// Copyright 2017 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "go_asm.h" #include "funcdata.h" #include "textflag.h" // func rt0_go() TEXT runtime·rt0_go(SB),NOSPLIT|TOPFRAME,$0 // X2 = stack; A0 = argc; A1 = argv ADD $-24, X2 MOV A0, 8(X2) // argc MOV A1, 16(X2) // argv // create istack out of the given (operating system) stack. // _cgo_init may update stackguard. MOV $runtime·g0(SB), g MOV $(-64*1024), T0 ADD T0, X2, T1 MOV T1, g_stackguard0(g) MOV T1, g_stackguard1(g) MOV T1, (g_stack+stack_lo)(g) MOV X2, (g_stack+stack_hi)(g) // if there is a _cgo_init, call it using the gcc ABI. MOV _cgo_init(SB), T0 BEQ T0, ZERO, nocgo MOV ZERO, A3 // arg 3: not used MOV ZERO, A2 // arg 2: not used MOV $setg_gcc<>(SB), A1 // arg 1: setg MOV g, A0 // arg 0: G JALR RA, T0 nocgo: // update stackguard after _cgo_init MOV (g_stack+stack_lo)(g), T0 ADD $const__StackGuard, T0 MOV T0, g_stackguard0(g) MOV T0, g_stackguard1(g) // set the per-goroutine and per-mach "registers" MOV $runtime·m0(SB), T0 // save m->g0 = g0 MOV g, m_g0(T0) // save m0 to g0->m MOV T0, g_m(g) CALL runtime·check(SB) // args are already prepared CALL runtime·args(SB) CALL runtime·osinit(SB) CALL runtime·schedinit(SB) // create a new goroutine to start program MOV $runtime·mainPC(SB), T0 // entry ADD $-16, X2 MOV T0, 8(X2) MOV ZERO, 0(X2) CALL runtime·newproc(SB) ADD $16, X2 // start this M CALL runtime·mstart(SB) WORD $0 // crash if reached RET TEXT runtime·mstart(SB),NOSPLIT|TOPFRAME,$0 CALL runtime·mstart0(SB) RET // not reached // void setg_gcc(G*); set g called from gcc with g in A0 TEXT setg_gcc<>(SB),NOSPLIT,$0-0 MOV A0, g CALL runtime·save_g(SB) RET // func cputicks() int64 TEXT runtime·cputicks(SB),NOSPLIT,$0-8 // RDTIME to emulate cpu ticks // RDCYCLE reads counter that is per HART(core) based // according to the riscv manual, see issue 46737 RDTIME A0 MOV A0, ret+0(FP) RET // systemstack_switch is a dummy routine that systemstack leaves at the bottom // of the G stack. We need to distinguish the routine that // lives at the bottom of the G stack from the one that lives // at the top of the system stack because the one at the top of // the system stack terminates the stack walk (see topofstack()). TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0 UNDEF JALR RA, ZERO // make sure this function is not leaf RET // func systemstack(fn func()) TEXT runtime·systemstack(SB), NOSPLIT, $0-8 MOV fn+0(FP), CTXT // CTXT = fn MOV g_m(g), T0 // T0 = m MOV m_gsignal(T0), T1 // T1 = gsignal BEQ g, T1, noswitch MOV m_g0(T0), T1 // T1 = g0 BEQ g, T1, noswitch MOV m_curg(T0), T2 BEQ g, T2, switch // Bad: g is not gsignal, not g0, not curg. What is it? // Hide call from linker nosplit analysis. MOV $runtime·badsystemstack(SB), T1 JALR RA, T1 switch: // save our state in g->sched. Pretend to // be systemstack_switch if the G stack is scanned. CALL gosave_systemstack_switch<>(SB) // switch to g0 MOV T1, g CALL runtime·save_g(SB) MOV (g_sched+gobuf_sp)(g), T0 MOV T0, X2 // call target function MOV 0(CTXT), T1 // code pointer JALR RA, T1 // switch back to g MOV g_m(g), T0 MOV m_curg(T0), g CALL runtime·save_g(SB) MOV (g_sched+gobuf_sp)(g), X2 MOV ZERO, (g_sched+gobuf_sp)(g) RET noswitch: // already on m stack, just call directly // Using a tail call here cleans up tracebacks since we won't stop // at an intermediate systemstack. MOV 0(CTXT), T1 // code pointer ADD $8, X2 JMP (T1) TEXT runtime·getcallerpc(SB),NOSPLIT|NOFRAME,$0-8 MOV 0(X2), T0 // LR saved by caller MOV T0, ret+0(FP) RET /* * support for morestack */ // Called during function prolog when more stack is needed. // Called with return address (i.e. caller's PC) in X5 (aka T0), // and the LR register contains the caller's LR. // // The traceback routines see morestack on a g0 as being // the top of a stack (for example, morestack calling newstack // calling the scheduler calling newm calling gc), so we must // record an argument size. For that purpose, it has no arguments. // func morestack() TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0 // Cannot grow scheduler stack (m->g0). MOV g_m(g), A0 MOV m_g0(A0), A1 BNE g, A1, 3(PC) CALL runtime·badmorestackg0(SB) CALL runtime·abort(SB) // Cannot grow signal stack (m->gsignal). MOV m_gsignal(A0), A1 BNE g, A1, 3(PC) CALL runtime·badmorestackgsignal(SB) CALL runtime·abort(SB) // Called from f. // Set g->sched to context in f. MOV X2, (g_sched+gobuf_sp)(g) MOV T0, (g_sched+gobuf_pc)(g) MOV RA, (g_sched+gobuf_lr)(g) MOV CTXT, (g_sched+gobuf_ctxt)(g) // Called from f. // Set m->morebuf to f's caller. MOV RA, (m_morebuf+gobuf_pc)(A0) // f's caller's PC MOV X2, (m_morebuf+gobuf_sp)(A0) // f's caller's SP MOV g, (m_morebuf+gobuf_g)(A0) // Call newstack on m->g0's stack. MOV m_g0(A0), g CALL runtime·save_g(SB) MOV (g_sched+gobuf_sp)(g), X2 // Create a stack frame on g0 to call newstack. MOV ZERO, -8(X2) // Zero saved LR in frame ADD $-8, X2 CALL runtime·newstack(SB) // Not reached, but make sure the return PC from the call to newstack // is still in this function, and not the beginning of the next. UNDEF // func morestack_noctxt() TEXT runtime·morestack_noctxt(SB),NOSPLIT|NOFRAME,$0-0 // Force SPWRITE. This function doesn't actually write SP, // but it is called with a special calling convention where // the caller doesn't save LR on stack but passes it as a // register, and the unwinder currently doesn't understand. // Make it SPWRITE to stop unwinding. (See issue 54332) MOV X2, X2 MOV ZERO, CTXT JMP runtime·morestack(SB) // AES hashing not implemented for riscv64 TEXT runtime·memhash(SB),NOSPLIT|NOFRAME,$0-32 JMP runtime·memhashFallback(SB) TEXT runtime·strhash(SB),NOSPLIT|NOFRAME,$0-24 JMP runtime·strhashFallback(SB) TEXT runtime·memhash32(SB),NOSPLIT|NOFRAME,$0-24 JMP runtime·memhash32Fallback(SB) TEXT runtime·memhash64(SB),NOSPLIT|NOFRAME,$0-24 JMP runtime·memhash64Fallback(SB) // func return0() TEXT runtime·return0(SB), NOSPLIT, $0 MOV $0, A0 RET // restore state from Gobuf; longjmp // func gogo(buf *gobuf) TEXT runtime·gogo(SB), NOSPLIT|NOFRAME, $0-8 MOV buf+0(FP), T0 MOV gobuf_g(T0), T1 MOV 0(T1), ZERO // make sure g != nil JMP gogo<>(SB) TEXT gogo<>(SB), NOSPLIT|NOFRAME, $0 MOV T1, g CALL runtime·save_g(SB) MOV gobuf_sp(T0), X2 MOV gobuf_lr(T0), RA MOV gobuf_ret(T0), A0 MOV gobuf_ctxt(T0), CTXT MOV ZERO, gobuf_sp(T0) MOV ZERO, gobuf_ret(T0) MOV ZERO, gobuf_lr(T0) MOV ZERO, gobuf_ctxt(T0) MOV gobuf_pc(T0), T0 JALR ZERO, T0 // func procyield(cycles uint32) TEXT runtime·procyield(SB),NOSPLIT,$0-0 RET // Switch to m->g0's stack, call fn(g). // Fn must never return. It should gogo(&g->sched) // to keep running g. // func mcall(fn func(*g)) TEXT runtime·mcall(SB), NOSPLIT|NOFRAME, $0-8 // Save caller state in g->sched MOV X2, (g_sched+gobuf_sp)(g) MOV RA, (g_sched+gobuf_pc)(g) MOV ZERO, (g_sched+gobuf_lr)(g) // Switch to m->g0 & its stack, call fn. MOV g, T0 MOV g_m(g), T1 MOV m_g0(T1), g CALL runtime·save_g(SB) BNE g, T0, 2(PC) JMP runtime·badmcall(SB) MOV fn+0(FP), CTXT // context MOV 0(CTXT), T1 // code pointer MOV (g_sched+gobuf_sp)(g), X2 // sp = m->g0->sched.sp ADD $-16, X2 MOV T0, 8(X2) MOV ZERO, 0(X2) JALR RA, T1 JMP runtime·badmcall2(SB) // Save state of caller into g->sched, // but using fake PC from systemstack_switch. // Must only be called from functions with no locals ($0) // or else unwinding from systemstack_switch is incorrect. // Smashes X31. TEXT gosave_systemstack_switch<>(SB),NOSPLIT|NOFRAME,$0 MOV $runtime·systemstack_switch(SB), X31 ADD $8, X31 // get past prologue MOV X31, (g_sched+gobuf_pc)(g) MOV X2, (g_sched+gobuf_sp)(g) MOV ZERO, (g_sched+gobuf_lr)(g) MOV ZERO, (g_sched+gobuf_ret)(g) // Assert ctxt is zero. See func save. MOV (g_sched+gobuf_ctxt)(g), X31 BEQ ZERO, X31, 2(PC) CALL runtime·abort(SB) RET // func asmcgocall(fn, arg unsafe.Pointer) int32 // Call fn(arg) on the scheduler stack, // aligned appropriately for the gcc ABI. // See cgocall.go for more details. TEXT ·asmcgocall(SB),NOSPLIT,$0-20 MOV fn+0(FP), X5 MOV arg+8(FP), X10 MOV X2, X8 // save original stack pointer MOV g, X9 // Figure out if we need to switch to m->g0 stack. // We get called to create new OS threads too, and those // come in on the m->g0 stack already. Or we might already // be on the m->gsignal stack. MOV g_m(g), X6 MOV m_gsignal(X6), X7 BEQ X7, g, g0 MOV m_g0(X6), X7 BEQ X7, g, g0 CALL gosave_systemstack_switch<>(SB) MOV X7, g CALL runtime·save_g(SB) MOV (g_sched+gobuf_sp)(g), X2 // Now on a scheduling stack (a pthread-created stack). g0: // Save room for two of our pointers. ADD $-16, X2 MOV X9, 0(X2) // save old g on stack MOV (g_stack+stack_hi)(X9), X9 SUB X8, X9, X8 MOV X8, 8(X2) // save depth in old g stack (can't just save SP, as stack might be copied during a callback) JALR RA, (X5) // Restore g, stack pointer. X10 is return value. MOV 0(X2), g CALL runtime·save_g(SB) MOV (g_stack+stack_hi)(g), X5 MOV 8(X2), X6 SUB X6, X5, X6 MOV X6, X2 MOVW X10, ret+16(FP) RET // func asminit() TEXT runtime·asminit(SB),NOSPLIT|NOFRAME,$0-0 RET // reflectcall: call a function with the given argument list // func call(stackArgsType *_type, f *FuncVal, stackArgs *byte, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs). // we don't have variable-sized frames, so we use a small number // of constant-sized-frame functions to encode a few bits of size in the pc. // Caution: ugly multiline assembly macros in your future! #define DISPATCH(NAME,MAXSIZE) \ MOV $MAXSIZE, T1 \ BLTU T1, T0, 3(PC) \ MOV $NAME(SB), T2; \ JALR ZERO, T2 // Note: can't just "BR NAME(SB)" - bad inlining results. // func call(stackArgsType *rtype, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs). TEXT reflect·call(SB), NOSPLIT, $0-0 JMP ·reflectcall(SB) // func call(stackArgsType *_type, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs). TEXT ·reflectcall(SB), NOSPLIT|NOFRAME, $0-48 MOVWU frameSize+32(FP), T0 DISPATCH(runtime·call16, 16) DISPATCH(runtime·call32, 32) DISPATCH(runtime·call64, 64) DISPATCH(runtime·call128, 128) DISPATCH(runtime·call256, 256) DISPATCH(runtime·call512, 512) DISPATCH(runtime·call1024, 1024) DISPATCH(runtime·call2048, 2048) DISPATCH(runtime·call4096, 4096) DISPATCH(runtime·call8192, 8192) DISPATCH(runtime·call16384, 16384) DISPATCH(runtime·call32768, 32768) DISPATCH(runtime·call65536, 65536) DISPATCH(runtime·call131072, 131072) DISPATCH(runtime·call262144, 262144) DISPATCH(runtime·call524288, 524288) DISPATCH(runtime·call1048576, 1048576) DISPATCH(runtime·call2097152, 2097152) DISPATCH(runtime·call4194304, 4194304) DISPATCH(runtime·call8388608, 8388608) DISPATCH(runtime·call16777216, 16777216) DISPATCH(runtime·call33554432, 33554432) DISPATCH(runtime·call67108864, 67108864) DISPATCH(runtime·call134217728, 134217728) DISPATCH(runtime·call268435456, 268435456) DISPATCH(runtime·call536870912, 536870912) DISPATCH(runtime·call1073741824, 1073741824) MOV $runtime·badreflectcall(SB), T2 JALR ZERO, T2 #define CALLFN(NAME,MAXSIZE) \ TEXT NAME(SB), WRAPPER, $MAXSIZE-48; \ NO_LOCAL_POINTERS; \ /* copy arguments to stack */ \ MOV stackArgs+16(FP), A1; \ MOVWU stackArgsSize+24(FP), A2; \ MOV X2, A3; \ ADD $8, A3; \ ADD A3, A2; \ BEQ A3, A2, 6(PC); \ MOVBU (A1), A4; \ ADD $1, A1; \ MOVB A4, (A3); \ ADD $1, A3; \ JMP -5(PC); \ /* call function */ \ MOV f+8(FP), CTXT; \ MOV (CTXT), A4; \ PCDATA $PCDATA_StackMapIndex, $0; \ JALR RA, A4; \ /* copy return values back */ \ MOV stackArgsType+0(FP), A5; \ MOV stackArgs+16(FP), A1; \ MOVWU stackArgsSize+24(FP), A2; \ MOVWU stackRetOffset+28(FP), A4; \ ADD $8, X2, A3; \ ADD A4, A3; \ ADD A4, A1; \ SUB A4, A2; \ CALL callRet<>(SB); \ RET // callRet copies return values back at the end of call*. This is a // separate function so it can allocate stack space for the arguments // to reflectcallmove. It does not follow the Go ABI; it expects its // arguments in registers. TEXT callRet<>(SB), NOSPLIT, $40-0 MOV A5, 8(X2) MOV A1, 16(X2) MOV A3, 24(X2) MOV A2, 32(X2) MOV ZERO, 40(X2) CALL runtime·reflectcallmove(SB) RET CALLFN(·call16, 16) CALLFN(·call32, 32) CALLFN(·call64, 64) CALLFN(·call128, 128) CALLFN(·call256, 256) CALLFN(·call512, 512) CALLFN(·call1024, 1024) CALLFN(·call2048, 2048) CALLFN(·call4096, 4096) CALLFN(·call8192, 8192) CALLFN(·call16384, 16384) CALLFN(·call32768, 32768) CALLFN(·call65536, 65536) CALLFN(·call131072, 131072) CALLFN(·call262144, 262144) CALLFN(·call524288, 524288) CALLFN(·call1048576, 1048576) CALLFN(·call2097152, 2097152) CALLFN(·call4194304, 4194304) CALLFN(·call8388608, 8388608) CALLFN(·call16777216, 16777216) CALLFN(·call33554432, 33554432) CALLFN(·call67108864, 67108864) CALLFN(·call134217728, 134217728) CALLFN(·call268435456, 268435456) CALLFN(·call536870912, 536870912) CALLFN(·call1073741824, 1073741824) // Called from cgo wrappers, this function returns g->m->curg.stack.hi. // Must obey the gcc calling convention. TEXT _cgo_topofstack(SB),NOSPLIT,$8 // g (X27) and REG_TMP (X31) might be clobbered by load_g. // X27 is callee-save in the gcc calling convention, so save it. MOV g, savedX27-8(SP) CALL runtime·load_g(SB) MOV g_m(g), X5 MOV m_curg(X5), X5 MOV (g_stack+stack_hi)(X5), X10 // return value in X10 MOV savedX27-8(SP), g RET // func goexit(neverCallThisFunction) // The top-most function running on a goroutine // returns to goexit+PCQuantum. TEXT runtime·goexit(SB),NOSPLIT|NOFRAME|TOPFRAME,$0-0 MOV ZERO, ZERO // NOP JMP runtime·goexit1(SB) // does not return // traceback from goexit1 must hit code range of goexit MOV ZERO, ZERO // NOP // func cgocallback(fn, frame unsafe.Pointer, ctxt uintptr) // See cgocall.go for more details. TEXT ·cgocallback(SB),NOSPLIT,$24-24 NO_LOCAL_POINTERS // Load m and g from thread-local storage. MOVBU runtime·iscgo(SB), X5 BEQ ZERO, X5, nocgo CALL runtime·load_g(SB) nocgo: // If g is nil, Go did not create the current thread. // Call needm to obtain one for temporary use. // In this case, we're running on the thread stack, so there's // lots of space, but the linker doesn't know. Hide the call from // the linker analysis by using an indirect call. BEQ ZERO, g, needm MOV g_m(g), X5 MOV X5, savedm-8(SP) JMP havem needm: MOV g, savedm-8(SP) // g is zero, so is m. MOV $runtime·needm(SB), X6 JALR RA, X6 // Set m->sched.sp = SP, so that if a panic happens // during the function we are about to execute, it will // have a valid SP to run on the g0 stack. // The next few lines (after the havem label) // will save this SP onto the stack and then write // the same SP back to m->sched.sp. That seems redundant, // but if an unrecovered panic happens, unwindm will // restore the g->sched.sp from the stack location // and then systemstack will try to use it. If we don't set it here, // that restored SP will be uninitialized (typically 0) and // will not be usable. MOV g_m(g), X5 MOV m_g0(X5), X6 MOV X2, (g_sched+gobuf_sp)(X6) havem: // Now there's a valid m, and we're running on its m->g0. // Save current m->g0->sched.sp on stack and then set it to SP. // Save current sp in m->g0->sched.sp in preparation for // switch back to m->curg stack. // NOTE: unwindm knows that the saved g->sched.sp is at 8(X2) aka savedsp-24(SP). MOV m_g0(X5), X6 MOV (g_sched+gobuf_sp)(X6), X7 MOV X7, savedsp-24(SP) // must match frame size MOV X2, (g_sched+gobuf_sp)(X6) // Switch to m->curg stack and call runtime.cgocallbackg. // Because we are taking over the execution of m->curg // but *not* resuming what had been running, we need to // save that information (m->curg->sched) so we can restore it. // We can restore m->curg->sched.sp easily, because calling // runtime.cgocallbackg leaves SP unchanged upon return. // To save m->curg->sched.pc, we push it onto the curg stack and // open a frame the same size as cgocallback's g0 frame. // Once we switch to the curg stack, the pushed PC will appear // to be the return PC of cgocallback, so that the traceback // will seamlessly trace back into the earlier calls. MOV m_curg(X5), g CALL runtime·save_g(SB) MOV (g_sched+gobuf_sp)(g), X6 // prepare stack as X6 MOV (g_sched+gobuf_pc)(g), X7 MOV X7, -(24+8)(X6) // "saved LR"; must match frame size // Gather our arguments into registers. MOV fn+0(FP), X7 MOV frame+8(FP), X8 MOV ctxt+16(FP), X9 MOV $-(24+8)(X6), X2 // switch stack; must match frame size MOV X7, 8(X2) MOV X8, 16(X2) MOV X9, 24(X2) CALL runtime·cgocallbackg(SB) // Restore g->sched (== m->curg->sched) from saved values. MOV 0(X2), X7 MOV X7, (g_sched+gobuf_pc)(g) MOV $(24+8)(X2), X6 // must match frame size MOV X6, (g_sched+gobuf_sp)(g) // Switch back to m->g0's stack and restore m->g0->sched.sp. // (Unlike m->curg, the g0 goroutine never uses sched.pc, // so we do not have to restore it.) MOV g_m(g), X5 MOV m_g0(X5), g CALL runtime·save_g(SB) MOV (g_sched+gobuf_sp)(g), X2 MOV savedsp-24(SP), X6 // must match frame size MOV X6, (g_sched+gobuf_sp)(g) // If the m on entry was nil, we called needm above to borrow an m // for the duration of the call. Since the call is over, return it with dropm. MOV savedm-8(SP), X5 BNE ZERO, X5, droppedm MOV $runtime·dropm(SB), X6 JALR RA, X6 droppedm: // Done! RET TEXT runtime·breakpoint(SB),NOSPLIT|NOFRAME,$0-0 EBREAK RET TEXT runtime·abort(SB),NOSPLIT|NOFRAME,$0-0 EBREAK RET // void setg(G*); set g. for use by needm. TEXT runtime·setg(SB), NOSPLIT, $0-8 MOV gg+0(FP), g // This only happens if iscgo, so jump straight to save_g CALL runtime·save_g(SB) RET TEXT ·checkASM(SB),NOSPLIT,$0-1 MOV $1, T0 MOV T0, ret+0(FP) RET // gcWriteBarrier performs a heap pointer write and informs the GC. // // gcWriteBarrier does NOT follow the Go ABI. It takes two arguments: // - T0 is the destination of the write // - T1 is the value being written at T0. // It clobbers R30 (the linker temp register - REG_TMP). // The act of CALLing gcWriteBarrier will clobber RA (LR). // It does not clobber any other general-purpose registers, // but may clobber others (e.g., floating point registers). TEXT runtime·gcWriteBarrier(SB),NOSPLIT,$208 // Save the registers clobbered by the fast path. MOV A0, 24*8(X2) MOV A1, 25*8(X2) MOV g_m(g), A0 MOV m_p(A0), A0 MOV (p_wbBuf+wbBuf_next)(A0), A1 // Increment wbBuf.next position. ADD $16, A1 MOV A1, (p_wbBuf+wbBuf_next)(A0) MOV (p_wbBuf+wbBuf_end)(A0), A0 MOV A0, T6 // T6 is linker temp register (REG_TMP) // Record the write. MOV T1, -16(A1) // Record value MOV (T0), A0 // TODO: This turns bad writes into bad reads. MOV A0, -8(A1) // Record *slot // Is the buffer full? BEQ A1, T6, flush ret: MOV 24*8(X2), A0 MOV 25*8(X2), A1 // Do the write. MOV T1, (T0) RET flush: // Save all general purpose registers since these could be // clobbered by wbBufFlush and were not saved by the caller. MOV T0, 1*8(X2) // Also first argument to wbBufFlush MOV T1, 2*8(X2) // Also second argument to wbBufFlush // X0 is zero register // X1 is LR, saved by prologue // X2 is SP // X3 is GP // X4 is TP // X5 is first arg to wbBufFlush (T0) // X6 is second arg to wbBufFlush (T1) MOV X7, 3*8(X2) MOV X8, 4*8(X2) MOV X9, 5*8(X2) // X10 already saved (A0) // X11 already saved (A1) MOV X12, 6*8(X2) MOV X13, 7*8(X2) MOV X14, 8*8(X2) MOV X15, 9*8(X2) MOV X16, 10*8(X2) MOV X17, 11*8(X2) MOV X18, 12*8(X2) MOV X19, 13*8(X2) MOV X20, 14*8(X2) MOV X21, 15*8(X2) MOV X22, 16*8(X2) MOV X23, 17*8(X2) MOV X24, 18*8(X2) MOV X25, 19*8(X2) MOV X26, 20*8(X2) // X27 is g. MOV X28, 21*8(X2) MOV X29, 22*8(X2) MOV X30, 23*8(X2) // X31 is tmp register. // This takes arguments T0 and T1. CALL runtime·wbBufFlush(SB) MOV 1*8(X2), T0 MOV 2*8(X2), T1 MOV 3*8(X2), X7 MOV 4*8(X2), X8 MOV 5*8(X2), X9 MOV 6*8(X2), X12 MOV 7*8(X2), X13 MOV 8*8(X2), X14 MOV 9*8(X2), X15 MOV 10*8(X2), X16 MOV 11*8(X2), X17 MOV 12*8(X2), X18 MOV 13*8(X2), X19 MOV 14*8(X2), X20 MOV 15*8(X2), X21 MOV 16*8(X2), X22 MOV 17*8(X2), X23 MOV 18*8(X2), X24 MOV 19*8(X2), X25 MOV 20*8(X2), X26 MOV 21*8(X2), X28 MOV 22*8(X2), X29 MOV 23*8(X2), X30 JMP ret // Note: these functions use a special calling convention to save generated code space. // Arguments are passed in registers, but the space for those arguments are allocated // in the caller's stack frame. These stubs write the args into that stack space and // then tail call to the corresponding runtime handler. // The tail call makes these stubs disappear in backtraces. TEXT runtime·panicIndex(SB),NOSPLIT,$0-16 MOV T0, x+0(FP) MOV T1, y+8(FP) JMP runtime·goPanicIndex(SB) TEXT runtime·panicIndexU(SB),NOSPLIT,$0-16 MOV T0, x+0(FP) MOV T1, y+8(FP) JMP runtime·goPanicIndexU(SB) TEXT runtime·panicSliceAlen(SB),NOSPLIT,$0-16 MOV T1, x+0(FP) MOV T2, y+8(FP) JMP runtime·goPanicSliceAlen(SB) TEXT runtime·panicSliceAlenU(SB),NOSPLIT,$0-16 MOV T1, x+0(FP) MOV T2, y+8(FP) JMP runtime·goPanicSliceAlenU(SB) TEXT runtime·panicSliceAcap(SB),NOSPLIT,$0-16 MOV T1, x+0(FP) MOV T2, y+8(FP) JMP runtime·goPanicSliceAcap(SB) TEXT runtime·panicSliceAcapU(SB),NOSPLIT,$0-16 MOV T1, x+0(FP) MOV T2, y+8(FP) JMP runtime·goPanicSliceAcapU(SB) TEXT runtime·panicSliceB(SB),NOSPLIT,$0-16 MOV T0, x+0(FP) MOV T1, y+8(FP) JMP runtime·goPanicSliceB(SB) TEXT runtime·panicSliceBU(SB),NOSPLIT,$0-16 MOV T0, x+0(FP) MOV T1, y+8(FP) JMP runtime·goPanicSliceBU(SB) TEXT runtime·panicSlice3Alen(SB),NOSPLIT,$0-16 MOV T2, x+0(FP) MOV T3, y+8(FP) JMP runtime·goPanicSlice3Alen(SB) TEXT runtime·panicSlice3AlenU(SB),NOSPLIT,$0-16 MOV T2, x+0(FP) MOV T3, y+8(FP) JMP runtime·goPanicSlice3AlenU(SB) TEXT runtime·panicSlice3Acap(SB),NOSPLIT,$0-16 MOV T2, x+0(FP) MOV T3, y+8(FP) JMP runtime·goPanicSlice3Acap(SB) TEXT runtime·panicSlice3AcapU(SB),NOSPLIT,$0-16 MOV T2, x+0(FP) MOV T3, y+8(FP) JMP runtime·goPanicSlice3AcapU(SB) TEXT runtime·panicSlice3B(SB),NOSPLIT,$0-16 MOV T1, x+0(FP) MOV T2, y+8(FP) JMP runtime·goPanicSlice3B(SB) TEXT runtime·panicSlice3BU(SB),NOSPLIT,$0-16 MOV T1, x+0(FP) MOV T2, y+8(FP) JMP runtime·goPanicSlice3BU(SB) TEXT runtime·panicSlice3C(SB),NOSPLIT,$0-16 MOV T0, x+0(FP) MOV T1, y+8(FP) JMP runtime·goPanicSlice3C(SB) TEXT runtime·panicSlice3CU(SB),NOSPLIT,$0-16 MOV T0, x+0(FP) MOV T1, y+8(FP) JMP runtime·goPanicSlice3CU(SB) TEXT runtime·panicSliceConvert(SB),NOSPLIT,$0-16 MOV T2, x+0(FP) MOV T3, y+8(FP) JMP runtime·goPanicSliceConvert(SB) DATA runtime·mainPC+0(SB)/8,$runtime·main(SB) GLOBL runtime·mainPC(SB),RODATA,$8