i := 0; i < len(vf); i++ { + a := Abs(1e200 * tanh[i] * Sqrt(2)) + if f := Hypot(1e200*tanh[i], 1e200*tanh[i]); !veryclose(a, f) { + t.Errorf("Hypot(%g, %g) = %g, want %g", 1e200*tanh[i], 1e200*tanh[i], f, a) + } + } + for i := 0; i < len(vfhypotSC); i++ { + if f := Hypot(vfhypotSC[i][0], vfhypotSC[i][1]); !alike(hypotSC[i], f) { + t.Errorf("Hypot(%g, %g) = %g, want %g", vfhypotSC[i][0], vfhypotSC[i][1], f, hypotSC[i]) + } + } +} + +func TestHypotGo(t *testing.T) { + for i := 0; i < len(vf); i++ { + a := Abs(1e200 * tanh[i] * Sqrt(2)) + if f := HypotGo(1e200*tanh[i], 1e200*tanh[i]); !veryclose(a, f) { + t.Errorf("HypotGo(%g, %g) = %g, want %g", 1e200*tanh[i], 1e200*tanh[i], f, a) + } + } + for i := 0; i < len(vfhypotSC); i++ { + if f := HypotGo(vfhypotSC[i][0], vfhypotSC[i][1]); !alike(hypotSC[i], f) { + t.Errorf("HypotGo(%g, %g) = %g, want %g", vfhypotSC[i][0], vfhypotSC[i][1], f, hypotSC[i]) + } + } +} + +func TestIlogb(t *testing.T) { + for i := 0; i < len(vf); i++ { + a := frexp[i].i - 1 // adjust because fr in the interval [½, 1) + if e := Ilogb(vf[i]); a != e { + t.Errorf("Ilogb(%g) = %d, want %d", vf[i], e, a) + } + } + for i := 0; i < len(vflogbSC); i++ { + if e := Ilogb(vflogbSC[i]); ilogbSC[i] != e { + t.Errorf("Ilogb(%g) = %d, want %d", vflogbSC[i], e, ilogbSC[i]) + } + } + for i := 0; i < len(vffrexpBC); i++ { + if e := Ilogb(vffrexpBC[i]); int(logbBC[i]) != e { + t.Errorf("Ilogb(%g) = %d, want %d", vffrexpBC[i], e, int(logbBC[i])) + } + } +} + +func TestJ0(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f := J0(vf[i]); !soclose(j0[i], f, 4e-14) { + t.Errorf("J0(%g) = %g, want %g", vf[i], f, j0[i]) + } + } + for i := 0; i < len(vfj0SC); i++ { + if f := J0(vfj0SC[i]); !alike(j0SC[i], f) { + t.Errorf("J0(%g) = %g, want %g", vfj0SC[i], f, j0SC[i]) + } + } +} + +func TestJ1(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f := J1(vf[i]); !close(j1[i], f) { + t.Errorf("J1(%g) = %g, want %g", vf[i], f, j1[i]) + } + } + for i := 0; i < len(vfj0SC); i++ { + if f := J1(vfj0SC[i]); !alike(j1SC[i], f) { + t.Errorf("J1(%g) = %g, want %g", vfj0SC[i], f, j1SC[i]) + } + } +} + +func TestJn(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f := Jn(2, vf[i]); !close(j2[i], f) { + t.Errorf("Jn(2, %g) = %g, want %g", vf[i], f, j2[i]) + } + if f := Jn(-3, vf[i]); !close(jM3[i], f) { + t.Errorf("Jn(-3, %g) = %g, want %g", vf[i], f, jM3[i]) + } + } + for i := 0; i < len(vfj0SC); i++ { + if f := Jn(2, vfj0SC[i]); !alike(j2SC[i], f) { + t.Errorf("Jn(2, %g) = %g, want %g", vfj0SC[i], f, j2SC[i]) + } + if f := Jn(-3, vfj0SC[i]); !alike(jM3SC[i], f) { + t.Errorf("Jn(-3, %g) = %g, want %g", vfj0SC[i], f, jM3SC[i]) + } + } +} + +func TestLdexp(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f := Ldexp(frexp[i].f, frexp[i].i); !veryclose(vf[i], f) { + t.Errorf("Ldexp(%g, %d) = %g, want %g", frexp[i].f, frexp[i].i, f, vf[i]) + } + } + for i := 0; i < len(vffrexpSC); i++ { + if f := Ldexp(frexpSC[i].f, frexpSC[i].i); !alike(vffrexpSC[i], f) { + t.Errorf("Ldexp(%g, %d) = %g, want %g", frexpSC[i].f, frexpSC[i].i, f, vffrexpSC[i]) + } + } + for i := 0; i < len(vfldexpSC); i++ { + if f := Ldexp(vfldexpSC[i].f, vfldexpSC[i].i); !alike(ldexpSC[i], f) { + t.Errorf("Ldexp(%g, %d) = %g, want %g", vfldexpSC[i].f, vfldexpSC[i].i, f, ldexpSC[i]) + } + } + for i := 0; i < len(vffrexpBC); i++ { + if f := Ldexp(frexpBC[i].f, frexpBC[i].i); !alike(vffrexpBC[i], f) { + t.Errorf("Ldexp(%g, %d) = %g, want %g", frexpBC[i].f, frexpBC[i].i, f, vffrexpBC[i]) + } + } + for i := 0; i < len(vfldexpBC); i++ { + if f := Ldexp(vfldexpBC[i].f, vfldexpBC[i].i); !alike(ldexpBC[i], f) { + t.Errorf("Ldexp(%g, %d) = %g, want %g", vfldexpBC[i].f, vfldexpBC[i].i, f, ldexpBC[i]) + } + } +} + +func TestLgamma(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f, s := Lgamma(vf[i]); !close(lgamma[i].f, f) || lgamma[i].i != s { + t.Errorf("Lgamma(%g) = %g, %d, want %g, %d", vf[i], f, s, lgamma[i].f, lgamma[i].i) + } + } + for i := 0; i < len(vflgammaSC); i++ { + if f, s := Lgamma(vflgammaSC[i]); !alike(lgammaSC[i].f, f) || lgammaSC[i].i != s { + t.Errorf("Lgamma(%g) = %g, %d, want %g, %d", vflgammaSC[i], f, s, lgammaSC[i].f, lgammaSC[i].i) + } + } +} + +func TestLog(t *testing.T) { + for i := 0; i < len(vf); i++ { + a := Abs(vf[i]) + if f := Log(a); log[i] != f { + t.Errorf("Log(%g) = %g, want %g", a, f, log[i]) + } + } + if f := Log(10); f != Ln10 { + t.Errorf("Log(%g) = %g, want %g", 10.0, f, Ln10) + } + for i := 0; i < len(vflogSC); i++ { + if f := Log(vflogSC[i]); !alike(logSC[i], f) { + t.Errorf("Log(%g) = %g, want %g", vflogSC[i], f, logSC[i]) + } + } +} + +func TestLogb(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f := Logb(vf[i]); logb[i] != f { + t.Errorf("Logb(%g) = %g, want %g", vf[i], f, logb[i]) + } + } + for i := 0; i < len(vflogbSC); i++ { + if f := Logb(vflogbSC[i]); !alike(logbSC[i], f) { + t.Errorf("Logb(%g) = %g, want %g", vflogbSC[i], f, logbSC[i]) + } + } + for i := 0; i < len(vffrexpBC); i++ { + if f := Logb(vffrexpBC[i]); !alike(logbBC[i], f) { + t.Errorf("Logb(%g) = %g, want %g", vffrexpBC[i], f, logbBC[i]) + } + } +} + +func TestLog10(t *testing.T) { + for i := 0; i < len(vf); i++ { + a := Abs(vf[i]) + if f := Log10(a); !veryclose(log10[i], f) { + t.Errorf("Log10(%g) = %g, want %g", a, f, log10[i]) + } + } + if f := Log10(E); f != Log10E { + t.Errorf("Log10(%g) = %g, want %g", E, f, Log10E) + } + for i := 0; i < len(vflogSC); i++ { + if f := Log10(vflogSC[i]); !alike(logSC[i], f) { + t.Errorf("Log10(%g) = %g, want %g", vflogSC[i], f, logSC[i]) + } + } +} + +func TestLog1p(t *testing.T) { + for i := 0; i < len(vf); i++ { + a := vf[i] / 100 + if f := Log1p(a); !veryclose(log1p[i], f) { + t.Errorf("Log1p(%g) = %g, want %g", a, f, log1p[i]) + } + } + a := 9.0 + if f := Log1p(a); f != Ln10 { + t.Errorf("Log1p(%g) = %g, want %g", a, f, Ln10) + } + for i := 0; i < len(vflogSC); i++ { + if f := Log1p(vflog1pSC[i]); !alike(log1pSC[i], f) { + t.Errorf("Log1p(%g) = %g, want %g", vflog1pSC[i], f, log1pSC[i]) + } + } +} + +func TestLog2(t *testing.T) { + for i := 0; i < len(vf); i++ { + a := Abs(vf[i]) + if f := Log2(a); !veryclose(log2[i], f) { + t.Errorf("Log2(%g) = %g, want %g", a, f, log2[i]) + } + } + if f := Log2(E); f != Log2E { + t.Errorf("Log2(%g) = %g, want %g", E, f, Log2E) + } + for i := 0; i < len(vflogSC); i++ { + if f := Log2(vflogSC[i]); !alike(logSC[i], f) { + t.Errorf("Log2(%g) = %g, want %g", vflogSC[i], f, logSC[i]) + } + } + for i := -1074; i <= 1023; i++ { + f := Ldexp(1, i) + l := Log2(f) + if l != float64(i) { + t.Errorf("Log2(2**%d) = %g, want %d", i, l, i) + } + } +} + +func TestModf(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f, g := Modf(vf[i]); !veryclose(modf[i][0], f) || !veryclose(modf[i][1], g) { + t.Errorf("Modf(%g) = %g, %g, want %g, %g", vf[i], f, g, modf[i][0], modf[i][1]) + } + } + for i := 0; i < len(vfmodfSC); i++ { + if f, g := Modf(vfmodfSC[i]); !alike(modfSC[i][0], f) || !alike(modfSC[i][1], g) { + t.Errorf("Modf(%g) = %g, %g, want %g, %g", vfmodfSC[i], f, g, modfSC[i][0], modfSC[i][1]) + } + } +} + +func TestNextafter32(t *testing.T) { + for i := 0; i < len(vf); i++ { + vfi := float32(vf[i]) + if f := Nextafter32(vfi, 10); nextafter32[i] != f { + t.Errorf("Nextafter32(%g, %g) = %g want %g", vfi, 10.0, f, nextafter32[i]) + } + } + for i := 0; i < len(vfnextafter32SC); i++ { + if f := Nextafter32(vfnextafter32SC[i][0], vfnextafter32SC[i][1]); !alike(float64(nextafter32SC[i]), float64(f)) { + t.Errorf("Nextafter32(%g, %g) = %g want %g", vfnextafter32SC[i][0], vfnextafter32SC[i][1], f, nextafter32SC[i]) + } + } +} + +func TestNextafter64(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f := Nextafter(vf[i], 10); nextafter64[i] != f { + t.Errorf("Nextafter64(%g, %g) = %g want %g", vf[i], 10.0, f, nextafter64[i]) + } + } + for i := 0; i < len(vfnextafter64SC); i++ { + if f := Nextafter(vfnextafter64SC[i][0], vfnextafter64SC[i][1]); !alike(nextafter64SC[i], f) { + t.Errorf("Nextafter64(%g, %g) = %g want %g", vfnextafter64SC[i][0], vfnextafter64SC[i][1], f, nextafter64SC[i]) + } + } +} + +func TestPow(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f := Pow(10, vf[i]); !close(pow[i], f) { + t.Errorf("Pow(10, %g) = %g, want %g", vf[i], f, pow[i]) + } + } + for i := 0; i < len(vfpowSC); i++ { + if f := Pow(vfpowSC[i][0], vfpowSC[i][1]); !alike(powSC[i], f) { + t.Errorf("Pow(%g, %g) = %g, want %g", vfpowSC[i][0], vfpowSC[i][1], f, powSC[i]) + } + } +} + +func TestPow10(t *testing.T) { + for i := 0; i < len(vfpow10SC); i++ { + if f := Pow10(vfpow10SC[i]); !alike(pow10SC[i], f) { + t.Errorf("Pow10(%d) = %g, want %g", vfpow10SC[i], f, pow10SC[i]) + } + } +} + +func TestRemainder(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f := Remainder(10, vf[i]); remainder[i] != f { + t.Errorf("Remainder(10, %g) = %g, want %g", vf[i], f, remainder[i]) + } + } + for i := 0; i < len(vffmodSC); i++ { + if f := Remainder(vffmodSC[i][0], vffmodSC[i][1]); !alike(fmodSC[i], f) { + t.Errorf("Remainder(%g, %g) = %g, want %g", vffmodSC[i][0], vffmodSC[i][1], f, fmodSC[i]) + } + } + // verify precision of result for extreme inputs + if f := Remainder(5.9790119248836734e+200, 1.1258465975523544); -0.4810497673014966 != f { + t.Errorf("Remainder(5.9790119248836734e+200, 1.1258465975523544) = %g, want -0.4810497673014966", f) + } + // verify that sign is correct when r == 0. + test := func(x, y float64) { + if r := Remainder(x, y); r == 0 && Signbit(r) != Signbit(x) { + t.Errorf("Remainder(x=%f, y=%f) = %f, sign of (zero) result should agree with sign of x", x, y, r) + } + } + for x := 0.0; x <= 3.0; x += 1 { + for y := 1.0; y <= 3.0; y += 1 { + test(x, y) + test(x, -y) + test(-x, y) + test(-x, -y) + } + } +} + +func TestRound(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f := Round(vf[i]); !alike(round[i], f) { + t.Errorf("Round(%g) = %g, want %g", vf[i], f, round[i]) + } + } + for i := 0; i < len(vfroundSC); i++ { + if f := Round(vfroundSC[i][0]); !alike(vfroundSC[i][1], f) { + t.Errorf("Round(%g) = %g, want %g", vfroundSC[i][0], f, vfroundSC[i][1]) + } + } +} + +func TestRoundToEven(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f := RoundToEven(vf[i]); !alike(round[i], f) { + t.Errorf("RoundToEven(%g) = %g, want %g", vf[i], f, round[i]) + } + } + for i := 0; i < len(vfroundEvenSC); i++ { + if f := RoundToEven(vfroundEvenSC[i][0]); !alike(vfroundEvenSC[i][1], f) { + t.Errorf("RoundToEven(%g) = %g, want %g", vfroundEvenSC[i][0], f, vfroundEvenSC[i][1]) + } + } +} + +func TestSignbit(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f := Signbit(vf[i]); signbit[i] != f { + t.Errorf("Signbit(%g) = %t, want %t", vf[i], f, signbit[i]) + } + } + for i := 0; i < len(vfsignbitSC); i++ { + if f := Signbit(vfsignbitSC[i]); signbitSC[i] != f { + t.Errorf("Signbit(%g) = %t, want %t", vfsignbitSC[i], f, signbitSC[i]) + } + } +} +func TestSin(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f := Sin(vf[i]); !veryclose(sin[i], f) { + t.Errorf("Sin(%g) = %g, want %g", vf[i], f, sin[i]) + } + } + for i := 0; i < len(vfsinSC); i++ { + if f := Sin(vfsinSC[i]); !alike(sinSC[i], f) { + t.Errorf("Sin(%g) = %g, want %g", vfsinSC[i], f, sinSC[i]) + } + } +} + +func TestSincos(t *testing.T) { + for i := 0; i < len(vf); i++ { + if s, c := Sincos(vf[i]); !veryclose(sin[i], s) || !veryclose(cos[i], c) { + t.Errorf("Sincos(%g) = %g, %g want %g, %g", vf[i], s, c, sin[i], cos[i]) + } + } +} + +func TestSinh(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f := Sinh(vf[i]); !close(sinh[i], f) { + t.Errorf("Sinh(%g) = %g, want %g", vf[i], f, sinh[i]) + } + } + for i := 0; i < len(vfsinhSC); i++ { + if f := Sinh(vfsinhSC[i]); !alike(sinhSC[i], f) { + t.Errorf("Sinh(%g) = %g, want %g", vfsinhSC[i], f, sinhSC[i]) + } + } +} + +func TestSqrt(t *testing.T) { + for i := 0; i < len(vf); i++ { + a := Abs(vf[i]) + if f := SqrtGo(a); sqrt[i] != f { + t.Errorf("SqrtGo(%g) = %g, want %g", a, f, sqrt[i]) + } + a = Abs(vf[i]) + if f := Sqrt(a); sqrt[i] != f { + t.Errorf("Sqrt(%g) = %g, want %g", a, f, sqrt[i]) + } + } + for i := 0; i < len(vfsqrtSC); i++ { + if f := SqrtGo(vfsqrtSC[i]); !alike(sqrtSC[i], f) { + t.Errorf("SqrtGo(%g) = %g, want %g", vfsqrtSC[i], f, sqrtSC[i]) + } + if f := Sqrt(vfsqrtSC[i]); !alike(sqrtSC[i], f) { + t.Errorf("Sqrt(%g) = %g, want %g", vfsqrtSC[i], f, sqrtSC[i]) + } + } +} + +func TestTan(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f := Tan(vf[i]); !veryclose(tan[i], f) { + t.Errorf("Tan(%g) = %g, want %g", vf[i], f, tan[i]) + } + } + // same special cases as Sin + for i := 0; i < len(vfsinSC); i++ { + if f := Tan(vfsinSC[i]); !alike(sinSC[i], f) { + t.Errorf("Tan(%g) = %g, want %g", vfsinSC[i], f, sinSC[i]) + } + } +} + +func TestTanh(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f := Tanh(vf[i]); !veryclose(tanh[i], f) { + t.Errorf("Tanh(%g) = %g, want %g", vf[i], f, tanh[i]) + } + } + for i := 0; i < len(vftanhSC); i++ { + if f := Tanh(vftanhSC[i]); !alike(tanhSC[i], f) { + t.Errorf("Tanh(%g) = %g, want %g", vftanhSC[i], f, tanhSC[i]) + } + } +} + +func TestTrunc(t *testing.T) { + for i := 0; i < len(vf); i++ { + if f := Trunc(vf[i]); !alike(trunc[i], f) { + t.Errorf("Trunc(%g) = %g, want %g", vf[i], f, trunc[i]) + } + } + for i := 0; i < len(vfceilSC); i++ { + if f := Trunc(vfceilSC[i]); !alike(ceilSC[i], f) { + t.Errorf("Trunc(%g) = %g, want %g", vfceilSC[i], f, ceilSC[i]) + } + } +} + +func TestY0(t *testing.T) { + for i := 0; i < len(vf); i++ { + a := Abs(vf[i]) + if f := Y0(a); !close(y0[i], f) { + t.Errorf("Y0(%g) = %g, want %g", a, f, y0[i]) + } + } + for i := 0; i < len(vfy0SC); i++ { + if f := Y0(vfy0SC[i]); !alike(y0SC[i], f) { + t.Errorf("Y0(%g) = %g, want %g", vfy0SC[i], f, y0SC[i]) + } + } +} + +func TestY1(t *testing.T) { + for i := 0; i < len(vf); i++ { + a := Abs(vf[i]) + if f := Y1(a); !soclose(y1[i], f, 2e-14) { + t.Errorf("Y1(%g) = %g, want %g", a, f, y1[i]) + } + } + for i := 0; i < len(vfy0SC); i++ { + if f := Y1(vfy0SC[i]); !alike(y1SC[i], f) { + t.Errorf("Y1(%g) = %g, want %g", vfy0SC[i], f, y1SC[i]) + } + } +} + +func TestYn(t *testing.T) { + for i := 0; i < len(vf); i++ { + a := Abs(vf[i]) + if f := Yn(2, a); !close(y2[i], f) { + t.Errorf("Yn(2, %g) = %g, want %g", a, f, y2[i]) + } + if f := Yn(-3, a); !close(yM3[i], f) { + t.Errorf("Yn(-3, %g) = %g, want %g", a, f, yM3[i]) + } + } + for i := 0; i < len(vfy0SC); i++ { + if f := Yn(2, vfy0SC[i]); !alike(y2SC[i], f) { + t.Errorf("Yn(2, %g) = %g, want %g", vfy0SC[i], f, y2SC[i]) + } + if f := Yn(-3, vfy0SC[i]); !alike(yM3SC[i], f) { + t.Errorf("Yn(-3, %g) = %g, want %g", vfy0SC[i], f, yM3SC[i]) + } + } + if f := Yn(0, 0); !alike(Inf(-1), f) { + t.Errorf("Yn(0, 0) = %g, want %g", f, Inf(-1)) + } +} + +var PortableFMA = FMA // hide call from compiler intrinsic; falls back to portable code + +func TestFMA(t *testing.T) { + for _, c := range fmaC { + got := FMA(c.x, c.y, c.z) + if !alike(got, c.want) { + t.Errorf("FMA(%g,%g,%g) == %g; want %g", c.x, c.y, c.z, got, c.want) + } + got = PortableFMA(c.x, c.y, c.z) + if !alike(got, c.want) { + t.Errorf("PortableFMA(%g,%g,%g) == %g; want %g", c.x, c.y, c.z, got, c.want) + } + } +} + +// Check that math functions of high angle values +// return accurate results. [Since (vf[i] + large) - large != vf[i], +// testing for Trig(vf[i] + large) == Trig(vf[i]), where large is +// a multiple of 2*Pi, is misleading.] +func TestLargeCos(t *testing.T) { + large := float64(100000 * Pi) + for i := 0; i < len(vf); i++ { + f1 := cosLarge[i] + f2 := Cos(vf[i] + large) + if !close(f1, f2) { + t.Errorf("Cos(%g) = %g, want %g", vf[i]+large, f2, f1) + } + } +} + +func TestLargeSin(t *testing.T) { + large := float64(100000 * Pi) + for i := 0; i < len(vf); i++ { + f1 := sinLarge[i] + f2 := Sin(vf[i] + large) + if !close(f1, f2) { + t.Errorf("Sin(%g) = %g, want %g", vf[i]+large, f2, f1) + } + } +} + +func TestLargeSincos(t *testing.T) { + large := float64(100000 * Pi) + for i := 0; i < len(vf); i++ { + f1, g1 := sinLarge[i], cosLarge[i] + f2, g2 := Sincos(vf[i] + large) + if !close(f1, f2) || !close(g1, g2) { + t.Errorf("Sincos(%g) = %g, %g, want %g, %g", vf[i]+large, f2, g2, f1, g1) + } + } +} + +func TestLargeTan(t *testing.T) { + large := float64(100000 * Pi) + for i := 0; i < len(vf); i++ { + f1 := tanLarge[i] + f2 := Tan(vf[i] + large) + if !close(f1, f2) { + t.Errorf("Tan(%g) = %g, want %g", vf[i]+large, f2, f1) + } + } +} + +// Check that trigReduce matches the standard reduction results for input values +// below reduceThreshold. +func TestTrigReduce(t *testing.T) { + inputs := make([]float64, len(vf)) + // all of the standard inputs + copy(inputs, vf) + // all of the large inputs + large := float64(100000 * Pi) + for _, v := range vf { + inputs = append(inputs, v+large) + } + // Also test some special inputs, Pi and right below the reduceThreshold + inputs = append(inputs, Pi, Nextafter(ReduceThreshold, 0)) + for _, x := range inputs { + // reduce the value to compare + j, z := TrigReduce(x) + xred := float64(j)*(Pi/4) + z + + if f, fred := Sin(x), Sin(xred); !close(f, fred) { + t.Errorf("Sin(trigReduce(%g)) != Sin(%g), got %g, want %g", x, x, fred, f) + } + if f, fred := Cos(x), Cos(xred); !close(f, fred) { + t.Errorf("Cos(trigReduce(%g)) != Cos(%g), got %g, want %g", x, x, fred, f) + } + if f, fred := Tan(x), Tan(xred); !close(f, fred) { + t.Errorf(" Tan(trigReduce(%g)) != Tan(%g), got %g, want %g", x, x, fred, f) + } + f, g := Sincos(x) + fred, gred := Sincos(xred) + if !close(f, fred) || !close(g, gred) { + t.Errorf(" Sincos(trigReduce(%g)) != Sincos(%g), got %g, %g, want %g, %g", x, x, fred, gred, f, g) + } + } +} + +// Check that math constants are accepted by compiler +// and have right value (assumes strconv.ParseFloat works). +// https://golang.org/issue/201 + +type floatTest struct { + val any + name string + str string +} + +var floatTests = []floatTest{ + {float64(MaxFloat64), "MaxFloat64", "1.7976931348623157e+308"}, + {float64(SmallestNonzeroFloat64), "SmallestNonzeroFloat64", "5e-324"}, + {float32(MaxFloat32), "MaxFloat32", "3.4028235e+38"}, + {float32(SmallestNonzeroFloat32), "SmallestNonzeroFloat32", "1e-45"}, +} + +func TestFloatMinMax(t *testing.T) { + for _, tt := range floatTests { + s := fmt.Sprint(tt.val) + if s != tt.str { + t.Errorf("Sprint(%v) = %s, want %s", tt.name, s, tt.str) + } + } +} + +func TestFloatMinima(t *testing.T) { + if q := float32(SmallestNonzeroFloat32 / 2); q != 0 { + t.Errorf("float32(SmallestNonzeroFloat32 / 2) = %g, want 0", q) + } + if q := float64(SmallestNonzeroFloat64 / 2); q != 0 { + t.Errorf("float64(SmallestNonzeroFloat64 / 2) = %g, want 0", q) + } +} + +var indirectSqrt = Sqrt + +// TestFloat32Sqrt checks the correctness of the float32 square root optimization result. +func TestFloat32Sqrt(t *testing.T) { + for _, v := range sqrt32 { + want := float32(indirectSqrt(float64(v))) + got := float32(Sqrt(float64(v))) + if IsNaN(float64(want)) { + if !IsNaN(float64(got)) { + t.Errorf("got=%#v want=NaN, v=%#v", got, v) + } + continue + } + if got != want { + t.Errorf("got=%#v want=%#v, v=%#v", got, want, v) + } + } +} + +// Benchmarks + +// Global exported variables are used to store the +// return values of functions measured in the benchmarks. +// Storing the results in these variables prevents the compiler +// from completely optimizing the benchmarked functions away. +var ( + GlobalI int + GlobalB bool + GlobalF float64 +) + +func BenchmarkAcos(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Acos(.5) + } + GlobalF = x +} + +func BenchmarkAcosh(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Acosh(1.5) + } + GlobalF = x +} + +func BenchmarkAsin(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Asin(.5) + } + GlobalF = x +} + +func BenchmarkAsinh(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Asinh(.5) + } + GlobalF = x +} + +func BenchmarkAtan(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Atan(.5) + } + GlobalF = x +} + +func BenchmarkAtanh(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Atanh(.5) + } + GlobalF = x +} + +func BenchmarkAtan2(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Atan2(.5, 1) + } + GlobalF = x +} + +func BenchmarkCbrt(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Cbrt(10) + } + GlobalF = x +} + +func BenchmarkCeil(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Ceil(.5) + } + GlobalF = x +} + +var copysignNeg = -1.0 + +func BenchmarkCopysign(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Copysign(.5, copysignNeg) + } + GlobalF = x +} + +func BenchmarkCos(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Cos(.5) + } + GlobalF = x +} + +func BenchmarkCosh(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Cosh(2.5) + } + GlobalF = x +} + +func BenchmarkErf(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Erf(.5) + } + GlobalF = x +} + +func BenchmarkErfc(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Erfc(.5) + } + GlobalF = x +} + +func BenchmarkErfinv(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Erfinv(.5) + } + GlobalF = x +} + +func BenchmarkErfcinv(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Erfcinv(.5) + } + GlobalF = x +} + +func BenchmarkExp(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Exp(.5) + } + GlobalF = x +} + +func BenchmarkExpGo(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = ExpGo(.5) + } + GlobalF = x +} + +func BenchmarkExpm1(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Expm1(.5) + } + GlobalF = x +} + +func BenchmarkExp2(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Exp2(.5) + } + GlobalF = x +} + +func BenchmarkExp2Go(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Exp2Go(.5) + } + GlobalF = x +} + +var absPos = .5 + +func BenchmarkAbs(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Abs(absPos) + } + GlobalF = x + +} + +func BenchmarkDim(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Dim(GlobalF, x) + } + GlobalF = x +} + +func BenchmarkFloor(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Floor(.5) + } + GlobalF = x +} + +func BenchmarkMax(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Max(10, 3) + } + GlobalF = x +} + +func BenchmarkMin(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Min(10, 3) + } + GlobalF = x +} + +func BenchmarkMod(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Mod(10, 3) + } + GlobalF = x +} + +func BenchmarkFrexp(b *testing.B) { + x := 0.0 + y := 0 + for i := 0; i < b.N; i++ { + x, y = Frexp(8) + } + GlobalF = x + GlobalI = y +} + +func BenchmarkGamma(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Gamma(2.5) + } + GlobalF = x +} + +func BenchmarkHypot(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Hypot(3, 4) + } + GlobalF = x +} + +func BenchmarkHypotGo(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = HypotGo(3, 4) + } + GlobalF = x +} + +func BenchmarkIlogb(b *testing.B) { + x := 0 + for i := 0; i < b.N; i++ { + x = Ilogb(.5) + } + GlobalI = x +} + +func BenchmarkJ0(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = J0(2.5) + } + GlobalF = x +} + +func BenchmarkJ1(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = J1(2.5) + } + GlobalF = x +} + +func BenchmarkJn(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Jn(2, 2.5) + } + GlobalF = x +} + +func BenchmarkLdexp(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Ldexp(.5, 2) + } + GlobalF = x +} + +func BenchmarkLgamma(b *testing.B) { + x := 0.0 + y := 0 + for i := 0; i < b.N; i++ { + x, y = Lgamma(2.5) + } + GlobalF = x + GlobalI = y +} + +func BenchmarkLog(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Log(.5) + } + GlobalF = x +} + +func BenchmarkLogb(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Logb(.5) + } + GlobalF = x +} + +func BenchmarkLog1p(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Log1p(.5) + } + GlobalF = x +} + +func BenchmarkLog10(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Log10(.5) + } + GlobalF = x +} + +func BenchmarkLog2(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Log2(.5) + } + GlobalF += x +} + +func BenchmarkModf(b *testing.B) { + x := 0.0 + y := 0.0 + for i := 0; i < b.N; i++ { + x, y = Modf(1.5) + } + GlobalF += x + GlobalF += y +} + +func BenchmarkNextafter32(b *testing.B) { + x := float32(0.0) + for i := 0; i < b.N; i++ { + x = Nextafter32(.5, 1) + } + GlobalF = float64(x) +} + +func BenchmarkNextafter64(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Nextafter(.5, 1) + } + GlobalF = x +} + +func BenchmarkPowInt(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Pow(2, 2) + } + GlobalF = x +} + +func BenchmarkPowFrac(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Pow(2.5, 1.5) + } + GlobalF = x +} + +var pow10pos = int(300) + +func BenchmarkPow10Pos(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Pow10(pow10pos) + } + GlobalF = x +} + +var pow10neg = int(-300) + +func BenchmarkPow10Neg(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Pow10(pow10neg) + } + GlobalF = x +} + +var roundNeg = float64(-2.5) + +func BenchmarkRound(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Round(roundNeg) + } + GlobalF = x +} + +func BenchmarkRoundToEven(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = RoundToEven(roundNeg) + } + GlobalF = x +} + +func BenchmarkRemainder(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Remainder(10, 3) + } + GlobalF = x +} + +var signbitPos = 2.5 + +func BenchmarkSignbit(b *testing.B) { + x := false + for i := 0; i < b.N; i++ { + x = Signbit(signbitPos) + } + GlobalB = x +} + +func BenchmarkSin(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Sin(.5) + } + GlobalF = x +} + +func BenchmarkSincos(b *testing.B) { + x := 0.0 + y := 0.0 + for i := 0; i < b.N; i++ { + x, y = Sincos(.5) + } + GlobalF += x + GlobalF += y +} + +func BenchmarkSinh(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Sinh(2.5) + } + GlobalF = x +} + +func BenchmarkSqrtIndirect(b *testing.B) { + x, y := 0.0, 10.0 + f := Sqrt + for i := 0; i < b.N; i++ { + x += f(y) + } + GlobalF = x +} + +func BenchmarkSqrtLatency(b *testing.B) { + x := 10.0 + for i := 0; i < b.N; i++ { + x = Sqrt(x) + } + GlobalF = x +} + +func BenchmarkSqrtIndirectLatency(b *testing.B) { + x := 10.0 + f := Sqrt + for i := 0; i < b.N; i++ { + x = f(x) + } + GlobalF = x +} + +func BenchmarkSqrtGoLatency(b *testing.B) { + x := 10.0 + for i := 0; i < b.N; i++ { + x = SqrtGo(x) + } + GlobalF = x +} + +func isPrime(i int) bool { + // Yes, this is a dumb way to write this code, + // but calling Sqrt repeatedly in this way demonstrates + // the benefit of using a direct SQRT instruction on systems + // that have one, whereas the obvious loop seems not to + // demonstrate such a benefit. + for j := 2; float64(j) <= Sqrt(float64(i)); j++ { + if i%j == 0 { + return false + } + } + return true +} + +func BenchmarkSqrtPrime(b *testing.B) { + x := false + for i := 0; i < b.N; i++ { + x = isPrime(100003) + } + GlobalB = x +} + +func BenchmarkTan(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Tan(.5) + } + GlobalF = x +} + +func BenchmarkTanh(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Tanh(2.5) + } + GlobalF = x +} +func BenchmarkTrunc(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Trunc(.5) + } + GlobalF = x +} + +func BenchmarkY0(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Y0(2.5) + } + GlobalF = x +} + +func BenchmarkY1(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Y1(2.5) + } + GlobalF = x +} + +func BenchmarkYn(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Yn(2, 2.5) + } + GlobalF = x +} + +func BenchmarkFloat64bits(b *testing.B) { + y := uint64(0) + for i := 0; i < b.N; i++ { + y = Float64bits(roundNeg) + } + GlobalI = int(y) +} + +var roundUint64 = uint64(5) + +func BenchmarkFloat64frombits(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = Float64frombits(roundUint64) + } + GlobalF = x +} + +var roundFloat32 = float32(-2.5) + +func BenchmarkFloat32bits(b *testing.B) { + y := uint32(0) + for i := 0; i < b.N; i++ { + y = Float32bits(roundFloat32) + } + GlobalI = int(y) +} + +var roundUint32 = uint32(5) + +func BenchmarkFloat32frombits(b *testing.B) { + x := float32(0.0) + for i := 0; i < b.N; i++ { + x = Float32frombits(roundUint32) + } + GlobalF = float64(x) +} + +func BenchmarkFMA(b *testing.B) { + x := 0.0 + for i := 0; i < b.N; i++ { + x = FMA(E, Pi, x) + } + GlobalF = x +} |