// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // // The inlining facility makes 2 passes: first caninl determines which // functions are suitable for inlining, and for those that are it // saves a copy of the body. Then InlineCalls walks each function body to // expand calls to inlinable functions. // // The Debug.l flag controls the aggressiveness. Note that main() swaps level 0 and 1, // making 1 the default and -l disable. Additional levels (beyond -l) may be buggy and // are not supported. // 0: disabled // 1: 80-nodes leaf functions, oneliners, panic, lazy typechecking (default) // 2: (unassigned) // 3: (unassigned) // 4: allow non-leaf functions // // At some point this may get another default and become switch-offable with -N. // // The -d typcheckinl flag enables early typechecking of all imported bodies, // which is useful to flush out bugs. // // The Debug.m flag enables diagnostic output. a single -m is useful for verifying // which calls get inlined or not, more is for debugging, and may go away at any point. package inline import ( "fmt" "go/constant" "strings" "cmd/compile/internal/base" "cmd/compile/internal/ir" "cmd/compile/internal/logopt" "cmd/compile/internal/typecheck" "cmd/compile/internal/types" "cmd/internal/obj" "cmd/internal/src" ) // Inlining budget parameters, gathered in one place const ( inlineMaxBudget = 80 inlineExtraAppendCost = 0 // default is to inline if there's at most one call. -l=4 overrides this by using 1 instead. inlineExtraCallCost = 57 // 57 was benchmarked to provided most benefit with no bad surprises; see https://github.com/golang/go/issues/19348#issuecomment-439370742 inlineExtraPanicCost = 1 // do not penalize inlining panics. inlineExtraThrowCost = inlineMaxBudget // with current (2018-05/1.11) code, inlining runtime.throw does not help. inlineBigFunctionNodes = 5000 // Functions with this many nodes are considered "big". inlineBigFunctionMaxCost = 20 // Max cost of inlinee when inlining into a "big" function. ) // InlinePackage finds functions that can be inlined and clones them before walk expands them. func InlinePackage() { ir.VisitFuncsBottomUp(typecheck.Target.Decls, func(list []*ir.Func, recursive bool) { numfns := numNonClosures(list) for _, n := range list { if !recursive || numfns > 1 { // We allow inlining if there is no // recursion, or the recursion cycle is // across more than one function. CanInline(n) } else { if base.Flag.LowerM > 1 { fmt.Printf("%v: cannot inline %v: recursive\n", ir.Line(n), n.Nname) } } InlineCalls(n) } }) } // CanInline determines whether fn is inlineable. // If so, CanInline saves copies of fn.Body and fn.Dcl in fn.Inl. // fn and fn.Body will already have been typechecked. func CanInline(fn *ir.Func) { if fn.Nname == nil { base.Fatalf("CanInline no nname %+v", fn) } var reason string // reason, if any, that the function was not inlined if base.Flag.LowerM > 1 || logopt.Enabled() { defer func() { if reason != "" { if base.Flag.LowerM > 1 { fmt.Printf("%v: cannot inline %v: %s\n", ir.Line(fn), fn.Nname, reason) } if logopt.Enabled() { logopt.LogOpt(fn.Pos(), "cannotInlineFunction", "inline", ir.FuncName(fn), reason) } } }() } // If marked "go:noinline", don't inline if fn.Pragma&ir.Noinline != 0 { reason = "marked go:noinline" return } // If marked "go:norace" and -race compilation, don't inline. if base.Flag.Race && fn.Pragma&ir.Norace != 0 { reason = "marked go:norace with -race compilation" return } // If marked "go:nocheckptr" and -d checkptr compilation, don't inline. if base.Debug.Checkptr != 0 && fn.Pragma&ir.NoCheckPtr != 0 { reason = "marked go:nocheckptr" return } // If marked "go:cgo_unsafe_args", don't inline, since the // function makes assumptions about its argument frame layout. if fn.Pragma&ir.CgoUnsafeArgs != 0 { reason = "marked go:cgo_unsafe_args" return } // If marked as "go:uintptrescapes", don't inline, since the // escape information is lost during inlining. if fn.Pragma&ir.UintptrEscapes != 0 { reason = "marked as having an escaping uintptr argument" return } // The nowritebarrierrec checker currently works at function // granularity, so inlining yeswritebarrierrec functions can // confuse it (#22342). As a workaround, disallow inlining // them for now. if fn.Pragma&ir.Yeswritebarrierrec != 0 { reason = "marked go:yeswritebarrierrec" return } // If fn has no body (is defined outside of Go), cannot inline it. if len(fn.Body) == 0 { reason = "no function body" return } if fn.Typecheck() == 0 { base.Fatalf("CanInline on non-typechecked function %v", fn) } n := fn.Nname if n.Func.InlinabilityChecked() { return } defer n.Func.SetInlinabilityChecked(true) cc := int32(inlineExtraCallCost) if base.Flag.LowerL == 4 { cc = 1 // this appears to yield better performance than 0. } // At this point in the game the function we're looking at may // have "stale" autos, vars that still appear in the Dcl list, but // which no longer have any uses in the function body (due to // elimination by deadcode). We'd like to exclude these dead vars // when creating the "Inline.Dcl" field below; to accomplish this, // the hairyVisitor below builds up a map of used/referenced // locals, and we use this map to produce a pruned Inline.Dcl // list. See issue 25249 for more context. visitor := hairyVisitor{ budget: inlineMaxBudget, extraCallCost: cc, } if visitor.tooHairy(fn) { reason = visitor.reason return } n.Func.Inl = &ir.Inline{ Cost: inlineMaxBudget - visitor.budget, Dcl: pruneUnusedAutos(n.Defn.(*ir.Func).Dcl, &visitor), Body: inlcopylist(fn.Body), CanDelayResults: canDelayResults(fn), } if base.Flag.LowerM > 1 { fmt.Printf("%v: can inline %v with cost %d as: %v { %v }\n", ir.Line(fn), n, inlineMaxBudget-visitor.budget, fn.Type(), ir.Nodes(n.Func.Inl.Body)) } else if base.Flag.LowerM != 0 { fmt.Printf("%v: can inline %v\n", ir.Line(fn), n) } if logopt.Enabled() { logopt.LogOpt(fn.Pos(), "canInlineFunction", "inline", ir.FuncName(fn), fmt.Sprintf("cost: %d", inlineMaxBudget-visitor.budget)) } } // canDelayResults reports whether inlined calls to fn can delay // declaring the result parameter until the "return" statement. func canDelayResults(fn *ir.Func) bool { // We can delay declaring+initializing result parameters if: // (1) there's exactly one "return" statement in the inlined function; // (2) it's not an empty return statement (#44355); and // (3) the result parameters aren't named. nreturns := 0 ir.VisitList(fn.Body, func(n ir.Node) { if n, ok := n.(*ir.ReturnStmt); ok { nreturns++ if len(n.Results) == 0 { nreturns++ // empty return statement (case 2) } } }) if nreturns != 1 { return false // not exactly one return statement (case 1) } // temporaries for return values. for _, param := range fn.Type().Results().FieldSlice() { if sym := types.OrigSym(param.Sym); sym != nil && !sym.IsBlank() { return false // found a named result parameter (case 3) } } return true } // hairyVisitor visits a function body to determine its inlining // hairiness and whether or not it can be inlined. type hairyVisitor struct { budget int32 reason string extraCallCost int32 usedLocals ir.NameSet do func(ir.Node) bool } func (v *hairyVisitor) tooHairy(fn *ir.Func) bool { v.do = v.doNode // cache closure if ir.DoChildren(fn, v.do) { return true } if v.budget < 0 { v.reason = fmt.Sprintf("function too complex: cost %d exceeds budget %d", inlineMaxBudget-v.budget, inlineMaxBudget) return true } return false } func (v *hairyVisitor) doNode(n ir.Node) bool { if n == nil { return false } switch n.Op() { // Call is okay if inlinable and we have the budget for the body. case ir.OCALLFUNC: n := n.(*ir.CallExpr) // Functions that call runtime.getcaller{pc,sp} can not be inlined // because getcaller{pc,sp} expect a pointer to the caller's first argument. // // runtime.throw is a "cheap call" like panic in normal code. if n.X.Op() == ir.ONAME { name := n.X.(*ir.Name) if name.Class == ir.PFUNC && types.IsRuntimePkg(name.Sym().Pkg) { fn := name.Sym().Name if fn == "getcallerpc" || fn == "getcallersp" { v.reason = "call to " + fn return true } if fn == "throw" { v.budget -= inlineExtraThrowCost break } } } if n.X.Op() == ir.OMETHEXPR { if meth := ir.MethodExprName(n.X); meth != nil { if fn := meth.Func; fn != nil { s := fn.Sym() var cheap bool if types.IsRuntimePkg(s.Pkg) && s.Name == "heapBits.nextArena" { // Special case: explicitly allow mid-stack inlining of // runtime.heapBits.next even though it calls slow-path // runtime.heapBits.nextArena. cheap = true } // Special case: on architectures that can do unaligned loads, // explicitly mark encoding/binary methods as cheap, // because in practice they are, even though our inlining // budgeting system does not see that. See issue 42958. if base.Ctxt.Arch.CanMergeLoads && s.Pkg.Path == "encoding/binary" { switch s.Name { case "littleEndian.Uint64", "littleEndian.Uint32", "littleEndian.Uint16", "bigEndian.Uint64", "bigEndian.Uint32", "bigEndian.Uint16", "littleEndian.PutUint64", "littleEndian.PutUint32", "littleEndian.PutUint16", "bigEndian.PutUint64", "bigEndian.PutUint32", "bigEndian.PutUint16": cheap = true } } if cheap { break // treat like any other node, that is, cost of 1 } } } } if ir.IsIntrinsicCall(n) { // Treat like any other node. break } if fn := inlCallee(n.X); fn != nil && typecheck.HaveInlineBody(fn) { v.budget -= fn.Inl.Cost break } // Call cost for non-leaf inlining. v.budget -= v.extraCallCost case ir.OCALLMETH: base.FatalfAt(n.Pos(), "OCALLMETH missed by typecheck") // Things that are too hairy, irrespective of the budget case ir.OCALL, ir.OCALLINTER: // Call cost for non-leaf inlining. v.budget -= v.extraCallCost case ir.OPANIC: n := n.(*ir.UnaryExpr) if n.X.Op() == ir.OCONVIFACE && n.X.(*ir.ConvExpr).Implicit() { // Hack to keep reflect.flag.mustBe inlinable for TestIntendedInlining. // Before CL 284412, these conversions were introduced later in the // compiler, so they didn't count against inlining budget. v.budget++ } v.budget -= inlineExtraPanicCost case ir.ORECOVER: // recover matches the argument frame pointer to find // the right panic value, so it needs an argument frame. v.reason = "call to recover" return true case ir.OCLOSURE: if base.Debug.InlFuncsWithClosures == 0 { v.reason = "not inlining functions with closures" return true } // TODO(danscales): Maybe make budget proportional to number of closure // variables, e.g.: //v.budget -= int32(len(n.(*ir.ClosureExpr).Func.ClosureVars) * 3) v.budget -= 15 // Scan body of closure (which DoChildren doesn't automatically // do) to check for disallowed ops in the body and include the // body in the budget. if doList(n.(*ir.ClosureExpr).Func.Body, v.do) { return true } case ir.OSELECT, ir.OGO, ir.ODEFER, ir.ODCLTYPE, // can't print yet ir.OTAILCALL: v.reason = "unhandled op " + n.Op().String() return true case ir.OAPPEND: v.budget -= inlineExtraAppendCost case ir.ODEREF: // *(*X)(unsafe.Pointer(&x)) is low-cost n := n.(*ir.StarExpr) ptr := n.X for ptr.Op() == ir.OCONVNOP { ptr = ptr.(*ir.ConvExpr).X } if ptr.Op() == ir.OADDR { v.budget += 1 // undo half of default cost of ir.ODEREF+ir.OADDR } case ir.OCONVNOP: // This doesn't produce code, but the children might. v.budget++ // undo default cost case ir.ODCLCONST, ir.OFALL: // These nodes don't produce code; omit from inlining budget. return false case ir.OIF: n := n.(*ir.IfStmt) if ir.IsConst(n.Cond, constant.Bool) { // This if and the condition cost nothing. if doList(n.Init(), v.do) { return true } if ir.BoolVal(n.Cond) { return doList(n.Body, v.do) } else { return doList(n.Else, v.do) } } case ir.ONAME: n := n.(*ir.Name) if n.Class == ir.PAUTO { v.usedLocals.Add(n) } case ir.OBLOCK: // The only OBLOCK we should see at this point is an empty one. // In any event, let the visitList(n.List()) below take care of the statements, // and don't charge for the OBLOCK itself. The ++ undoes the -- below. v.budget++ case ir.OMETHVALUE, ir.OSLICELIT: v.budget-- // Hack for toolstash -cmp. case ir.OMETHEXPR: v.budget++ // Hack for toolstash -cmp. } v.budget-- // When debugging, don't stop early, to get full cost of inlining this function if v.budget < 0 && base.Flag.LowerM < 2 && !logopt.Enabled() { v.reason = "too expensive" return true } return ir.DoChildren(n, v.do) } func isBigFunc(fn *ir.Func) bool { budget := inlineBigFunctionNodes return ir.Any(fn, func(n ir.Node) bool { budget-- return budget <= 0 }) } // inlcopylist (together with inlcopy) recursively copies a list of nodes, except // that it keeps the same ONAME, OTYPE, and OLITERAL nodes. It is used for copying // the body and dcls of an inlineable function. func inlcopylist(ll []ir.Node) []ir.Node { s := make([]ir.Node, len(ll)) for i, n := range ll { s[i] = inlcopy(n) } return s } // inlcopy is like DeepCopy(), but does extra work to copy closures. func inlcopy(n ir.Node) ir.Node { var edit func(ir.Node) ir.Node edit = func(x ir.Node) ir.Node { switch x.Op() { case ir.ONAME, ir.OTYPE, ir.OLITERAL, ir.ONIL: return x } m := ir.Copy(x) ir.EditChildren(m, edit) if x.Op() == ir.OCLOSURE { x := x.(*ir.ClosureExpr) // Need to save/duplicate x.Func.Nname, // x.Func.Nname.Ntype, x.Func.Dcl, x.Func.ClosureVars, and // x.Func.Body for iexport and local inlining. oldfn := x.Func newfn := ir.NewFunc(oldfn.Pos()) m.(*ir.ClosureExpr).Func = newfn newfn.Nname = ir.NewNameAt(oldfn.Nname.Pos(), oldfn.Nname.Sym()) // XXX OK to share fn.Type() ?? newfn.Nname.SetType(oldfn.Nname.Type()) // Ntype can be nil for -G=3 mode. if oldfn.Nname.Ntype != nil { newfn.Nname.Ntype = inlcopy(oldfn.Nname.Ntype).(ir.Ntype) } newfn.Body = inlcopylist(oldfn.Body) // Make shallow copy of the Dcl and ClosureVar slices newfn.Dcl = append([]*ir.Name(nil), oldfn.Dcl...) newfn.ClosureVars = append([]*ir.Name(nil), oldfn.ClosureVars...) } return m } return edit(n) } // InlineCalls/inlnode walks fn's statements and expressions and substitutes any // calls made to inlineable functions. This is the external entry point. func InlineCalls(fn *ir.Func) { savefn := ir.CurFunc ir.CurFunc = fn maxCost := int32(inlineMaxBudget) if isBigFunc(fn) { maxCost = inlineBigFunctionMaxCost } // Map to keep track of functions that have been inlined at a particular // call site, in order to stop inlining when we reach the beginning of a // recursion cycle again. We don't inline immediately recursive functions, // but allow inlining if there is a recursion cycle of many functions. // Most likely, the inlining will stop before we even hit the beginning of // the cycle again, but the map catches the unusual case. inlMap := make(map[*ir.Func]bool) var edit func(ir.Node) ir.Node edit = func(n ir.Node) ir.Node { return inlnode(n, maxCost, inlMap, edit) } ir.EditChildren(fn, edit) ir.CurFunc = savefn } // inlnode recurses over the tree to find inlineable calls, which will // be turned into OINLCALLs by mkinlcall. When the recursion comes // back up will examine left, right, list, rlist, ninit, ntest, nincr, // nbody and nelse and use one of the 4 inlconv/glue functions above // to turn the OINLCALL into an expression, a statement, or patch it // in to this nodes list or rlist as appropriate. // NOTE it makes no sense to pass the glue functions down the // recursion to the level where the OINLCALL gets created because they // have to edit /this/ n, so you'd have to push that one down as well, // but then you may as well do it here. so this is cleaner and // shorter and less complicated. // The result of inlnode MUST be assigned back to n, e.g. // n.Left = inlnode(n.Left) func inlnode(n ir.Node, maxCost int32, inlMap map[*ir.Func]bool, edit func(ir.Node) ir.Node) ir.Node { if n == nil { return n } switch n.Op() { case ir.ODEFER, ir.OGO: n := n.(*ir.GoDeferStmt) switch call := n.Call; call.Op() { case ir.OCALLMETH: base.FatalfAt(call.Pos(), "OCALLMETH missed by typecheck") case ir.OCALLFUNC: call := call.(*ir.CallExpr) call.NoInline = true } case ir.OTAILCALL: n := n.(*ir.TailCallStmt) n.Call.NoInline = true // Not inline a tail call for now. Maybe we could inline it just like RETURN fn(arg)? // TODO do them here (or earlier), // so escape analysis can avoid more heapmoves. case ir.OCLOSURE: return n case ir.OCALLMETH: base.FatalfAt(n.Pos(), "OCALLMETH missed by typecheck") case ir.OCALLFUNC: n := n.(*ir.CallExpr) if n.X.Op() == ir.OMETHEXPR { // Prevent inlining some reflect.Value methods when using checkptr, // even when package reflect was compiled without it (#35073). if meth := ir.MethodExprName(n.X); meth != nil { s := meth.Sym() if base.Debug.Checkptr != 0 && types.IsReflectPkg(s.Pkg) && (s.Name == "Value.UnsafeAddr" || s.Name == "Value.Pointer") { return n } } } } lno := ir.SetPos(n) ir.EditChildren(n, edit) // with all the branches out of the way, it is now time to // transmogrify this node itself unless inhibited by the // switch at the top of this function. switch n.Op() { case ir.OCALLMETH: base.FatalfAt(n.Pos(), "OCALLMETH missed by typecheck") case ir.OCALLFUNC: call := n.(*ir.CallExpr) if call.NoInline { break } if base.Flag.LowerM > 3 { fmt.Printf("%v:call to func %+v\n", ir.Line(n), call.X) } if ir.IsIntrinsicCall(call) { break } if fn := inlCallee(call.X); fn != nil && typecheck.HaveInlineBody(fn) { n = mkinlcall(call, fn, maxCost, inlMap, edit) } } base.Pos = lno return n } // inlCallee takes a function-typed expression and returns the underlying function ONAME // that it refers to if statically known. Otherwise, it returns nil. func inlCallee(fn ir.Node) *ir.Func { fn = ir.StaticValue(fn) switch fn.Op() { case ir.OMETHEXPR: fn := fn.(*ir.SelectorExpr) n := ir.MethodExprName(fn) // Check that receiver type matches fn.X. // TODO(mdempsky): Handle implicit dereference // of pointer receiver argument? if n == nil || !types.Identical(n.Type().Recv().Type, fn.X.Type()) { return nil } return n.Func case ir.ONAME: fn := fn.(*ir.Name) if fn.Class == ir.PFUNC { return fn.Func } case ir.OCLOSURE: fn := fn.(*ir.ClosureExpr) c := fn.Func CanInline(c) return c } return nil } func inlParam(t *types.Field, as ir.InitNode, inlvars map[*ir.Name]*ir.Name) ir.Node { if t.Nname == nil { return ir.BlankNode } n := t.Nname.(*ir.Name) if ir.IsBlank(n) { return ir.BlankNode } inlvar := inlvars[n] if inlvar == nil { base.Fatalf("missing inlvar for %v", n) } as.PtrInit().Append(ir.NewDecl(base.Pos, ir.ODCL, inlvar)) inlvar.Name().Defn = as return inlvar } var inlgen int // SSADumpInline gives the SSA back end a chance to dump the function // when producing output for debugging the compiler itself. var SSADumpInline = func(*ir.Func) {} // NewInline allows the inliner implementation to be overridden. // If it returns nil, the legacy inliner will handle this call // instead. var NewInline = func(call *ir.CallExpr, fn *ir.Func, inlIndex int) *ir.InlinedCallExpr { return nil } // If n is a OCALLFUNC node, and fn is an ONAME node for a // function with an inlinable body, return an OINLCALL node that can replace n. // The returned node's Ninit has the parameter assignments, the Nbody is the // inlined function body, and (List, Rlist) contain the (input, output) // parameters. // The result of mkinlcall MUST be assigned back to n, e.g. // n.Left = mkinlcall(n.Left, fn, isddd) func mkinlcall(n *ir.CallExpr, fn *ir.Func, maxCost int32, inlMap map[*ir.Func]bool, edit func(ir.Node) ir.Node) ir.Node { if fn.Inl == nil { if logopt.Enabled() { logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(ir.CurFunc), fmt.Sprintf("%s cannot be inlined", ir.PkgFuncName(fn))) } return n } if fn.Inl.Cost > maxCost { // The inlined function body is too big. Typically we use this check to restrict // inlining into very big functions. See issue 26546 and 17566. if logopt.Enabled() { logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(ir.CurFunc), fmt.Sprintf("cost %d of %s exceeds max large caller cost %d", fn.Inl.Cost, ir.PkgFuncName(fn), maxCost)) } return n } if fn == ir.CurFunc { // Can't recursively inline a function into itself. if logopt.Enabled() { logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", fmt.Sprintf("recursive call to %s", ir.FuncName(ir.CurFunc))) } return n } // Don't inline a function fn that has no shape parameters, but is passed at // least one shape arg. This means we must be inlining a non-generic function // fn that was passed into a generic function, and can be called with a shape // arg because it matches an appropriate type parameters. But fn may include // an interface conversion (that may be applied to a shape arg) that was not // apparent when we first created the instantiation of the generic function. // We can't handle this if we actually do the inlining, since we want to know // all interface conversions immediately after stenciling. So, we avoid // inlining in this case. See #49309. if !fn.Type().HasShape() { for _, arg := range n.Args { if arg.Type().HasShape() { if logopt.Enabled() { logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(ir.CurFunc), fmt.Sprintf("inlining non-shape function %v with shape args", ir.FuncName(fn))) } return n } } } if base.Flag.Cfg.Instrumenting && types.IsRuntimePkg(fn.Sym().Pkg) { // Runtime package must not be instrumented. // Instrument skips runtime package. However, some runtime code can be // inlined into other packages and instrumented there. To avoid this, // we disable inlining of runtime functions when instrumenting. // The example that we observed is inlining of LockOSThread, // which lead to false race reports on m contents. return n } if inlMap[fn] { if base.Flag.LowerM > 1 { fmt.Printf("%v: cannot inline %v into %v: repeated recursive cycle\n", ir.Line(n), fn, ir.FuncName(ir.CurFunc)) } return n } inlMap[fn] = true defer func() { inlMap[fn] = false }() typecheck.FixVariadicCall(n) parent := base.Ctxt.PosTable.Pos(n.Pos()).Base().InliningIndex() sym := fn.Linksym() inlIndex := base.Ctxt.InlTree.Add(parent, n.Pos(), sym) if base.Flag.GenDwarfInl > 0 { if !sym.WasInlined() { base.Ctxt.DwFixups.SetPrecursorFunc(sym, fn) sym.Set(obj.AttrWasInlined, true) } } if base.Flag.LowerM != 0 { fmt.Printf("%v: inlining call to %v\n", ir.Line(n), fn) } if base.Flag.LowerM > 2 { fmt.Printf("%v: Before inlining: %+v\n", ir.Line(n), n) } res := NewInline(n, fn, inlIndex) if res == nil { res = oldInline(n, fn, inlIndex) } // transitive inlining // might be nice to do this before exporting the body, // but can't emit the body with inlining expanded. // instead we emit the things that the body needs // and each use must redo the inlining. // luckily these are small. ir.EditChildren(res, edit) if base.Flag.LowerM > 2 { fmt.Printf("%v: After inlining %+v\n\n", ir.Line(res), res) } return res } // CalleeEffects appends any side effects from evaluating callee to init. func CalleeEffects(init *ir.Nodes, callee ir.Node) { for { init.Append(ir.TakeInit(callee)...) switch callee.Op() { case ir.ONAME, ir.OCLOSURE, ir.OMETHEXPR: return // done case ir.OCONVNOP: conv := callee.(*ir.ConvExpr) callee = conv.X case ir.OINLCALL: ic := callee.(*ir.InlinedCallExpr) init.Append(ic.Body.Take()...) callee = ic.SingleResult() default: base.FatalfAt(callee.Pos(), "unexpected callee expression: %v", callee) } } } // oldInline creates an InlinedCallExpr to replace the given call // expression. fn is the callee function to be inlined. inlIndex is // the inlining tree position index, for use with src.NewInliningBase // when rewriting positions. func oldInline(call *ir.CallExpr, fn *ir.Func, inlIndex int) *ir.InlinedCallExpr { if base.Debug.TypecheckInl == 0 { typecheck.ImportedBody(fn) } SSADumpInline(fn) ninit := call.Init() // For normal function calls, the function callee expression // may contain side effects. Make sure to preserve these, // if necessary (#42703). if call.Op() == ir.OCALLFUNC { CalleeEffects(&ninit, call.X) } // Make temp names to use instead of the originals. inlvars := make(map[*ir.Name]*ir.Name) // record formals/locals for later post-processing var inlfvars []*ir.Name for _, ln := range fn.Inl.Dcl { if ln.Op() != ir.ONAME { continue } if ln.Class == ir.PPARAMOUT { // return values handled below. continue } inlf := typecheck.Expr(inlvar(ln)).(*ir.Name) inlvars[ln] = inlf if base.Flag.GenDwarfInl > 0 { if ln.Class == ir.PPARAM { inlf.Name().SetInlFormal(true) } else { inlf.Name().SetInlLocal(true) } inlf.SetPos(ln.Pos()) inlfvars = append(inlfvars, inlf) } } // We can delay declaring+initializing result parameters if: // temporaries for return values. var retvars []ir.Node for i, t := range fn.Type().Results().Fields().Slice() { var m *ir.Name if nn := t.Nname; nn != nil && !ir.IsBlank(nn.(*ir.Name)) && !strings.HasPrefix(nn.Sym().Name, "~r") { n := nn.(*ir.Name) m = inlvar(n) m = typecheck.Expr(m).(*ir.Name) inlvars[n] = m } else { // anonymous return values, synthesize names for use in assignment that replaces return m = retvar(t, i) } if base.Flag.GenDwarfInl > 0 { // Don't update the src.Pos on a return variable if it // was manufactured by the inliner (e.g. "~R2"); such vars // were not part of the original callee. if !strings.HasPrefix(m.Sym().Name, "~R") { m.Name().SetInlFormal(true) m.SetPos(t.Pos) inlfvars = append(inlfvars, m) } } retvars = append(retvars, m) } // Assign arguments to the parameters' temp names. as := ir.NewAssignListStmt(base.Pos, ir.OAS2, nil, nil) as.Def = true if call.Op() == ir.OCALLMETH { base.FatalfAt(call.Pos(), "OCALLMETH missed by typecheck") } as.Rhs.Append(call.Args...) if recv := fn.Type().Recv(); recv != nil { as.Lhs.Append(inlParam(recv, as, inlvars)) } for _, param := range fn.Type().Params().Fields().Slice() { as.Lhs.Append(inlParam(param, as, inlvars)) } if len(as.Rhs) != 0 { ninit.Append(typecheck.Stmt(as)) } if !fn.Inl.CanDelayResults { // Zero the return parameters. for _, n := range retvars { ninit.Append(ir.NewDecl(base.Pos, ir.ODCL, n.(*ir.Name))) ras := ir.NewAssignStmt(base.Pos, n, nil) ninit.Append(typecheck.Stmt(ras)) } } retlabel := typecheck.AutoLabel(".i") inlgen++ // Add an inline mark just before the inlined body. // This mark is inline in the code so that it's a reasonable spot // to put a breakpoint. Not sure if that's really necessary or not // (in which case it could go at the end of the function instead). // Note issue 28603. ninit.Append(ir.NewInlineMarkStmt(call.Pos().WithIsStmt(), int64(inlIndex))) subst := inlsubst{ retlabel: retlabel, retvars: retvars, inlvars: inlvars, defnMarker: ir.NilExpr{}, bases: make(map[*src.PosBase]*src.PosBase), newInlIndex: inlIndex, fn: fn, } subst.edit = subst.node body := subst.list(ir.Nodes(fn.Inl.Body)) lab := ir.NewLabelStmt(base.Pos, retlabel) body = append(body, lab) if !typecheck.Go117ExportTypes { typecheck.Stmts(body) } if base.Flag.GenDwarfInl > 0 { for _, v := range inlfvars { v.SetPos(subst.updatedPos(v.Pos())) } } //dumplist("ninit post", ninit); res := ir.NewInlinedCallExpr(base.Pos, body, retvars) res.SetInit(ninit) res.SetType(call.Type()) res.SetTypecheck(1) return res } // Every time we expand a function we generate a new set of tmpnames, // PAUTO's in the calling functions, and link them off of the // PPARAM's, PAUTOS and PPARAMOUTs of the called function. func inlvar(var_ *ir.Name) *ir.Name { if base.Flag.LowerM > 3 { fmt.Printf("inlvar %+v\n", var_) } n := typecheck.NewName(var_.Sym()) n.SetType(var_.Type()) n.SetTypecheck(1) n.Class = ir.PAUTO n.SetUsed(true) n.SetAutoTemp(var_.AutoTemp()) n.Curfn = ir.CurFunc // the calling function, not the called one n.SetAddrtaken(var_.Addrtaken()) ir.CurFunc.Dcl = append(ir.CurFunc.Dcl, n) return n } // Synthesize a variable to store the inlined function's results in. func retvar(t *types.Field, i int) *ir.Name { n := typecheck.NewName(typecheck.LookupNum("~R", i)) n.SetType(t.Type) n.SetTypecheck(1) n.Class = ir.PAUTO n.SetUsed(true) n.Curfn = ir.CurFunc // the calling function, not the called one ir.CurFunc.Dcl = append(ir.CurFunc.Dcl, n) return n } // The inlsubst type implements the actual inlining of a single // function call. type inlsubst struct { // Target of the goto substituted in place of a return. retlabel *types.Sym // Temporary result variables. retvars []ir.Node inlvars map[*ir.Name]*ir.Name // defnMarker is used to mark a Node for reassignment. // inlsubst.clovar set this during creating new ONAME. // inlsubst.node will set the correct Defn for inlvar. defnMarker ir.NilExpr // bases maps from original PosBase to PosBase with an extra // inlined call frame. bases map[*src.PosBase]*src.PosBase // newInlIndex is the index of the inlined call frame to // insert for inlined nodes. newInlIndex int edit func(ir.Node) ir.Node // cached copy of subst.node method value closure // If non-nil, we are inside a closure inside the inlined function, and // newclofn is the Func of the new inlined closure. newclofn *ir.Func fn *ir.Func // For debug -- the func that is being inlined // If true, then don't update source positions during substitution // (retain old source positions). noPosUpdate bool } // list inlines a list of nodes. func (subst *inlsubst) list(ll ir.Nodes) []ir.Node { s := make([]ir.Node, 0, len(ll)) for _, n := range ll { s = append(s, subst.node(n)) } return s } // fields returns a list of the fields of a struct type representing receiver, // params, or results, after duplicating the field nodes and substituting the // Nname nodes inside the field nodes. func (subst *inlsubst) fields(oldt *types.Type) []*types.Field { oldfields := oldt.FieldSlice() newfields := make([]*types.Field, len(oldfields)) for i := range oldfields { newfields[i] = oldfields[i].Copy() if oldfields[i].Nname != nil { newfields[i].Nname = subst.node(oldfields[i].Nname.(*ir.Name)) } } return newfields } // clovar creates a new ONAME node for a local variable or param of a closure // inside a function being inlined. func (subst *inlsubst) clovar(n *ir.Name) *ir.Name { m := ir.NewNameAt(n.Pos(), n.Sym()) m.Class = n.Class m.SetType(n.Type()) m.SetTypecheck(1) if n.IsClosureVar() { m.SetIsClosureVar(true) } if n.Addrtaken() { m.SetAddrtaken(true) } if n.Used() { m.SetUsed(true) } m.Defn = n.Defn m.Curfn = subst.newclofn switch defn := n.Defn.(type) { case nil: // ok case *ir.Name: if !n.IsClosureVar() { base.FatalfAt(n.Pos(), "want closure variable, got: %+v", n) } if n.Sym().Pkg != types.LocalPkg { // If the closure came from inlining a function from // another package, must change package of captured // variable to localpkg, so that the fields of the closure // struct are local package and can be accessed even if // name is not exported. If you disable this code, you can // reproduce the problem by running 'go test // go/internal/srcimporter'. TODO(mdempsky) - maybe change // how we create closure structs? m.SetSym(types.LocalPkg.Lookup(n.Sym().Name)) } // Make sure any inlvar which is the Defn // of an ONAME closure var is rewritten // during inlining. Don't substitute // if Defn node is outside inlined function. if subst.inlvars[n.Defn.(*ir.Name)] != nil { m.Defn = subst.node(n.Defn) } case *ir.AssignStmt, *ir.AssignListStmt: // Mark node for reassignment at the end of inlsubst.node. m.Defn = &subst.defnMarker case *ir.TypeSwitchGuard: // TODO(mdempsky): Set m.Defn properly. See discussion on #45743. case *ir.RangeStmt: // TODO: Set m.Defn properly if we support inlining range statement in the future. default: base.FatalfAt(n.Pos(), "unexpected Defn: %+v", defn) } if n.Outer != nil { // Either the outer variable is defined in function being inlined, // and we will replace it with the substituted variable, or it is // defined outside the function being inlined, and we should just // skip the outer variable (the closure variable of the function // being inlined). s := subst.node(n.Outer).(*ir.Name) if s == n.Outer { s = n.Outer.Outer } m.Outer = s } return m } // closure does the necessary substitions for a ClosureExpr n and returns the new // closure node. func (subst *inlsubst) closure(n *ir.ClosureExpr) ir.Node { // Prior to the subst edit, set a flag in the inlsubst to indicate // that we don't want to update the source positions in the new // closure function. If we do this, it will appear that the // closure itself has things inlined into it, which is not the // case. See issue #46234 for more details. At the same time, we // do want to update the position in the new ClosureExpr (which is // part of the function we're working on). See #49171 for an // example of what happens if we miss that update. newClosurePos := subst.updatedPos(n.Pos()) defer func(prev bool) { subst.noPosUpdate = prev }(subst.noPosUpdate) subst.noPosUpdate = true //fmt.Printf("Inlining func %v with closure into %v\n", subst.fn, ir.FuncName(ir.CurFunc)) oldfn := n.Func newfn := ir.NewClosureFunc(oldfn.Pos(), true) // Ntype can be nil for -G=3 mode. if oldfn.Nname.Ntype != nil { newfn.Nname.Ntype = subst.node(oldfn.Nname.Ntype).(ir.Ntype) } if subst.newclofn != nil { //fmt.Printf("Inlining a closure with a nested closure\n") } prevxfunc := subst.newclofn // Mark that we are now substituting within a closure (within the // inlined function), and create new nodes for all the local // vars/params inside this closure. subst.newclofn = newfn newfn.Dcl = nil newfn.ClosureVars = nil for _, oldv := range oldfn.Dcl { newv := subst.clovar(oldv) subst.inlvars[oldv] = newv newfn.Dcl = append(newfn.Dcl, newv) } for _, oldv := range oldfn.ClosureVars { newv := subst.clovar(oldv) subst.inlvars[oldv] = newv newfn.ClosureVars = append(newfn.ClosureVars, newv) } // Need to replace ONAME nodes in // newfn.Type().FuncType().Receiver/Params/Results.FieldSlice().Nname oldt := oldfn.Type() newrecvs := subst.fields(oldt.Recvs()) var newrecv *types.Field if len(newrecvs) > 0 { newrecv = newrecvs[0] } newt := types.NewSignature(oldt.Pkg(), newrecv, nil, subst.fields(oldt.Params()), subst.fields(oldt.Results())) newfn.Nname.SetType(newt) newfn.Body = subst.list(oldfn.Body) // Remove the nodes for the current closure from subst.inlvars for _, oldv := range oldfn.Dcl { delete(subst.inlvars, oldv) } for _, oldv := range oldfn.ClosureVars { delete(subst.inlvars, oldv) } // Go back to previous closure func subst.newclofn = prevxfunc // Actually create the named function for the closure, now that // the closure is inlined in a specific function. newclo := newfn.OClosure newclo.SetPos(newClosurePos) newclo.SetInit(subst.list(n.Init())) return typecheck.Expr(newclo) } // node recursively copies a node from the saved pristine body of the // inlined function, substituting references to input/output // parameters with ones to the tmpnames, and substituting returns with // assignments to the output. func (subst *inlsubst) node(n ir.Node) ir.Node { if n == nil { return nil } switch n.Op() { case ir.ONAME: n := n.(*ir.Name) // Handle captured variables when inlining closures. if n.IsClosureVar() && subst.newclofn == nil { o := n.Outer // Deal with case where sequence of closures are inlined. // TODO(danscales) - write test case to see if we need to // go up multiple levels. if o.Curfn != ir.CurFunc { o = o.Outer } // make sure the outer param matches the inlining location if o == nil || o.Curfn != ir.CurFunc { base.Fatalf("%v: unresolvable capture %v\n", ir.Line(n), n) } if base.Flag.LowerM > 2 { fmt.Printf("substituting captured name %+v -> %+v\n", n, o) } return o } if inlvar := subst.inlvars[n]; inlvar != nil { // These will be set during inlnode if base.Flag.LowerM > 2 { fmt.Printf("substituting name %+v -> %+v\n", n, inlvar) } return inlvar } if base.Flag.LowerM > 2 { fmt.Printf("not substituting name %+v\n", n) } return n case ir.OMETHEXPR: n := n.(*ir.SelectorExpr) return n case ir.OLITERAL, ir.ONIL, ir.OTYPE: // If n is a named constant or type, we can continue // using it in the inline copy. Otherwise, make a copy // so we can update the line number. if n.Sym() != nil { return n } case ir.ORETURN: if subst.newclofn != nil { // Don't do special substitutions if inside a closure break } // Because of the above test for subst.newclofn, // this return is guaranteed to belong to the current inlined function. n := n.(*ir.ReturnStmt) init := subst.list(n.Init()) if len(subst.retvars) != 0 && len(n.Results) != 0 { as := ir.NewAssignListStmt(base.Pos, ir.OAS2, nil, nil) // Make a shallow copy of retvars. // Otherwise OINLCALL.Rlist will be the same list, // and later walk and typecheck may clobber it. for _, n := range subst.retvars { as.Lhs.Append(n) } as.Rhs = subst.list(n.Results) if subst.fn.Inl.CanDelayResults { for _, n := range as.Lhs { as.PtrInit().Append(ir.NewDecl(base.Pos, ir.ODCL, n.(*ir.Name))) n.Name().Defn = as } } init = append(init, typecheck.Stmt(as)) } init = append(init, ir.NewBranchStmt(base.Pos, ir.OGOTO, subst.retlabel)) typecheck.Stmts(init) return ir.NewBlockStmt(base.Pos, init) case ir.OGOTO, ir.OBREAK, ir.OCONTINUE: if subst.newclofn != nil { // Don't do special substitutions if inside a closure break } n := n.(*ir.BranchStmt) m := ir.Copy(n).(*ir.BranchStmt) m.SetPos(subst.updatedPos(m.Pos())) m.SetInit(nil) m.Label = translateLabel(n.Label) return m case ir.OLABEL: if subst.newclofn != nil { // Don't do special substitutions if inside a closure break } n := n.(*ir.LabelStmt) m := ir.Copy(n).(*ir.LabelStmt) m.SetPos(subst.updatedPos(m.Pos())) m.SetInit(nil) m.Label = translateLabel(n.Label) return m case ir.OCLOSURE: return subst.closure(n.(*ir.ClosureExpr)) } m := ir.Copy(n) m.SetPos(subst.updatedPos(m.Pos())) ir.EditChildren(m, subst.edit) if subst.newclofn == nil { // Translate any label on FOR, RANGE loops or SWITCH switch m.Op() { case ir.OFOR: m := m.(*ir.ForStmt) m.Label = translateLabel(m.Label) return m case ir.ORANGE: m := m.(*ir.RangeStmt) m.Label = translateLabel(m.Label) return m case ir.OSWITCH: m := m.(*ir.SwitchStmt) m.Label = translateLabel(m.Label) return m } } switch m := m.(type) { case *ir.AssignStmt: if lhs, ok := m.X.(*ir.Name); ok && lhs.Defn == &subst.defnMarker { lhs.Defn = m } case *ir.AssignListStmt: for _, lhs := range m.Lhs { if lhs, ok := lhs.(*ir.Name); ok && lhs.Defn == &subst.defnMarker { lhs.Defn = m } } } return m } // translateLabel makes a label from an inlined function (if non-nil) be unique by // adding "·inlgen". func translateLabel(l *types.Sym) *types.Sym { if l == nil { return nil } p := fmt.Sprintf("%s·%d", l.Name, inlgen) return typecheck.Lookup(p) } func (subst *inlsubst) updatedPos(xpos src.XPos) src.XPos { if subst.noPosUpdate { return xpos } pos := base.Ctxt.PosTable.Pos(xpos) oldbase := pos.Base() // can be nil newbase := subst.bases[oldbase] if newbase == nil { newbase = src.NewInliningBase(oldbase, subst.newInlIndex) subst.bases[oldbase] = newbase } pos.SetBase(newbase) return base.Ctxt.PosTable.XPos(pos) } func pruneUnusedAutos(ll []*ir.Name, vis *hairyVisitor) []*ir.Name { s := make([]*ir.Name, 0, len(ll)) for _, n := range ll { if n.Class == ir.PAUTO { if !vis.usedLocals.Has(n) { continue } } s = append(s, n) } return s } // numNonClosures returns the number of functions in list which are not closures. func numNonClosures(list []*ir.Func) int { count := 0 for _, fn := range list { if fn.OClosure == nil { count++ } } return count } func doList(list []ir.Node, do func(ir.Node) bool) bool { for _, x := range list { if x != nil { if do(x) { return true } } } return false }