diff options
Diffstat (limited to 'src/runtime/mprof.go')
-rw-r--r-- | src/runtime/mprof.go | 937 |
1 files changed, 937 insertions, 0 deletions
diff --git a/src/runtime/mprof.go b/src/runtime/mprof.go new file mode 100644 index 0000000..569c17f --- /dev/null +++ b/src/runtime/mprof.go @@ -0,0 +1,937 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Malloc profiling. +// Patterned after tcmalloc's algorithms; shorter code. + +package runtime + +import ( + "internal/abi" + "runtime/internal/atomic" + "unsafe" +) + +// NOTE(rsc): Everything here could use cas if contention became an issue. +var proflock mutex + +// All memory allocations are local and do not escape outside of the profiler. +// The profiler is forbidden from referring to garbage-collected memory. + +const ( + // profile types + memProfile bucketType = 1 + iota + blockProfile + mutexProfile + + // size of bucket hash table + buckHashSize = 179999 + + // max depth of stack to record in bucket + maxStack = 32 +) + +type bucketType int + +// A bucket holds per-call-stack profiling information. +// The representation is a bit sleazy, inherited from C. +// This struct defines the bucket header. It is followed in +// memory by the stack words and then the actual record +// data, either a memRecord or a blockRecord. +// +// Per-call-stack profiling information. +// Lookup by hashing call stack into a linked-list hash table. +// +// No heap pointers. +// +//go:notinheap +type bucket struct { + next *bucket + allnext *bucket + typ bucketType // memBucket or blockBucket (includes mutexProfile) + hash uintptr + size uintptr + nstk uintptr +} + +// A memRecord is the bucket data for a bucket of type memProfile, +// part of the memory profile. +type memRecord struct { + // The following complex 3-stage scheme of stats accumulation + // is required to obtain a consistent picture of mallocs and frees + // for some point in time. + // The problem is that mallocs come in real time, while frees + // come only after a GC during concurrent sweeping. So if we would + // naively count them, we would get a skew toward mallocs. + // + // Hence, we delay information to get consistent snapshots as + // of mark termination. Allocations count toward the next mark + // termination's snapshot, while sweep frees count toward the + // previous mark termination's snapshot: + // + // MT MT MT MT + // .·| .·| .·| .·| + // .·˙ | .·˙ | .·˙ | .·˙ | + // .·˙ | .·˙ | .·˙ | .·˙ | + // .·˙ |.·˙ |.·˙ |.·˙ | + // + // alloc → ▲ ← free + // ┠┅┅┅┅┅┅┅┅┅┅┅P + // C+2 → C+1 → C + // + // alloc → ▲ ← free + // ┠┅┅┅┅┅┅┅┅┅┅┅P + // C+2 → C+1 → C + // + // Since we can't publish a consistent snapshot until all of + // the sweep frees are accounted for, we wait until the next + // mark termination ("MT" above) to publish the previous mark + // termination's snapshot ("P" above). To do this, allocation + // and free events are accounted to *future* heap profile + // cycles ("C+n" above) and we only publish a cycle once all + // of the events from that cycle must be done. Specifically: + // + // Mallocs are accounted to cycle C+2. + // Explicit frees are accounted to cycle C+2. + // GC frees (done during sweeping) are accounted to cycle C+1. + // + // After mark termination, we increment the global heap + // profile cycle counter and accumulate the stats from cycle C + // into the active profile. + + // active is the currently published profile. A profiling + // cycle can be accumulated into active once its complete. + active memRecordCycle + + // future records the profile events we're counting for cycles + // that have not yet been published. This is ring buffer + // indexed by the global heap profile cycle C and stores + // cycles C, C+1, and C+2. Unlike active, these counts are + // only for a single cycle; they are not cumulative across + // cycles. + // + // We store cycle C here because there's a window between when + // C becomes the active cycle and when we've flushed it to + // active. + future [3]memRecordCycle +} + +// memRecordCycle +type memRecordCycle struct { + allocs, frees uintptr + alloc_bytes, free_bytes uintptr +} + +// add accumulates b into a. It does not zero b. +func (a *memRecordCycle) add(b *memRecordCycle) { + a.allocs += b.allocs + a.frees += b.frees + a.alloc_bytes += b.alloc_bytes + a.free_bytes += b.free_bytes +} + +// A blockRecord is the bucket data for a bucket of type blockProfile, +// which is used in blocking and mutex profiles. +type blockRecord struct { + count float64 + cycles int64 +} + +var ( + mbuckets *bucket // memory profile buckets + bbuckets *bucket // blocking profile buckets + xbuckets *bucket // mutex profile buckets + buckhash *[buckHashSize]*bucket + bucketmem uintptr + + mProf struct { + // All fields in mProf are protected by proflock. + + // cycle is the global heap profile cycle. This wraps + // at mProfCycleWrap. + cycle uint32 + // flushed indicates that future[cycle] in all buckets + // has been flushed to the active profile. + flushed bool + } +) + +const mProfCycleWrap = uint32(len(memRecord{}.future)) * (2 << 24) + +// newBucket allocates a bucket with the given type and number of stack entries. +func newBucket(typ bucketType, nstk int) *bucket { + size := unsafe.Sizeof(bucket{}) + uintptr(nstk)*unsafe.Sizeof(uintptr(0)) + switch typ { + default: + throw("invalid profile bucket type") + case memProfile: + size += unsafe.Sizeof(memRecord{}) + case blockProfile, mutexProfile: + size += unsafe.Sizeof(blockRecord{}) + } + + b := (*bucket)(persistentalloc(size, 0, &memstats.buckhash_sys)) + bucketmem += size + b.typ = typ + b.nstk = uintptr(nstk) + return b +} + +// stk returns the slice in b holding the stack. +func (b *bucket) stk() []uintptr { + stk := (*[maxStack]uintptr)(add(unsafe.Pointer(b), unsafe.Sizeof(*b))) + return stk[:b.nstk:b.nstk] +} + +// mp returns the memRecord associated with the memProfile bucket b. +func (b *bucket) mp() *memRecord { + if b.typ != memProfile { + throw("bad use of bucket.mp") + } + data := add(unsafe.Pointer(b), unsafe.Sizeof(*b)+b.nstk*unsafe.Sizeof(uintptr(0))) + return (*memRecord)(data) +} + +// bp returns the blockRecord associated with the blockProfile bucket b. +func (b *bucket) bp() *blockRecord { + if b.typ != blockProfile && b.typ != mutexProfile { + throw("bad use of bucket.bp") + } + data := add(unsafe.Pointer(b), unsafe.Sizeof(*b)+b.nstk*unsafe.Sizeof(uintptr(0))) + return (*blockRecord)(data) +} + +// Return the bucket for stk[0:nstk], allocating new bucket if needed. +func stkbucket(typ bucketType, size uintptr, stk []uintptr, alloc bool) *bucket { + if buckhash == nil { + buckhash = (*[buckHashSize]*bucket)(sysAlloc(unsafe.Sizeof(*buckhash), &memstats.buckhash_sys)) + if buckhash == nil { + throw("runtime: cannot allocate memory") + } + } + + // Hash stack. + var h uintptr + for _, pc := range stk { + h += pc + h += h << 10 + h ^= h >> 6 + } + // hash in size + h += size + h += h << 10 + h ^= h >> 6 + // finalize + h += h << 3 + h ^= h >> 11 + + i := int(h % buckHashSize) + for b := buckhash[i]; b != nil; b = b.next { + if b.typ == typ && b.hash == h && b.size == size && eqslice(b.stk(), stk) { + return b + } + } + + if !alloc { + return nil + } + + // Create new bucket. + b := newBucket(typ, len(stk)) + copy(b.stk(), stk) + b.hash = h + b.size = size + b.next = buckhash[i] + buckhash[i] = b + if typ == memProfile { + b.allnext = mbuckets + mbuckets = b + } else if typ == mutexProfile { + b.allnext = xbuckets + xbuckets = b + } else { + b.allnext = bbuckets + bbuckets = b + } + return b +} + +func eqslice(x, y []uintptr) bool { + if len(x) != len(y) { + return false + } + for i, xi := range x { + if xi != y[i] { + return false + } + } + return true +} + +// mProf_NextCycle publishes the next heap profile cycle and creates a +// fresh heap profile cycle. This operation is fast and can be done +// during STW. The caller must call mProf_Flush before calling +// mProf_NextCycle again. +// +// This is called by mark termination during STW so allocations and +// frees after the world is started again count towards a new heap +// profiling cycle. +func mProf_NextCycle() { + lock(&proflock) + // We explicitly wrap mProf.cycle rather than depending on + // uint wraparound because the memRecord.future ring does not + // itself wrap at a power of two. + mProf.cycle = (mProf.cycle + 1) % mProfCycleWrap + mProf.flushed = false + unlock(&proflock) +} + +// mProf_Flush flushes the events from the current heap profiling +// cycle into the active profile. After this it is safe to start a new +// heap profiling cycle with mProf_NextCycle. +// +// This is called by GC after mark termination starts the world. In +// contrast with mProf_NextCycle, this is somewhat expensive, but safe +// to do concurrently. +func mProf_Flush() { + lock(&proflock) + if !mProf.flushed { + mProf_FlushLocked() + mProf.flushed = true + } + unlock(&proflock) +} + +func mProf_FlushLocked() { + c := mProf.cycle + for b := mbuckets; b != nil; b = b.allnext { + mp := b.mp() + + // Flush cycle C into the published profile and clear + // it for reuse. + mpc := &mp.future[c%uint32(len(mp.future))] + mp.active.add(mpc) + *mpc = memRecordCycle{} + } +} + +// mProf_PostSweep records that all sweep frees for this GC cycle have +// completed. This has the effect of publishing the heap profile +// snapshot as of the last mark termination without advancing the heap +// profile cycle. +func mProf_PostSweep() { + lock(&proflock) + // Flush cycle C+1 to the active profile so everything as of + // the last mark termination becomes visible. *Don't* advance + // the cycle, since we're still accumulating allocs in cycle + // C+2, which have to become C+1 in the next mark termination + // and so on. + c := mProf.cycle + for b := mbuckets; b != nil; b = b.allnext { + mp := b.mp() + mpc := &mp.future[(c+1)%uint32(len(mp.future))] + mp.active.add(mpc) + *mpc = memRecordCycle{} + } + unlock(&proflock) +} + +// Called by malloc to record a profiled block. +func mProf_Malloc(p unsafe.Pointer, size uintptr) { + var stk [maxStack]uintptr + nstk := callers(4, stk[:]) + lock(&proflock) + b := stkbucket(memProfile, size, stk[:nstk], true) + c := mProf.cycle + mp := b.mp() + mpc := &mp.future[(c+2)%uint32(len(mp.future))] + mpc.allocs++ + mpc.alloc_bytes += size + unlock(&proflock) + + // Setprofilebucket locks a bunch of other mutexes, so we call it outside of proflock. + // This reduces potential contention and chances of deadlocks. + // Since the object must be alive during call to mProf_Malloc, + // it's fine to do this non-atomically. + systemstack(func() { + setprofilebucket(p, b) + }) +} + +// Called when freeing a profiled block. +func mProf_Free(b *bucket, size uintptr) { + lock(&proflock) + c := mProf.cycle + mp := b.mp() + mpc := &mp.future[(c+1)%uint32(len(mp.future))] + mpc.frees++ + mpc.free_bytes += size + unlock(&proflock) +} + +var blockprofilerate uint64 // in CPU ticks + +// SetBlockProfileRate controls the fraction of goroutine blocking events +// that are reported in the blocking profile. The profiler aims to sample +// an average of one blocking event per rate nanoseconds spent blocked. +// +// To include every blocking event in the profile, pass rate = 1. +// To turn off profiling entirely, pass rate <= 0. +func SetBlockProfileRate(rate int) { + var r int64 + if rate <= 0 { + r = 0 // disable profiling + } else if rate == 1 { + r = 1 // profile everything + } else { + // convert ns to cycles, use float64 to prevent overflow during multiplication + r = int64(float64(rate) * float64(tickspersecond()) / (1000 * 1000 * 1000)) + if r == 0 { + r = 1 + } + } + + atomic.Store64(&blockprofilerate, uint64(r)) +} + +func blockevent(cycles int64, skip int) { + if cycles <= 0 { + cycles = 1 + } + + rate := int64(atomic.Load64(&blockprofilerate)) + if blocksampled(cycles, rate) { + saveblockevent(cycles, rate, skip+1, blockProfile) + } +} + +// blocksampled returns true for all events where cycles >= rate. Shorter +// events have a cycles/rate random chance of returning true. +func blocksampled(cycles, rate int64) bool { + if rate <= 0 || (rate > cycles && int64(fastrand())%rate > cycles) { + return false + } + return true +} + +func saveblockevent(cycles, rate int64, skip int, which bucketType) { + gp := getg() + var nstk int + var stk [maxStack]uintptr + if gp.m.curg == nil || gp.m.curg == gp { + nstk = callers(skip, stk[:]) + } else { + nstk = gcallers(gp.m.curg, skip, stk[:]) + } + lock(&proflock) + b := stkbucket(which, 0, stk[:nstk], true) + + if which == blockProfile && cycles < rate { + // Remove sampling bias, see discussion on http://golang.org/cl/299991. + b.bp().count += float64(rate) / float64(cycles) + b.bp().cycles += rate + } else { + b.bp().count++ + b.bp().cycles += cycles + } + unlock(&proflock) +} + +var mutexprofilerate uint64 // fraction sampled + +// SetMutexProfileFraction controls the fraction of mutex contention events +// that are reported in the mutex profile. On average 1/rate events are +// reported. The previous rate is returned. +// +// To turn off profiling entirely, pass rate 0. +// To just read the current rate, pass rate < 0. +// (For n>1 the details of sampling may change.) +func SetMutexProfileFraction(rate int) int { + if rate < 0 { + return int(mutexprofilerate) + } + old := mutexprofilerate + atomic.Store64(&mutexprofilerate, uint64(rate)) + return int(old) +} + +//go:linkname mutexevent sync.event +func mutexevent(cycles int64, skip int) { + if cycles < 0 { + cycles = 0 + } + rate := int64(atomic.Load64(&mutexprofilerate)) + // TODO(pjw): measure impact of always calling fastrand vs using something + // like malloc.go:nextSample() + if rate > 0 && int64(fastrand())%rate == 0 { + saveblockevent(cycles, rate, skip+1, mutexProfile) + } +} + +// Go interface to profile data. + +// A StackRecord describes a single execution stack. +type StackRecord struct { + Stack0 [32]uintptr // stack trace for this record; ends at first 0 entry +} + +// Stack returns the stack trace associated with the record, +// a prefix of r.Stack0. +func (r *StackRecord) Stack() []uintptr { + for i, v := range r.Stack0 { + if v == 0 { + return r.Stack0[0:i] + } + } + return r.Stack0[0:] +} + +// MemProfileRate controls the fraction of memory allocations +// that are recorded and reported in the memory profile. +// The profiler aims to sample an average of +// one allocation per MemProfileRate bytes allocated. +// +// To include every allocated block in the profile, set MemProfileRate to 1. +// To turn off profiling entirely, set MemProfileRate to 0. +// +// The tools that process the memory profiles assume that the +// profile rate is constant across the lifetime of the program +// and equal to the current value. Programs that change the +// memory profiling rate should do so just once, as early as +// possible in the execution of the program (for example, +// at the beginning of main). +var MemProfileRate int = defaultMemProfileRate(512 * 1024) + +// defaultMemProfileRate returns 0 if disableMemoryProfiling is set. +// It exists primarily for the godoc rendering of MemProfileRate +// above. +func defaultMemProfileRate(v int) int { + if disableMemoryProfiling { + return 0 + } + return v +} + +// disableMemoryProfiling is set by the linker if runtime.MemProfile +// is not used and the link type guarantees nobody else could use it +// elsewhere. +var disableMemoryProfiling bool + +// A MemProfileRecord describes the live objects allocated +// by a particular call sequence (stack trace). +type MemProfileRecord struct { + AllocBytes, FreeBytes int64 // number of bytes allocated, freed + AllocObjects, FreeObjects int64 // number of objects allocated, freed + Stack0 [32]uintptr // stack trace for this record; ends at first 0 entry +} + +// InUseBytes returns the number of bytes in use (AllocBytes - FreeBytes). +func (r *MemProfileRecord) InUseBytes() int64 { return r.AllocBytes - r.FreeBytes } + +// InUseObjects returns the number of objects in use (AllocObjects - FreeObjects). +func (r *MemProfileRecord) InUseObjects() int64 { + return r.AllocObjects - r.FreeObjects +} + +// Stack returns the stack trace associated with the record, +// a prefix of r.Stack0. +func (r *MemProfileRecord) Stack() []uintptr { + for i, v := range r.Stack0 { + if v == 0 { + return r.Stack0[0:i] + } + } + return r.Stack0[0:] +} + +// MemProfile returns a profile of memory allocated and freed per allocation +// site. +// +// MemProfile returns n, the number of records in the current memory profile. +// If len(p) >= n, MemProfile copies the profile into p and returns n, true. +// If len(p) < n, MemProfile does not change p and returns n, false. +// +// If inuseZero is true, the profile includes allocation records +// where r.AllocBytes > 0 but r.AllocBytes == r.FreeBytes. +// These are sites where memory was allocated, but it has all +// been released back to the runtime. +// +// The returned profile may be up to two garbage collection cycles old. +// This is to avoid skewing the profile toward allocations; because +// allocations happen in real time but frees are delayed until the garbage +// collector performs sweeping, the profile only accounts for allocations +// that have had a chance to be freed by the garbage collector. +// +// Most clients should use the runtime/pprof package or +// the testing package's -test.memprofile flag instead +// of calling MemProfile directly. +func MemProfile(p []MemProfileRecord, inuseZero bool) (n int, ok bool) { + lock(&proflock) + // If we're between mProf_NextCycle and mProf_Flush, take care + // of flushing to the active profile so we only have to look + // at the active profile below. + mProf_FlushLocked() + clear := true + for b := mbuckets; b != nil; b = b.allnext { + mp := b.mp() + if inuseZero || mp.active.alloc_bytes != mp.active.free_bytes { + n++ + } + if mp.active.allocs != 0 || mp.active.frees != 0 { + clear = false + } + } + if clear { + // Absolutely no data, suggesting that a garbage collection + // has not yet happened. In order to allow profiling when + // garbage collection is disabled from the beginning of execution, + // accumulate all of the cycles, and recount buckets. + n = 0 + for b := mbuckets; b != nil; b = b.allnext { + mp := b.mp() + for c := range mp.future { + mp.active.add(&mp.future[c]) + mp.future[c] = memRecordCycle{} + } + if inuseZero || mp.active.alloc_bytes != mp.active.free_bytes { + n++ + } + } + } + if n <= len(p) { + ok = true + idx := 0 + for b := mbuckets; b != nil; b = b.allnext { + mp := b.mp() + if inuseZero || mp.active.alloc_bytes != mp.active.free_bytes { + record(&p[idx], b) + idx++ + } + } + } + unlock(&proflock) + return +} + +// Write b's data to r. +func record(r *MemProfileRecord, b *bucket) { + mp := b.mp() + r.AllocBytes = int64(mp.active.alloc_bytes) + r.FreeBytes = int64(mp.active.free_bytes) + r.AllocObjects = int64(mp.active.allocs) + r.FreeObjects = int64(mp.active.frees) + if raceenabled { + racewriterangepc(unsafe.Pointer(&r.Stack0[0]), unsafe.Sizeof(r.Stack0), getcallerpc(), abi.FuncPCABIInternal(MemProfile)) + } + if msanenabled { + msanwrite(unsafe.Pointer(&r.Stack0[0]), unsafe.Sizeof(r.Stack0)) + } + if asanenabled { + asanwrite(unsafe.Pointer(&r.Stack0[0]), unsafe.Sizeof(r.Stack0)) + } + copy(r.Stack0[:], b.stk()) + for i := int(b.nstk); i < len(r.Stack0); i++ { + r.Stack0[i] = 0 + } +} + +func iterate_memprof(fn func(*bucket, uintptr, *uintptr, uintptr, uintptr, uintptr)) { + lock(&proflock) + for b := mbuckets; b != nil; b = b.allnext { + mp := b.mp() + fn(b, b.nstk, &b.stk()[0], b.size, mp.active.allocs, mp.active.frees) + } + unlock(&proflock) +} + +// BlockProfileRecord describes blocking events originated +// at a particular call sequence (stack trace). +type BlockProfileRecord struct { + Count int64 + Cycles int64 + StackRecord +} + +// BlockProfile returns n, the number of records in the current blocking profile. +// If len(p) >= n, BlockProfile copies the profile into p and returns n, true. +// If len(p) < n, BlockProfile does not change p and returns n, false. +// +// Most clients should use the runtime/pprof package or +// the testing package's -test.blockprofile flag instead +// of calling BlockProfile directly. +func BlockProfile(p []BlockProfileRecord) (n int, ok bool) { + lock(&proflock) + for b := bbuckets; b != nil; b = b.allnext { + n++ + } + if n <= len(p) { + ok = true + for b := bbuckets; b != nil; b = b.allnext { + bp := b.bp() + r := &p[0] + r.Count = int64(bp.count) + // Prevent callers from having to worry about division by zero errors. + // See discussion on http://golang.org/cl/299991. + if r.Count == 0 { + r.Count = 1 + } + r.Cycles = bp.cycles + if raceenabled { + racewriterangepc(unsafe.Pointer(&r.Stack0[0]), unsafe.Sizeof(r.Stack0), getcallerpc(), abi.FuncPCABIInternal(BlockProfile)) + } + if msanenabled { + msanwrite(unsafe.Pointer(&r.Stack0[0]), unsafe.Sizeof(r.Stack0)) + } + if asanenabled { + asanwrite(unsafe.Pointer(&r.Stack0[0]), unsafe.Sizeof(r.Stack0)) + } + i := copy(r.Stack0[:], b.stk()) + for ; i < len(r.Stack0); i++ { + r.Stack0[i] = 0 + } + p = p[1:] + } + } + unlock(&proflock) + return +} + +// MutexProfile returns n, the number of records in the current mutex profile. +// If len(p) >= n, MutexProfile copies the profile into p and returns n, true. +// Otherwise, MutexProfile does not change p, and returns n, false. +// +// Most clients should use the runtime/pprof package +// instead of calling MutexProfile directly. +func MutexProfile(p []BlockProfileRecord) (n int, ok bool) { + lock(&proflock) + for b := xbuckets; b != nil; b = b.allnext { + n++ + } + if n <= len(p) { + ok = true + for b := xbuckets; b != nil; b = b.allnext { + bp := b.bp() + r := &p[0] + r.Count = int64(bp.count) + r.Cycles = bp.cycles + i := copy(r.Stack0[:], b.stk()) + for ; i < len(r.Stack0); i++ { + r.Stack0[i] = 0 + } + p = p[1:] + } + } + unlock(&proflock) + return +} + +// ThreadCreateProfile returns n, the number of records in the thread creation profile. +// If len(p) >= n, ThreadCreateProfile copies the profile into p and returns n, true. +// If len(p) < n, ThreadCreateProfile does not change p and returns n, false. +// +// Most clients should use the runtime/pprof package instead +// of calling ThreadCreateProfile directly. +func ThreadCreateProfile(p []StackRecord) (n int, ok bool) { + first := (*m)(atomic.Loadp(unsafe.Pointer(&allm))) + for mp := first; mp != nil; mp = mp.alllink { + n++ + } + if n <= len(p) { + ok = true + i := 0 + for mp := first; mp != nil; mp = mp.alllink { + p[i].Stack0 = mp.createstack + i++ + } + } + return +} + +//go:linkname runtime_goroutineProfileWithLabels runtime/pprof.runtime_goroutineProfileWithLabels +func runtime_goroutineProfileWithLabels(p []StackRecord, labels []unsafe.Pointer) (n int, ok bool) { + return goroutineProfileWithLabels(p, labels) +} + +// labels may be nil. If labels is non-nil, it must have the same length as p. +func goroutineProfileWithLabels(p []StackRecord, labels []unsafe.Pointer) (n int, ok bool) { + if labels != nil && len(labels) != len(p) { + labels = nil + } + gp := getg() + + isOK := func(gp1 *g) bool { + // Checking isSystemGoroutine here makes GoroutineProfile + // consistent with both NumGoroutine and Stack. + return gp1 != gp && readgstatus(gp1) != _Gdead && !isSystemGoroutine(gp1, false) + } + + stopTheWorld("profile") + + // World is stopped, no locking required. + n = 1 + forEachGRace(func(gp1 *g) { + if isOK(gp1) { + n++ + } + }) + + if n <= len(p) { + ok = true + r, lbl := p, labels + + // Save current goroutine. + sp := getcallersp() + pc := getcallerpc() + systemstack(func() { + saveg(pc, sp, gp, &r[0]) + }) + r = r[1:] + + // If we have a place to put our goroutine labelmap, insert it there. + if labels != nil { + lbl[0] = gp.labels + lbl = lbl[1:] + } + + // Save other goroutines. + forEachGRace(func(gp1 *g) { + if !isOK(gp1) { + return + } + + if len(r) == 0 { + // Should be impossible, but better to return a + // truncated profile than to crash the entire process. + return + } + // saveg calls gentraceback, which may call cgo traceback functions. + // The world is stopped, so it cannot use cgocall (which will be + // blocked at exitsyscall). Do it on the system stack so it won't + // call into the schedular (see traceback.go:cgoContextPCs). + systemstack(func() { saveg(^uintptr(0), ^uintptr(0), gp1, &r[0]) }) + if labels != nil { + lbl[0] = gp1.labels + lbl = lbl[1:] + } + r = r[1:] + }) + } + + startTheWorld() + return n, ok +} + +// GoroutineProfile returns n, the number of records in the active goroutine stack profile. +// If len(p) >= n, GoroutineProfile copies the profile into p and returns n, true. +// If len(p) < n, GoroutineProfile does not change p and returns n, false. +// +// Most clients should use the runtime/pprof package instead +// of calling GoroutineProfile directly. +func GoroutineProfile(p []StackRecord) (n int, ok bool) { + + return goroutineProfileWithLabels(p, nil) +} + +func saveg(pc, sp uintptr, gp *g, r *StackRecord) { + n := gentraceback(pc, sp, 0, gp, 0, &r.Stack0[0], len(r.Stack0), nil, nil, 0) + if n < len(r.Stack0) { + r.Stack0[n] = 0 + } +} + +// Stack formats a stack trace of the calling goroutine into buf +// and returns the number of bytes written to buf. +// If all is true, Stack formats stack traces of all other goroutines +// into buf after the trace for the current goroutine. +func Stack(buf []byte, all bool) int { + if all { + stopTheWorld("stack trace") + } + + n := 0 + if len(buf) > 0 { + gp := getg() + sp := getcallersp() + pc := getcallerpc() + systemstack(func() { + g0 := getg() + // Force traceback=1 to override GOTRACEBACK setting, + // so that Stack's results are consistent. + // GOTRACEBACK is only about crash dumps. + g0.m.traceback = 1 + g0.writebuf = buf[0:0:len(buf)] + goroutineheader(gp) + traceback(pc, sp, 0, gp) + if all { + tracebackothers(gp) + } + g0.m.traceback = 0 + n = len(g0.writebuf) + g0.writebuf = nil + }) + } + + if all { + startTheWorld() + } + return n +} + +// Tracing of alloc/free/gc. + +var tracelock mutex + +func tracealloc(p unsafe.Pointer, size uintptr, typ *_type) { + lock(&tracelock) + gp := getg() + gp.m.traceback = 2 + if typ == nil { + print("tracealloc(", p, ", ", hex(size), ")\n") + } else { + print("tracealloc(", p, ", ", hex(size), ", ", typ.string(), ")\n") + } + if gp.m.curg == nil || gp == gp.m.curg { + goroutineheader(gp) + pc := getcallerpc() + sp := getcallersp() + systemstack(func() { + traceback(pc, sp, 0, gp) + }) + } else { + goroutineheader(gp.m.curg) + traceback(^uintptr(0), ^uintptr(0), 0, gp.m.curg) + } + print("\n") + gp.m.traceback = 0 + unlock(&tracelock) +} + +func tracefree(p unsafe.Pointer, size uintptr) { + lock(&tracelock) + gp := getg() + gp.m.traceback = 2 + print("tracefree(", p, ", ", hex(size), ")\n") + goroutineheader(gp) + pc := getcallerpc() + sp := getcallersp() + systemstack(func() { + traceback(pc, sp, 0, gp) + }) + print("\n") + gp.m.traceback = 0 + unlock(&tracelock) +} + +func tracegc() { + lock(&tracelock) + gp := getg() + gp.m.traceback = 2 + print("tracegc()\n") + // running on m->g0 stack; show all non-g0 goroutines + tracebackothers(gp) + print("end tracegc\n") + print("\n") + gp.m.traceback = 0 + unlock(&tracelock) +} |