From 47ab3d4a42e9ab51c465c4322d2ec233f6324e6b Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sun, 28 Apr 2024 15:16:40 +0200 Subject: Adding upstream version 1.18.10. Signed-off-by: Daniel Baumann --- doc/go_mem.html | 568 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 568 insertions(+) create mode 100644 doc/go_mem.html (limited to 'doc/go_mem.html') diff --git a/doc/go_mem.html b/doc/go_mem.html new file mode 100644 index 0000000..5f1eb68 --- /dev/null +++ b/doc/go_mem.html @@ -0,0 +1,568 @@ + + + + +

Introduction

+ +

+The Go memory model specifies the conditions under which +reads of a variable in one goroutine can be guaranteed to +observe values produced by writes to the same variable in a different goroutine. +

+ + +

Advice

+ +

+Programs that modify data being simultaneously accessed by multiple goroutines +must serialize such access. +

+ +

+To serialize access, protect the data with channel operations or other synchronization primitives +such as those in the sync +and sync/atomic packages. +

+ +

+If you must read the rest of this document to understand the behavior of your program, +you are being too clever. +

+ +

+Don't be clever. +

+ +

Happens Before

+ +

+Within a single goroutine, reads and writes must behave +as if they executed in the order specified by the program. +That is, compilers and processors may reorder the reads and writes +executed within a single goroutine only when the reordering +does not change the behavior within that goroutine +as defined by the language specification. +Because of this reordering, the execution order observed +by one goroutine may differ from the order perceived +by another. For example, if one goroutine +executes a = 1; b = 2;, another might observe +the updated value of b before the updated value of a. +

+ +

+To specify the requirements of reads and writes, we define +happens before, a partial order on the execution +of memory operations in a Go program. If event e1 happens +before event e2, then we say that e2 happens after e1. +Also, if e1 does not happen before e2 and does not happen +after e2, then we say that e1 and e2 happen concurrently. +

+ +

+Within a single goroutine, the happens-before order is the +order expressed by the program. +

+ +

+A read r of a variable v is allowed to observe a write w to v +if both of the following hold: +

+ +
    +
  1. r does not happen before w.
  2. +
  3. There is no other write w' to v that happens + after w but before r.
  4. +
+ +

+To guarantee that a read r of a variable v observes a +particular write w to v, ensure that w is the only +write r is allowed to observe. +That is, r is guaranteed to observe w if both of the following hold: +

+ +
    +
  1. w happens before r.
  2. +
  3. Any other write to the shared variable v +either happens before w or after r.
  4. +
+ +

+This pair of conditions is stronger than the first pair; +it requires that there are no other writes happening +concurrently with w or r. +

+ +

+Within a single goroutine, +there is no concurrency, so the two definitions are equivalent: +a read r observes the value written by the most recent write w to v. +When multiple goroutines access a shared variable v, +they must use synchronization events to establish +happens-before conditions that ensure reads observe the +desired writes. +

+ +

+The initialization of variable v with the zero value +for v's type behaves as a write in the memory model. +

+ +

+Reads and writes of values larger than a single machine word +behave as multiple machine-word-sized operations in an +unspecified order. +

+ +

Synchronization

+ +

Initialization

+ +

+Program initialization runs in a single goroutine, +but that goroutine may create other goroutines, +which run concurrently. +

+ +

+If a package p imports package q, the completion of +q's init functions happens before the start of any of p's. +

+ +

+The start of the function main.main happens after +all init functions have finished. +

+ +

Goroutine creation

+ +

+The go statement that starts a new goroutine +happens before the goroutine's execution begins. +

+ +

+For example, in this program: +

+ +
+var a string
+
+func f() {
+	print(a)
+}
+
+func hello() {
+	a = "hello, world"
+	go f()
+}
+
+ +

+calling hello will print "hello, world" +at some point in the future (perhaps after hello has returned). +

+ +

Goroutine destruction

+ +

+The exit of a goroutine is not guaranteed to happen before +any event in the program. For example, in this program: +

+ +
+var a string
+
+func hello() {
+	go func() { a = "hello" }()
+	print(a)
+}
+
+ +

+the assignment to a is not followed by +any synchronization event, so it is not guaranteed to be +observed by any other goroutine. +In fact, an aggressive compiler might delete the entire go statement. +

+ +

+If the effects of a goroutine must be observed by another goroutine, +use a synchronization mechanism such as a lock or channel +communication to establish a relative ordering. +

+ +

Channel communication

+ +

+Channel communication is the main method of synchronization +between goroutines. Each send on a particular channel +is matched to a corresponding receive from that channel, +usually in a different goroutine. +

+ +

+A send on a channel happens before the corresponding +receive from that channel completes. +

+ +

+This program: +

+ +
+var c = make(chan int, 10)
+var a string
+
+func f() {
+	a = "hello, world"
+	c <- 0
+}
+
+func main() {
+	go f()
+	<-c
+	print(a)
+}
+
+ +

+is guaranteed to print "hello, world". The write to a +happens before the send on c, which happens before +the corresponding receive on c completes, which happens before +the print. +

+ +

+The closing of a channel happens before a receive that returns a zero value +because the channel is closed. +

+ +

+In the previous example, replacing +c <- 0 with close(c) +yields a program with the same guaranteed behavior. +

+ +

+A receive from an unbuffered channel happens before +the send on that channel completes. +

+ +

+This program (as above, but with the send and receive statements swapped and +using an unbuffered channel): +

+ +
+var c = make(chan int)
+var a string
+
+func f() {
+	a = "hello, world"
+	<-c
+}
+
+func main() {
+	go f()
+	c <- 0
+	print(a)
+}
+
+ +

+is also guaranteed to print "hello, world". The write to a +happens before the receive on c, which happens before +the corresponding send on c completes, which happens +before the print. +

+ +

+If the channel were buffered (e.g., c = make(chan int, 1)) +then the program would not be guaranteed to print +"hello, world". (It might print the empty string, +crash, or do something else.) +

+ +

+The kth receive on a channel with capacity C happens before the k+Cth send from that channel completes. +

+ +

+This rule generalizes the previous rule to buffered channels. +It allows a counting semaphore to be modeled by a buffered channel: +the number of items in the channel corresponds to the number of active uses, +the capacity of the channel corresponds to the maximum number of simultaneous uses, +sending an item acquires the semaphore, and receiving an item releases +the semaphore. +This is a common idiom for limiting concurrency. +

+ +

+This program starts a goroutine for every entry in the work list, but the +goroutines coordinate using the limit channel to ensure +that at most three are running work functions at a time. +

+ +
+var limit = make(chan int, 3)
+
+func main() {
+	for _, w := range work {
+		go func(w func()) {
+			limit <- 1
+			w()
+			<-limit
+		}(w)
+	}
+	select{}
+}
+
+ +

Locks

+ +

+The sync package implements two lock data types, +sync.Mutex and sync.RWMutex. +

+ +

+For any sync.Mutex or sync.RWMutex variable l and n < m, +call n of l.Unlock() happens before call m of l.Lock() returns. +

+ +

+This program: +

+ +
+var l sync.Mutex
+var a string
+
+func f() {
+	a = "hello, world"
+	l.Unlock()
+}
+
+func main() {
+	l.Lock()
+	go f()
+	l.Lock()
+	print(a)
+}
+
+ +

+is guaranteed to print "hello, world". +The first call to l.Unlock() (in f) happens +before the second call to l.Lock() (in main) returns, +which happens before the print. +

+ +

+For any call to l.RLock on a sync.RWMutex variable l, +there is an n such that the l.RLock happens (returns) after call n to +l.Unlock and the matching l.RUnlock happens +before call n+1 to l.Lock. +

+ +

Once

+ +

+The sync package provides a safe mechanism for +initialization in the presence of multiple goroutines +through the use of the Once type. +Multiple threads can execute once.Do(f) for a particular f, +but only one will run f(), and the other calls block +until f() has returned. +

+ +

+A single call of f() from once.Do(f) happens (returns) before any call of once.Do(f) returns. +

+ +

+In this program: +

+ +
+var a string
+var once sync.Once
+
+func setup() {
+	a = "hello, world"
+}
+
+func doprint() {
+	once.Do(setup)
+	print(a)
+}
+
+func twoprint() {
+	go doprint()
+	go doprint()
+}
+
+ +

+calling twoprint will call setup exactly +once. +The setup function will complete before either call +of print. +The result will be that "hello, world" will be printed +twice. +

+ +

Incorrect synchronization

+ +

+Note that a read r may observe the value written by a write w +that happens concurrently with r. +Even if this occurs, it does not imply that reads happening after r +will observe writes that happened before w. +

+ +

+In this program: +

+ +
+var a, b int
+
+func f() {
+	a = 1
+	b = 2
+}
+
+func g() {
+	print(b)
+	print(a)
+}
+
+func main() {
+	go f()
+	g()
+}
+
+ +

+it can happen that g prints 2 and then 0. +

+ +

+This fact invalidates a few common idioms. +

+ +

+Double-checked locking is an attempt to avoid the overhead of synchronization. +For example, the twoprint program might be +incorrectly written as: +

+ +
+var a string
+var done bool
+
+func setup() {
+	a = "hello, world"
+	done = true
+}
+
+func doprint() {
+	if !done {
+		once.Do(setup)
+	}
+	print(a)
+}
+
+func twoprint() {
+	go doprint()
+	go doprint()
+}
+
+ +

+but there is no guarantee that, in doprint, observing the write to done +implies observing the write to a. This +version can (incorrectly) print an empty string +instead of "hello, world". +

+ +

+Another incorrect idiom is busy waiting for a value, as in: +

+ +
+var a string
+var done bool
+
+func setup() {
+	a = "hello, world"
+	done = true
+}
+
+func main() {
+	go setup()
+	for !done {
+	}
+	print(a)
+}
+
+ +

+As before, there is no guarantee that, in main, +observing the write to done +implies observing the write to a, so this program could +print an empty string too. +Worse, there is no guarantee that the write to done will ever +be observed by main, since there are no synchronization +events between the two threads. The loop in main is not +guaranteed to finish. +

+ +

+There are subtler variants on this theme, such as this program. +

+ +
+type T struct {
+	msg string
+}
+
+var g *T
+
+func setup() {
+	t := new(T)
+	t.msg = "hello, world"
+	g = t
+}
+
+func main() {
+	go setup()
+	for g == nil {
+	}
+	print(g.msg)
+}
+
+ +

+Even if main observes g != nil and exits its loop, +there is no guarantee that it will observe the initialized +value for g.msg. +

+ +

+In all these examples, the solution is the same: +use explicit synchronization. +

-- cgit v1.2.3