diff options
Diffstat (limited to '')
-rw-r--r-- | test/chan/powser1.go | 741 |
1 files changed, 741 insertions, 0 deletions
diff --git a/test/chan/powser1.go b/test/chan/powser1.go new file mode 100644 index 0000000..e999dde --- /dev/null +++ b/test/chan/powser1.go @@ -0,0 +1,741 @@ +// run + +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Test concurrency primitives: power series. + +// Power series package +// A power series is a channel, along which flow rational +// coefficients. A denominator of zero signifies the end. +// Original code in Newsqueak by Doug McIlroy. +// See Squinting at Power Series by Doug McIlroy, +// https://swtch.com/~rsc/thread/squint.pdf + +package main + +import "os" + +type rat struct { + num, den int64 // numerator, denominator +} + +func (u rat) pr() { + if u.den == 1 { + print(u.num) + } else { + print(u.num, "/", u.den) + } + print(" ") +} + +func (u rat) eq(c rat) bool { + return u.num == c.num && u.den == c.den +} + +type dch struct { + req chan int + dat chan rat + nam int +} + +type dch2 [2]*dch + +var chnames string +var chnameserial int +var seqno int + +func mkdch() *dch { + c := chnameserial % len(chnames) + chnameserial++ + d := new(dch) + d.req = make(chan int) + d.dat = make(chan rat) + d.nam = c + return d +} + +func mkdch2() *dch2 { + d2 := new(dch2) + d2[0] = mkdch() + d2[1] = mkdch() + return d2 +} + +// split reads a single demand channel and replicates its +// output onto two, which may be read at different rates. +// A process is created at first demand for a rat and dies +// after the rat has been sent to both outputs. + +// When multiple generations of split exist, the newest +// will service requests on one channel, which is +// always renamed to be out[0]; the oldest will service +// requests on the other channel, out[1]. All generations but the +// newest hold queued data that has already been sent to +// out[0]. When data has finally been sent to out[1], +// a signal on the release-wait channel tells the next newer +// generation to begin servicing out[1]. + +func dosplit(in *dch, out *dch2, wait chan int) { + both := false // do not service both channels + + select { + case <-out[0].req: + + case <-wait: + both = true + select { + case <-out[0].req: + + case <-out[1].req: + out[0], out[1] = out[1], out[0] + } + } + + seqno++ + in.req <- seqno + release := make(chan int) + go dosplit(in, out, release) + dat := <-in.dat + out[0].dat <- dat + if !both { + <-wait + } + <-out[1].req + out[1].dat <- dat + release <- 0 +} + +func split(in *dch, out *dch2) { + release := make(chan int) + go dosplit(in, out, release) + release <- 0 +} + +func put(dat rat, out *dch) { + <-out.req + out.dat <- dat +} + +func get(in *dch) rat { + seqno++ + in.req <- seqno + return <-in.dat +} + +// Get one rat from each of n demand channels + +func getn(in []*dch) []rat { + n := len(in) + if n != 2 { + panic("bad n in getn") + } + req := new([2]chan int) + dat := new([2]chan rat) + out := make([]rat, 2) + var i int + var it rat + for i = 0; i < n; i++ { + req[i] = in[i].req + dat[i] = nil + } + for n = 2 * n; n > 0; n-- { + seqno++ + + select { + case req[0] <- seqno: + dat[0] = in[0].dat + req[0] = nil + case req[1] <- seqno: + dat[1] = in[1].dat + req[1] = nil + case it = <-dat[0]: + out[0] = it + dat[0] = nil + case it = <-dat[1]: + out[1] = it + dat[1] = nil + } + } + return out +} + +// Get one rat from each of 2 demand channels + +func get2(in0 *dch, in1 *dch) []rat { + return getn([]*dch{in0, in1}) +} + +func copy(in *dch, out *dch) { + for { + <-out.req + out.dat <- get(in) + } +} + +func repeat(dat rat, out *dch) { + for { + put(dat, out) + } +} + +type PS *dch // power series +type PS2 *[2]PS // pair of power series + +var Ones PS +var Twos PS + +func mkPS() *dch { + return mkdch() +} + +func mkPS2() *dch2 { + return mkdch2() +} + +// Conventions +// Upper-case for power series. +// Lower-case for rationals. +// Input variables: U,V,... +// Output variables: ...,Y,Z + +// Integer gcd; needed for rational arithmetic + +func gcd(u, v int64) int64 { + if u < 0 { + return gcd(-u, v) + } + if u == 0 { + return v + } + return gcd(v%u, u) +} + +// Make a rational from two ints and from one int + +func i2tor(u, v int64) rat { + g := gcd(u, v) + var r rat + if v > 0 { + r.num = u / g + r.den = v / g + } else { + r.num = -u / g + r.den = -v / g + } + return r +} + +func itor(u int64) rat { + return i2tor(u, 1) +} + +var zero rat +var one rat + +// End mark and end test + +var finis rat + +func end(u rat) int64 { + if u.den == 0 { + return 1 + } + return 0 +} + +// Operations on rationals + +func add(u, v rat) rat { + g := gcd(u.den, v.den) + return i2tor(u.num*(v.den/g)+v.num*(u.den/g), u.den*(v.den/g)) +} + +func mul(u, v rat) rat { + g1 := gcd(u.num, v.den) + g2 := gcd(u.den, v.num) + var r rat + r.num = (u.num / g1) * (v.num / g2) + r.den = (u.den / g2) * (v.den / g1) + return r +} + +func neg(u rat) rat { + return i2tor(-u.num, u.den) +} + +func sub(u, v rat) rat { + return add(u, neg(v)) +} + +func inv(u rat) rat { // invert a rat + if u.num == 0 { + panic("zero divide in inv") + } + return i2tor(u.den, u.num) +} + +// print eval in floating point of PS at x=c to n terms +func evaln(c rat, U PS, n int) { + xn := float64(1) + x := float64(c.num) / float64(c.den) + val := float64(0) + for i := 0; i < n; i++ { + u := get(U) + if end(u) != 0 { + break + } + val = val + x*float64(u.num)/float64(u.den) + xn = xn * x + } + print(val, "\n") +} + +// Print n terms of a power series +func printn(U PS, n int) { + done := false + for ; !done && n > 0; n-- { + u := get(U) + if end(u) != 0 { + done = true + } else { + u.pr() + } + } + print(("\n")) +} + +// Evaluate n terms of power series U at x=c +func eval(c rat, U PS, n int) rat { + if n == 0 { + return zero + } + y := get(U) + if end(y) != 0 { + return zero + } + return add(y, mul(c, eval(c, U, n-1))) +} + +// Power-series constructors return channels on which power +// series flow. They start an encapsulated generator that +// puts the terms of the series on the channel. + +// Make a pair of power series identical to a given power series + +func Split(U PS) *dch2 { + UU := mkdch2() + go split(U, UU) + return UU +} + +// Add two power series +func Add(U, V PS) PS { + Z := mkPS() + go func() { + var uv []rat + for { + <-Z.req + uv = get2(U, V) + switch end(uv[0]) + 2*end(uv[1]) { + case 0: + Z.dat <- add(uv[0], uv[1]) + case 1: + Z.dat <- uv[1] + copy(V, Z) + case 2: + Z.dat <- uv[0] + copy(U, Z) + case 3: + Z.dat <- finis + } + } + }() + return Z +} + +// Multiply a power series by a constant +func Cmul(c rat, U PS) PS { + Z := mkPS() + go func() { + done := false + for !done { + <-Z.req + u := get(U) + if end(u) != 0 { + done = true + } else { + Z.dat <- mul(c, u) + } + } + Z.dat <- finis + }() + return Z +} + +// Subtract + +func Sub(U, V PS) PS { + return Add(U, Cmul(neg(one), V)) +} + +// Multiply a power series by the monomial x^n + +func Monmul(U PS, n int) PS { + Z := mkPS() + go func() { + for ; n > 0; n-- { + put(zero, Z) + } + copy(U, Z) + }() + return Z +} + +// Multiply by x + +func Xmul(U PS) PS { + return Monmul(U, 1) +} + +func Rep(c rat) PS { + Z := mkPS() + go repeat(c, Z) + return Z +} + +// Monomial c*x^n + +func Mon(c rat, n int) PS { + Z := mkPS() + go func() { + if c.num != 0 { + for ; n > 0; n = n - 1 { + put(zero, Z) + } + put(c, Z) + } + put(finis, Z) + }() + return Z +} + +func Shift(c rat, U PS) PS { + Z := mkPS() + go func() { + put(c, Z) + copy(U, Z) + }() + return Z +} + +// simple pole at 1: 1/(1-x) = 1 1 1 1 1 ... + +// Convert array of coefficients, constant term first +// to a (finite) power series + +/* +func Poly(a []rat) PS { + Z:=mkPS() + begin func(a []rat, Z PS) { + j:=0 + done:=0 + for j=len(a); !done&&j>0; j=j-1) + if(a[j-1].num!=0) done=1 + i:=0 + for(; i<j; i=i+1) put(a[i],Z) + put(finis,Z) + }() + return Z +} +*/ + +// Multiply. The algorithm is +// let U = u + x*UU +// let V = v + x*VV +// then UV = u*v + x*(u*VV+v*UU) + x*x*UU*VV + +func Mul(U, V PS) PS { + Z := mkPS() + go func() { + <-Z.req + uv := get2(U, V) + if end(uv[0]) != 0 || end(uv[1]) != 0 { + Z.dat <- finis + } else { + Z.dat <- mul(uv[0], uv[1]) + UU := Split(U) + VV := Split(V) + W := Add(Cmul(uv[0], VV[0]), Cmul(uv[1], UU[0])) + <-Z.req + Z.dat <- get(W) + copy(Add(W, Mul(UU[1], VV[1])), Z) + } + }() + return Z +} + +// Differentiate + +func Diff(U PS) PS { + Z := mkPS() + go func() { + <-Z.req + u := get(U) + if end(u) == 0 { + done := false + for i := 1; !done; i++ { + u = get(U) + if end(u) != 0 { + done = true + } else { + Z.dat <- mul(itor(int64(i)), u) + <-Z.req + } + } + } + Z.dat <- finis + }() + return Z +} + +// Integrate, with const of integration +func Integ(c rat, U PS) PS { + Z := mkPS() + go func() { + put(c, Z) + done := false + for i := 1; !done; i++ { + <-Z.req + u := get(U) + if end(u) != 0 { + done = true + } + Z.dat <- mul(i2tor(1, int64(i)), u) + } + Z.dat <- finis + }() + return Z +} + +// Binomial theorem (1+x)^c + +func Binom(c rat) PS { + Z := mkPS() + go func() { + n := 1 + t := itor(1) + for c.num != 0 { + put(t, Z) + t = mul(mul(t, c), i2tor(1, int64(n))) + c = sub(c, one) + n++ + } + put(finis, Z) + }() + return Z +} + +// Reciprocal of a power series +// let U = u + x*UU +// let Z = z + x*ZZ +// (u+x*UU)*(z+x*ZZ) = 1 +// z = 1/u +// u*ZZ + z*UU +x*UU*ZZ = 0 +// ZZ = -UU*(z+x*ZZ)/u + +func Recip(U PS) PS { + Z := mkPS() + go func() { + ZZ := mkPS2() + <-Z.req + z := inv(get(U)) + Z.dat <- z + split(Mul(Cmul(neg(z), U), Shift(z, ZZ[0])), ZZ) + copy(ZZ[1], Z) + }() + return Z +} + +// Exponential of a power series with constant term 0 +// (nonzero constant term would make nonrational coefficients) +// bug: the constant term is simply ignored +// Z = exp(U) +// DZ = Z*DU +// integrate to get Z + +func Exp(U PS) PS { + ZZ := mkPS2() + split(Integ(one, Mul(ZZ[0], Diff(U))), ZZ) + return ZZ[1] +} + +// Substitute V for x in U, where the leading term of V is zero +// let U = u + x*UU +// let V = v + x*VV +// then S(U,V) = u + VV*S(V,UU) +// bug: a nonzero constant term is ignored + +func Subst(U, V PS) PS { + Z := mkPS() + go func() { + VV := Split(V) + <-Z.req + u := get(U) + Z.dat <- u + if end(u) == 0 { + if end(get(VV[0])) != 0 { + put(finis, Z) + } else { + copy(Mul(VV[0], Subst(U, VV[1])), Z) + } + } + }() + return Z +} + +// Monomial Substitution: U(c x^n) +// Each Ui is multiplied by c^i and followed by n-1 zeros + +func MonSubst(U PS, c0 rat, n int) PS { + Z := mkPS() + go func() { + c := one + for { + <-Z.req + u := get(U) + Z.dat <- mul(u, c) + c = mul(c, c0) + if end(u) != 0 { + Z.dat <- finis + break + } + for i := 1; i < n; i++ { + <-Z.req + Z.dat <- zero + } + } + }() + return Z +} + +func Init() { + chnameserial = -1 + seqno = 0 + chnames = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" + zero = itor(0) + one = itor(1) + finis = i2tor(1, 0) + Ones = Rep(one) + Twos = Rep(itor(2)) +} + +func check(U PS, c rat, count int, str string) { + for i := 0; i < count; i++ { + r := get(U) + if !r.eq(c) { + print("got: ") + r.pr() + print("should get ") + c.pr() + print("\n") + panic(str) + } + } +} + +const N = 10 + +func checka(U PS, a []rat, str string) { + for i := 0; i < N; i++ { + check(U, a[i], 1, str) + } +} + +func main() { + Init() + if len(os.Args) > 1 { // print + print("Ones: ") + printn(Ones, 10) + print("Twos: ") + printn(Twos, 10) + print("Add: ") + printn(Add(Ones, Twos), 10) + print("Diff: ") + printn(Diff(Ones), 10) + print("Integ: ") + printn(Integ(zero, Ones), 10) + print("CMul: ") + printn(Cmul(neg(one), Ones), 10) + print("Sub: ") + printn(Sub(Ones, Twos), 10) + print("Mul: ") + printn(Mul(Ones, Ones), 10) + print("Exp: ") + printn(Exp(Ones), 15) + print("MonSubst: ") + printn(MonSubst(Ones, neg(one), 2), 10) + print("ATan: ") + printn(Integ(zero, MonSubst(Ones, neg(one), 2)), 10) + } else { // test + check(Ones, one, 5, "Ones") + check(Add(Ones, Ones), itor(2), 0, "Add Ones Ones") // 1 1 1 1 1 + check(Add(Ones, Twos), itor(3), 0, "Add Ones Twos") // 3 3 3 3 3 + a := make([]rat, N) + d := Diff(Ones) + for i := 0; i < N; i++ { + a[i] = itor(int64(i + 1)) + } + checka(d, a, "Diff") // 1 2 3 4 5 + in := Integ(zero, Ones) + a[0] = zero // integration constant + for i := 1; i < N; i++ { + a[i] = i2tor(1, int64(i)) + } + checka(in, a, "Integ") // 0 1 1/2 1/3 1/4 1/5 + check(Cmul(neg(one), Twos), itor(-2), 10, "CMul") // -1 -1 -1 -1 -1 + check(Sub(Ones, Twos), itor(-1), 0, "Sub Ones Twos") // -1 -1 -1 -1 -1 + m := Mul(Ones, Ones) + for i := 0; i < N; i++ { + a[i] = itor(int64(i + 1)) + } + checka(m, a, "Mul") // 1 2 3 4 5 + e := Exp(Ones) + a[0] = itor(1) + a[1] = itor(1) + a[2] = i2tor(3, 2) + a[3] = i2tor(13, 6) + a[4] = i2tor(73, 24) + a[5] = i2tor(167, 40) + a[6] = i2tor(4051, 720) + a[7] = i2tor(37633, 5040) + a[8] = i2tor(43817, 4480) + a[9] = i2tor(4596553, 362880) + checka(e, a, "Exp") // 1 1 3/2 13/6 73/24 + at := Integ(zero, MonSubst(Ones, neg(one), 2)) + for c, i := 1, 0; i < N; i++ { + if i%2 == 0 { + a[i] = zero + } else { + a[i] = i2tor(int64(c), int64(i)) + c *= -1 + } + } + checka(at, a, "ATan") // 0 -1 0 -1/3 0 -1/5 + /* + t := Revert(Integ(zero, MonSubst(Ones, neg(one), 2))) + a[0] = zero + a[1] = itor(1) + a[2] = zero + a[3] = i2tor(1,3) + a[4] = zero + a[5] = i2tor(2,15) + a[6] = zero + a[7] = i2tor(17,315) + a[8] = zero + a[9] = i2tor(62,2835) + checka(t, a, "Tan") // 0 1 0 1/3 0 2/15 + */ + } +} |