// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Page heap. // // See malloc.go for overview. package runtime import ( "internal/cpu" "internal/goarch" "runtime/internal/atomic" "unsafe" ) const ( // minPhysPageSize is a lower-bound on the physical page size. The // true physical page size may be larger than this. In contrast, // sys.PhysPageSize is an upper-bound on the physical page size. minPhysPageSize = 4096 // maxPhysPageSize is the maximum page size the runtime supports. maxPhysPageSize = 512 << 10 // maxPhysHugePageSize sets an upper-bound on the maximum huge page size // that the runtime supports. maxPhysHugePageSize = pallocChunkBytes // pagesPerReclaimerChunk indicates how many pages to scan from the // pageInUse bitmap at a time. Used by the page reclaimer. // // Higher values reduce contention on scanning indexes (such as // h.reclaimIndex), but increase the minimum latency of the // operation. // // The time required to scan this many pages can vary a lot depending // on how many spans are actually freed. Experimentally, it can // scan for pages at ~300 GB/ms on a 2.6GHz Core i7, but can only // free spans at ~32 MB/ms. Using 512 pages bounds this at // roughly 100µs. // // Must be a multiple of the pageInUse bitmap element size and // must also evenly divide pagesPerArena. pagesPerReclaimerChunk = 512 // physPageAlignedStacks indicates whether stack allocations must be // physical page aligned. This is a requirement for MAP_STACK on // OpenBSD. physPageAlignedStacks = GOOS == "openbsd" ) // Main malloc heap. // The heap itself is the "free" and "scav" treaps, // but all the other global data is here too. // // mheap must not be heap-allocated because it contains mSpanLists, // which must not be heap-allocated. // //go:notinheap type mheap struct { // lock must only be acquired on the system stack, otherwise a g // could self-deadlock if its stack grows with the lock held. lock mutex pages pageAlloc // page allocation data structure sweepgen uint32 // sweep generation, see comment in mspan; written during STW // allspans is a slice of all mspans ever created. Each mspan // appears exactly once. // // The memory for allspans is manually managed and can be // reallocated and move as the heap grows. // // In general, allspans is protected by mheap_.lock, which // prevents concurrent access as well as freeing the backing // store. Accesses during STW might not hold the lock, but // must ensure that allocation cannot happen around the // access (since that may free the backing store). allspans []*mspan // all spans out there // _ uint32 // align uint64 fields on 32-bit for atomics // Proportional sweep // // These parameters represent a linear function from gcController.heapLive // to page sweep count. The proportional sweep system works to // stay in the black by keeping the current page sweep count // above this line at the current gcController.heapLive. // // The line has slope sweepPagesPerByte and passes through a // basis point at (sweepHeapLiveBasis, pagesSweptBasis). At // any given time, the system is at (gcController.heapLive, // pagesSwept) in this space. // // It is important that the line pass through a point we // control rather than simply starting at a 0,0 origin // because that lets us adjust sweep pacing at any time while // accounting for current progress. If we could only adjust // the slope, it would create a discontinuity in debt if any // progress has already been made. pagesInUse atomic.Uint64 // pages of spans in stats mSpanInUse pagesSwept atomic.Uint64 // pages swept this cycle pagesSweptBasis atomic.Uint64 // pagesSwept to use as the origin of the sweep ratio sweepHeapLiveBasis uint64 // value of gcController.heapLive to use as the origin of sweep ratio; written with lock, read without sweepPagesPerByte float64 // proportional sweep ratio; written with lock, read without // TODO(austin): pagesInUse should be a uintptr, but the 386 // compiler can't 8-byte align fields. // scavengeGoal is the amount of total retained heap memory (measured by // heapRetained) that the runtime will try to maintain by returning memory // to the OS. // // Accessed atomically. scavengeGoal uint64 // Page reclaimer state // reclaimIndex is the page index in allArenas of next page to // reclaim. Specifically, it refers to page (i % // pagesPerArena) of arena allArenas[i / pagesPerArena]. // // If this is >= 1<<63, the page reclaimer is done scanning // the page marks. reclaimIndex atomic.Uint64 // reclaimCredit is spare credit for extra pages swept. Since // the page reclaimer works in large chunks, it may reclaim // more than requested. Any spare pages released go to this // credit pool. reclaimCredit atomic.Uintptr // arenas is the heap arena map. It points to the metadata for // the heap for every arena frame of the entire usable virtual // address space. // // Use arenaIndex to compute indexes into this array. // // For regions of the address space that are not backed by the // Go heap, the arena map contains nil. // // Modifications are protected by mheap_.lock. Reads can be // performed without locking; however, a given entry can // transition from nil to non-nil at any time when the lock // isn't held. (Entries never transitions back to nil.) // // In general, this is a two-level mapping consisting of an L1 // map and possibly many L2 maps. This saves space when there // are a huge number of arena frames. However, on many // platforms (even 64-bit), arenaL1Bits is 0, making this // effectively a single-level map. In this case, arenas[0] // will never be nil. arenas [1 << arenaL1Bits]*[1 << arenaL2Bits]*heapArena // heapArenaAlloc is pre-reserved space for allocating heapArena // objects. This is only used on 32-bit, where we pre-reserve // this space to avoid interleaving it with the heap itself. heapArenaAlloc linearAlloc // arenaHints is a list of addresses at which to attempt to // add more heap arenas. This is initially populated with a // set of general hint addresses, and grown with the bounds of // actual heap arena ranges. arenaHints *arenaHint // arena is a pre-reserved space for allocating heap arenas // (the actual arenas). This is only used on 32-bit. arena linearAlloc // allArenas is the arenaIndex of every mapped arena. This can // be used to iterate through the address space. // // Access is protected by mheap_.lock. However, since this is // append-only and old backing arrays are never freed, it is // safe to acquire mheap_.lock, copy the slice header, and // then release mheap_.lock. allArenas []arenaIdx // sweepArenas is a snapshot of allArenas taken at the // beginning of the sweep cycle. This can be read safely by // simply blocking GC (by disabling preemption). sweepArenas []arenaIdx // markArenas is a snapshot of allArenas taken at the beginning // of the mark cycle. Because allArenas is append-only, neither // this slice nor its contents will change during the mark, so // it can be read safely. markArenas []arenaIdx // curArena is the arena that the heap is currently growing // into. This should always be physPageSize-aligned. curArena struct { base, end uintptr } _ uint32 // ensure 64-bit alignment of central // central free lists for small size classes. // the padding makes sure that the mcentrals are // spaced CacheLinePadSize bytes apart, so that each mcentral.lock // gets its own cache line. // central is indexed by spanClass. central [numSpanClasses]struct { mcentral mcentral pad [cpu.CacheLinePadSize - unsafe.Sizeof(mcentral{})%cpu.CacheLinePadSize]byte } spanalloc fixalloc // allocator for span* cachealloc fixalloc // allocator for mcache* specialfinalizeralloc fixalloc // allocator for specialfinalizer* specialprofilealloc fixalloc // allocator for specialprofile* specialReachableAlloc fixalloc // allocator for specialReachable speciallock mutex // lock for special record allocators. arenaHintAlloc fixalloc // allocator for arenaHints unused *specialfinalizer // never set, just here to force the specialfinalizer type into DWARF } var mheap_ mheap // A heapArena stores metadata for a heap arena. heapArenas are stored // outside of the Go heap and accessed via the mheap_.arenas index. // //go:notinheap type heapArena struct { // bitmap stores the pointer/scalar bitmap for the words in // this arena. See mbitmap.go for a description. Use the // heapBits type to access this. bitmap [heapArenaBitmapBytes]byte // spans maps from virtual address page ID within this arena to *mspan. // For allocated spans, their pages map to the span itself. // For free spans, only the lowest and highest pages map to the span itself. // Internal pages map to an arbitrary span. // For pages that have never been allocated, spans entries are nil. // // Modifications are protected by mheap.lock. Reads can be // performed without locking, but ONLY from indexes that are // known to contain in-use or stack spans. This means there // must not be a safe-point between establishing that an // address is live and looking it up in the spans array. spans [pagesPerArena]*mspan // pageInUse is a bitmap that indicates which spans are in // state mSpanInUse. This bitmap is indexed by page number, // but only the bit corresponding to the first page in each // span is used. // // Reads and writes are atomic. pageInUse [pagesPerArena / 8]uint8 // pageMarks is a bitmap that indicates which spans have any // marked objects on them. Like pageInUse, only the bit // corresponding to the first page in each span is used. // // Writes are done atomically during marking. Reads are // non-atomic and lock-free since they only occur during // sweeping (and hence never race with writes). // // This is used to quickly find whole spans that can be freed. // // TODO(austin): It would be nice if this was uint64 for // faster scanning, but we don't have 64-bit atomic bit // operations. pageMarks [pagesPerArena / 8]uint8 // pageSpecials is a bitmap that indicates which spans have // specials (finalizers or other). Like pageInUse, only the bit // corresponding to the first page in each span is used. // // Writes are done atomically whenever a special is added to // a span and whenever the last special is removed from a span. // Reads are done atomically to find spans containing specials // during marking. pageSpecials [pagesPerArena / 8]uint8 // checkmarks stores the debug.gccheckmark state. It is only // used if debug.gccheckmark > 0. checkmarks *checkmarksMap // zeroedBase marks the first byte of the first page in this // arena which hasn't been used yet and is therefore already // zero. zeroedBase is relative to the arena base. // Increases monotonically until it hits heapArenaBytes. // // This field is sufficient to determine if an allocation // needs to be zeroed because the page allocator follows an // address-ordered first-fit policy. // // Read atomically and written with an atomic CAS. zeroedBase uintptr } // arenaHint is a hint for where to grow the heap arenas. See // mheap_.arenaHints. // //go:notinheap type arenaHint struct { addr uintptr down bool next *arenaHint } // An mspan is a run of pages. // // When a mspan is in the heap free treap, state == mSpanFree // and heapmap(s->start) == span, heapmap(s->start+s->npages-1) == span. // If the mspan is in the heap scav treap, then in addition to the // above scavenged == true. scavenged == false in all other cases. // // When a mspan is allocated, state == mSpanInUse or mSpanManual // and heapmap(i) == span for all s->start <= i < s->start+s->npages. // Every mspan is in one doubly-linked list, either in the mheap's // busy list or one of the mcentral's span lists. // An mspan representing actual memory has state mSpanInUse, // mSpanManual, or mSpanFree. Transitions between these states are // constrained as follows: // // * A span may transition from free to in-use or manual during any GC // phase. // // * During sweeping (gcphase == _GCoff), a span may transition from // in-use to free (as a result of sweeping) or manual to free (as a // result of stacks being freed). // // * During GC (gcphase != _GCoff), a span *must not* transition from // manual or in-use to free. Because concurrent GC may read a pointer // and then look up its span, the span state must be monotonic. // // Setting mspan.state to mSpanInUse or mSpanManual must be done // atomically and only after all other span fields are valid. // Likewise, if inspecting a span is contingent on it being // mSpanInUse, the state should be loaded atomically and checked // before depending on other fields. This allows the garbage collector // to safely deal with potentially invalid pointers, since resolving // such pointers may race with a span being allocated. type mSpanState uint8 const ( mSpanDead mSpanState = iota mSpanInUse // allocated for garbage collected heap mSpanManual // allocated for manual management (e.g., stack allocator) ) // mSpanStateNames are the names of the span states, indexed by // mSpanState. var mSpanStateNames = []string{ "mSpanDead", "mSpanInUse", "mSpanManual", "mSpanFree", } // mSpanStateBox holds an mSpanState and provides atomic operations on // it. This is a separate type to disallow accidental comparison or // assignment with mSpanState. type mSpanStateBox struct { s mSpanState } func (b *mSpanStateBox) set(s mSpanState) { atomic.Store8((*uint8)(&b.s), uint8(s)) } func (b *mSpanStateBox) get() mSpanState { return mSpanState(atomic.Load8((*uint8)(&b.s))) } // mSpanList heads a linked list of spans. // //go:notinheap type mSpanList struct { first *mspan // first span in list, or nil if none last *mspan // last span in list, or nil if none } //go:notinheap type mspan struct { next *mspan // next span in list, or nil if none prev *mspan // previous span in list, or nil if none list *mSpanList // For debugging. TODO: Remove. startAddr uintptr // address of first byte of span aka s.base() npages uintptr // number of pages in span manualFreeList gclinkptr // list of free objects in mSpanManual spans // freeindex is the slot index between 0 and nelems at which to begin scanning // for the next free object in this span. // Each allocation scans allocBits starting at freeindex until it encounters a 0 // indicating a free object. freeindex is then adjusted so that subsequent scans begin // just past the newly discovered free object. // // If freeindex == nelem, this span has no free objects. // // allocBits is a bitmap of objects in this span. // If n >= freeindex and allocBits[n/8] & (1<<(n%8)) is 0 // then object n is free; // otherwise, object n is allocated. Bits starting at nelem are // undefined and should never be referenced. // // Object n starts at address n*elemsize + (start << pageShift). freeindex uintptr // TODO: Look up nelems from sizeclass and remove this field if it // helps performance. nelems uintptr // number of object in the span. // Cache of the allocBits at freeindex. allocCache is shifted // such that the lowest bit corresponds to the bit freeindex. // allocCache holds the complement of allocBits, thus allowing // ctz (count trailing zero) to use it directly. // allocCache may contain bits beyond s.nelems; the caller must ignore // these. allocCache uint64 // allocBits and gcmarkBits hold pointers to a span's mark and // allocation bits. The pointers are 8 byte aligned. // There are three arenas where this data is held. // free: Dirty arenas that are no longer accessed // and can be reused. // next: Holds information to be used in the next GC cycle. // current: Information being used during this GC cycle. // previous: Information being used during the last GC cycle. // A new GC cycle starts with the call to finishsweep_m. // finishsweep_m moves the previous arena to the free arena, // the current arena to the previous arena, and // the next arena to the current arena. // The next arena is populated as the spans request // memory to hold gcmarkBits for the next GC cycle as well // as allocBits for newly allocated spans. // // The pointer arithmetic is done "by hand" instead of using // arrays to avoid bounds checks along critical performance // paths. // The sweep will free the old allocBits and set allocBits to the // gcmarkBits. The gcmarkBits are replaced with a fresh zeroed // out memory. allocBits *gcBits gcmarkBits *gcBits // sweep generation: // if sweepgen == h->sweepgen - 2, the span needs sweeping // if sweepgen == h->sweepgen - 1, the span is currently being swept // if sweepgen == h->sweepgen, the span is swept and ready to use // if sweepgen == h->sweepgen + 1, the span was cached before sweep began and is still cached, and needs sweeping // if sweepgen == h->sweepgen + 3, the span was swept and then cached and is still cached // h->sweepgen is incremented by 2 after every GC sweepgen uint32 divMul uint32 // for divide by elemsize allocCount uint16 // number of allocated objects spanclass spanClass // size class and noscan (uint8) state mSpanStateBox // mSpanInUse etc; accessed atomically (get/set methods) needzero uint8 // needs to be zeroed before allocation elemsize uintptr // computed from sizeclass or from npages limit uintptr // end of data in span speciallock mutex // guards specials list specials *special // linked list of special records sorted by offset. // freeIndexForScan is like freeindex, except that freeindex is // used by the allocator whereas freeIndexForScan is used by the // GC scanner. They are two fields so that the GC sees the object // is allocated only when the object and the heap bits are // initialized (see also the assignment of freeIndexForScan in // mallocgc, and issue 54596). freeIndexForScan uintptr } func (s *mspan) base() uintptr { return s.startAddr } func (s *mspan) layout() (size, n, total uintptr) { total = s.npages << _PageShift size = s.elemsize if size > 0 { n = total / size } return } // recordspan adds a newly allocated span to h.allspans. // // This only happens the first time a span is allocated from // mheap.spanalloc (it is not called when a span is reused). // // Write barriers are disallowed here because it can be called from // gcWork when allocating new workbufs. However, because it's an // indirect call from the fixalloc initializer, the compiler can't see // this. // // The heap lock must be held. // //go:nowritebarrierrec func recordspan(vh unsafe.Pointer, p unsafe.Pointer) { h := (*mheap)(vh) s := (*mspan)(p) assertLockHeld(&h.lock) if len(h.allspans) >= cap(h.allspans) { n := 64 * 1024 / goarch.PtrSize if n < cap(h.allspans)*3/2 { n = cap(h.allspans) * 3 / 2 } var new []*mspan sp := (*slice)(unsafe.Pointer(&new)) sp.array = sysAlloc(uintptr(n)*goarch.PtrSize, &memstats.other_sys) if sp.array == nil { throw("runtime: cannot allocate memory") } sp.len = len(h.allspans) sp.cap = n if len(h.allspans) > 0 { copy(new, h.allspans) } oldAllspans := h.allspans *(*notInHeapSlice)(unsafe.Pointer(&h.allspans)) = *(*notInHeapSlice)(unsafe.Pointer(&new)) if len(oldAllspans) != 0 { sysFree(unsafe.Pointer(&oldAllspans[0]), uintptr(cap(oldAllspans))*unsafe.Sizeof(oldAllspans[0]), &memstats.other_sys) } } h.allspans = h.allspans[:len(h.allspans)+1] h.allspans[len(h.allspans)-1] = s } // A spanClass represents the size class and noscan-ness of a span. // // Each size class has a noscan spanClass and a scan spanClass. The // noscan spanClass contains only noscan objects, which do not contain // pointers and thus do not need to be scanned by the garbage // collector. type spanClass uint8 const ( numSpanClasses = _NumSizeClasses << 1 tinySpanClass = spanClass(tinySizeClass<<1 | 1) ) func makeSpanClass(sizeclass uint8, noscan bool) spanClass { return spanClass(sizeclass<<1) | spanClass(bool2int(noscan)) } func (sc spanClass) sizeclass() int8 { return int8(sc >> 1) } func (sc spanClass) noscan() bool { return sc&1 != 0 } // arenaIndex returns the index into mheap_.arenas of the arena // containing metadata for p. This index combines of an index into the // L1 map and an index into the L2 map and should be used as // mheap_.arenas[ai.l1()][ai.l2()]. // // If p is outside the range of valid heap addresses, either l1() or // l2() will be out of bounds. // // It is nosplit because it's called by spanOf and several other // nosplit functions. // //go:nosplit func arenaIndex(p uintptr) arenaIdx { return arenaIdx((p - arenaBaseOffset) / heapArenaBytes) } // arenaBase returns the low address of the region covered by heap // arena i. func arenaBase(i arenaIdx) uintptr { return uintptr(i)*heapArenaBytes + arenaBaseOffset } type arenaIdx uint func (i arenaIdx) l1() uint { if arenaL1Bits == 0 { // Let the compiler optimize this away if there's no // L1 map. return 0 } else { return uint(i) >> arenaL1Shift } } func (i arenaIdx) l2() uint { if arenaL1Bits == 0 { return uint(i) } else { return uint(i) & (1<= uint(len(mheap_.arenas[0])) { return nil } } else { // If there's an L1, then ri.l1() can be out of bounds but ri.l2() can't. if ri.l1() >= uint(len(mheap_.arenas)) { return nil } } l2 := mheap_.arenas[ri.l1()] if arenaL1Bits != 0 && l2 == nil { // Should never happen if there's no L1. return nil } ha := l2[ri.l2()] if ha == nil { return nil } return ha.spans[(p/pageSize)%pagesPerArena] } // spanOfUnchecked is equivalent to spanOf, but the caller must ensure // that p points into an allocated heap arena. // // Must be nosplit because it has callers that are nosplit. // //go:nosplit func spanOfUnchecked(p uintptr) *mspan { ai := arenaIndex(p) return mheap_.arenas[ai.l1()][ai.l2()].spans[(p/pageSize)%pagesPerArena] } // spanOfHeap is like spanOf, but returns nil if p does not point to a // heap object. // // Must be nosplit because it has callers that are nosplit. // //go:nosplit func spanOfHeap(p uintptr) *mspan { s := spanOf(p) // s is nil if it's never been allocated. Otherwise, we check // its state first because we don't trust this pointer, so we // have to synchronize with span initialization. Then, it's // still possible we picked up a stale span pointer, so we // have to check the span's bounds. if s == nil || s.state.get() != mSpanInUse || p < s.base() || p >= s.limit { return nil } return s } // pageIndexOf returns the arena, page index, and page mask for pointer p. // The caller must ensure p is in the heap. func pageIndexOf(p uintptr) (arena *heapArena, pageIdx uintptr, pageMask uint8) { ai := arenaIndex(p) arena = mheap_.arenas[ai.l1()][ai.l2()] pageIdx = ((p / pageSize) / 8) % uintptr(len(arena.pageInUse)) pageMask = byte(1 << ((p / pageSize) % 8)) return } // Initialize the heap. func (h *mheap) init() { lockInit(&h.lock, lockRankMheap) lockInit(&h.speciallock, lockRankMheapSpecial) h.spanalloc.init(unsafe.Sizeof(mspan{}), recordspan, unsafe.Pointer(h), &memstats.mspan_sys) h.cachealloc.init(unsafe.Sizeof(mcache{}), nil, nil, &memstats.mcache_sys) h.specialfinalizeralloc.init(unsafe.Sizeof(specialfinalizer{}), nil, nil, &memstats.other_sys) h.specialprofilealloc.init(unsafe.Sizeof(specialprofile{}), nil, nil, &memstats.other_sys) h.specialReachableAlloc.init(unsafe.Sizeof(specialReachable{}), nil, nil, &memstats.other_sys) h.arenaHintAlloc.init(unsafe.Sizeof(arenaHint{}), nil, nil, &memstats.other_sys) // Don't zero mspan allocations. Background sweeping can // inspect a span concurrently with allocating it, so it's // important that the span's sweepgen survive across freeing // and re-allocating a span to prevent background sweeping // from improperly cas'ing it from 0. // // This is safe because mspan contains no heap pointers. h.spanalloc.zero = false // h->mapcache needs no init for i := range h.central { h.central[i].mcentral.init(spanClass(i)) } h.pages.init(&h.lock, &memstats.gcMiscSys) } // reclaim sweeps and reclaims at least npage pages into the heap. // It is called before allocating npage pages to keep growth in check. // // reclaim implements the page-reclaimer half of the sweeper. // // h.lock must NOT be held. func (h *mheap) reclaim(npage uintptr) { // TODO(austin): Half of the time spent freeing spans is in // locking/unlocking the heap (even with low contention). We // could make the slow path here several times faster by // batching heap frees. // Bail early if there's no more reclaim work. if h.reclaimIndex.Load() >= 1<<63 { return } // Disable preemption so the GC can't start while we're // sweeping, so we can read h.sweepArenas, and so // traceGCSweepStart/Done pair on the P. mp := acquirem() if trace.enabled { traceGCSweepStart() } arenas := h.sweepArenas locked := false for npage > 0 { // Pull from accumulated credit first. if credit := h.reclaimCredit.Load(); credit > 0 { take := credit if take > npage { // Take only what we need. take = npage } if h.reclaimCredit.CompareAndSwap(credit, credit-take) { npage -= take } continue } // Claim a chunk of work. idx := uintptr(h.reclaimIndex.Add(pagesPerReclaimerChunk) - pagesPerReclaimerChunk) if idx/pagesPerArena >= uintptr(len(arenas)) { // Page reclaiming is done. h.reclaimIndex.Store(1 << 63) break } if !locked { // Lock the heap for reclaimChunk. lock(&h.lock) locked = true } // Scan this chunk. nfound := h.reclaimChunk(arenas, idx, pagesPerReclaimerChunk) if nfound <= npage { npage -= nfound } else { // Put spare pages toward global credit. h.reclaimCredit.Add(nfound - npage) npage = 0 } } if locked { unlock(&h.lock) } if trace.enabled { traceGCSweepDone() } releasem(mp) } // reclaimChunk sweeps unmarked spans that start at page indexes [pageIdx, pageIdx+n). // It returns the number of pages returned to the heap. // // h.lock must be held and the caller must be non-preemptible. Note: h.lock may be // temporarily unlocked and re-locked in order to do sweeping or if tracing is // enabled. func (h *mheap) reclaimChunk(arenas []arenaIdx, pageIdx, n uintptr) uintptr { // The heap lock must be held because this accesses the // heapArena.spans arrays using potentially non-live pointers. // In particular, if a span were freed and merged concurrently // with this probing heapArena.spans, it would be possible to // observe arbitrary, stale span pointers. assertLockHeld(&h.lock) n0 := n var nFreed uintptr sl := sweep.active.begin() if !sl.valid { return 0 } for n > 0 { ai := arenas[pageIdx/pagesPerArena] ha := h.arenas[ai.l1()][ai.l2()] // Get a chunk of the bitmap to work on. arenaPage := uint(pageIdx % pagesPerArena) inUse := ha.pageInUse[arenaPage/8:] marked := ha.pageMarks[arenaPage/8:] if uintptr(len(inUse)) > n/8 { inUse = inUse[:n/8] marked = marked[:n/8] } // Scan this bitmap chunk for spans that are in-use // but have no marked objects on them. for i := range inUse { inUseUnmarked := atomic.Load8(&inUse[i]) &^ marked[i] if inUseUnmarked == 0 { continue } for j := uint(0); j < 8; j++ { if inUseUnmarked&(1< 0 { ai := arenaIndex(base) ha := h.arenas[ai.l1()][ai.l2()] zeroedBase := atomic.Loaduintptr(&ha.zeroedBase) arenaBase := base % heapArenaBytes if arenaBase < zeroedBase { // We extended into the non-zeroed part of the // arena, so this region needs to be zeroed before use. // // zeroedBase is monotonically increasing, so if we see this now then // we can be sure we need to zero this memory region. // // We still need to update zeroedBase for this arena, and // potentially more arenas. needZero = true } // We may observe arenaBase > zeroedBase if we're racing with one or more // allocations which are acquiring memory directly before us in the address // space. But, because we know no one else is acquiring *this* memory, it's // still safe to not zero. // Compute how far into the arena we extend into, capped // at heapArenaBytes. arenaLimit := arenaBase + npage*pageSize if arenaLimit > heapArenaBytes { arenaLimit = heapArenaBytes } // Increase ha.zeroedBase so it's >= arenaLimit. // We may be racing with other updates. for arenaLimit > zeroedBase { if atomic.Casuintptr(&ha.zeroedBase, zeroedBase, arenaLimit) { break } zeroedBase = atomic.Loaduintptr(&ha.zeroedBase) // Double check basic conditions of zeroedBase. if zeroedBase <= arenaLimit && zeroedBase > arenaBase { // The zeroedBase moved into the space we were trying to // claim. That's very bad, and indicates someone allocated // the same region we did. throw("potentially overlapping in-use allocations detected") } } // Move base forward and subtract from npage to move into // the next arena, or finish. base += arenaLimit - arenaBase npage -= (arenaLimit - arenaBase) / pageSize } return } // tryAllocMSpan attempts to allocate an mspan object from // the P-local cache, but may fail. // // h.lock need not be held. // // This caller must ensure that its P won't change underneath // it during this function. Currently to ensure that we enforce // that the function is run on the system stack, because that's // the only place it is used now. In the future, this requirement // may be relaxed if its use is necessary elsewhere. // //go:systemstack func (h *mheap) tryAllocMSpan() *mspan { pp := getg().m.p.ptr() // If we don't have a p or the cache is empty, we can't do // anything here. if pp == nil || pp.mspancache.len == 0 { return nil } // Pull off the last entry in the cache. s := pp.mspancache.buf[pp.mspancache.len-1] pp.mspancache.len-- return s } // allocMSpanLocked allocates an mspan object. // // h.lock must be held. // // allocMSpanLocked must be called on the system stack because // its caller holds the heap lock. See mheap for details. // Running on the system stack also ensures that we won't // switch Ps during this function. See tryAllocMSpan for details. // //go:systemstack func (h *mheap) allocMSpanLocked() *mspan { assertLockHeld(&h.lock) pp := getg().m.p.ptr() if pp == nil { // We don't have a p so just do the normal thing. return (*mspan)(h.spanalloc.alloc()) } // Refill the cache if necessary. if pp.mspancache.len == 0 { const refillCount = len(pp.mspancache.buf) / 2 for i := 0; i < refillCount; i++ { pp.mspancache.buf[i] = (*mspan)(h.spanalloc.alloc()) } pp.mspancache.len = refillCount } // Pull off the last entry in the cache. s := pp.mspancache.buf[pp.mspancache.len-1] pp.mspancache.len-- return s } // freeMSpanLocked free an mspan object. // // h.lock must be held. // // freeMSpanLocked must be called on the system stack because // its caller holds the heap lock. See mheap for details. // Running on the system stack also ensures that we won't // switch Ps during this function. See tryAllocMSpan for details. // //go:systemstack func (h *mheap) freeMSpanLocked(s *mspan) { assertLockHeld(&h.lock) pp := getg().m.p.ptr() // First try to free the mspan directly to the cache. if pp != nil && pp.mspancache.len < len(pp.mspancache.buf) { pp.mspancache.buf[pp.mspancache.len] = s pp.mspancache.len++ return } // Failing that (or if we don't have a p), just free it to // the heap. h.spanalloc.free(unsafe.Pointer(s)) } // allocSpan allocates an mspan which owns npages worth of memory. // // If typ.manual() == false, allocSpan allocates a heap span of class spanclass // and updates heap accounting. If manual == true, allocSpan allocates a // manually-managed span (spanclass is ignored), and the caller is // responsible for any accounting related to its use of the span. Either // way, allocSpan will atomically add the bytes in the newly allocated // span to *sysStat. // // The returned span is fully initialized. // // h.lock must not be held. // // allocSpan must be called on the system stack both because it acquires // the heap lock and because it must block GC transitions. // //go:systemstack func (h *mheap) allocSpan(npages uintptr, typ spanAllocType, spanclass spanClass) (s *mspan) { // Function-global state. gp := getg() base, scav := uintptr(0), uintptr(0) growth := uintptr(0) // On some platforms we need to provide physical page aligned stack // allocations. Where the page size is less than the physical page // size, we already manage to do this by default. needPhysPageAlign := physPageAlignedStacks && typ == spanAllocStack && pageSize < physPageSize // If the allocation is small enough, try the page cache! // The page cache does not support aligned allocations, so we cannot use // it if we need to provide a physical page aligned stack allocation. pp := gp.m.p.ptr() if !needPhysPageAlign && pp != nil && npages < pageCachePages/4 { c := &pp.pcache // If the cache is empty, refill it. if c.empty() { lock(&h.lock) *c = h.pages.allocToCache() unlock(&h.lock) } // Try to allocate from the cache. base, scav = c.alloc(npages) if base != 0 { s = h.tryAllocMSpan() if s != nil { goto HaveSpan } // We have a base but no mspan, so we need // to lock the heap. } } // For one reason or another, we couldn't get the // whole job done without the heap lock. lock(&h.lock) if needPhysPageAlign { // Overallocate by a physical page to allow for later alignment. npages += physPageSize / pageSize } if base == 0 { // Try to acquire a base address. base, scav = h.pages.alloc(npages) if base == 0 { var ok bool growth, ok = h.grow(npages) if !ok { unlock(&h.lock) return nil } base, scav = h.pages.alloc(npages) if base == 0 { throw("grew heap, but no adequate free space found") } } } if s == nil { // We failed to get an mspan earlier, so grab // one now that we have the heap lock. s = h.allocMSpanLocked() } if needPhysPageAlign { allocBase, allocPages := base, npages base = alignUp(allocBase, physPageSize) npages -= physPageSize / pageSize // Return memory around the aligned allocation. spaceBefore := base - allocBase if spaceBefore > 0 { h.pages.free(allocBase, spaceBefore/pageSize, false) } spaceAfter := (allocPages-npages)*pageSize - spaceBefore if spaceAfter > 0 { h.pages.free(base+npages*pageSize, spaceAfter/pageSize, false) } } unlock(&h.lock) if growth > 0 { // We just caused a heap growth, so scavenge down what will soon be used. // By scavenging inline we deal with the failure to allocate out of // memory fragments by scavenging the memory fragments that are least // likely to be re-used. scavengeGoal := atomic.Load64(&h.scavengeGoal) if retained := heapRetained(); retained+uint64(growth) > scavengeGoal { // The scavenging algorithm requires the heap lock to be dropped so it // can acquire it only sparingly. This is a potentially expensive operation // so it frees up other goroutines to allocate in the meanwhile. In fact, // they can make use of the growth we just created. todo := growth if overage := uintptr(retained + uint64(growth) - scavengeGoal); todo > overage { todo = overage } h.pages.scavenge(todo) } } HaveSpan: // At this point, both s != nil and base != 0, and the heap // lock is no longer held. Initialize the span. s.init(base, npages) if h.allocNeedsZero(base, npages) { s.needzero = 1 } nbytes := npages * pageSize if typ.manual() { s.manualFreeList = 0 s.nelems = 0 s.limit = s.base() + s.npages*pageSize s.state.set(mSpanManual) } else { // We must set span properties before the span is published anywhere // since we're not holding the heap lock. s.spanclass = spanclass if sizeclass := spanclass.sizeclass(); sizeclass == 0 { s.elemsize = nbytes s.nelems = 1 s.divMul = 0 } else { s.elemsize = uintptr(class_to_size[sizeclass]) s.nelems = nbytes / s.elemsize s.divMul = class_to_divmagic[sizeclass] } // Initialize mark and allocation structures. s.freeindex = 0 s.freeIndexForScan = 0 s.allocCache = ^uint64(0) // all 1s indicating all free. s.gcmarkBits = newMarkBits(s.nelems) s.allocBits = newAllocBits(s.nelems) // It's safe to access h.sweepgen without the heap lock because it's // only ever updated with the world stopped and we run on the // systemstack which blocks a STW transition. atomic.Store(&s.sweepgen, h.sweepgen) // Now that the span is filled in, set its state. This // is a publication barrier for the other fields in // the span. While valid pointers into this span // should never be visible until the span is returned, // if the garbage collector finds an invalid pointer, // access to the span may race with initialization of // the span. We resolve this race by atomically // setting the state after the span is fully // initialized, and atomically checking the state in // any situation where a pointer is suspect. s.state.set(mSpanInUse) } // Commit and account for any scavenged memory that the span now owns. if scav != 0 { // sysUsed all the pages that are actually available // in the span since some of them might be scavenged. sysUsed(unsafe.Pointer(base), nbytes) atomic.Xadd64(&memstats.heap_released, -int64(scav)) } // Update stats. if typ == spanAllocHeap { atomic.Xadd64(&memstats.heap_inuse, int64(nbytes)) } if typ.manual() { // Manually managed memory doesn't count toward heap_sys. memstats.heap_sys.add(-int64(nbytes)) } // Update consistent stats. stats := memstats.heapStats.acquire() atomic.Xaddint64(&stats.committed, int64(scav)) atomic.Xaddint64(&stats.released, -int64(scav)) switch typ { case spanAllocHeap: atomic.Xaddint64(&stats.inHeap, int64(nbytes)) case spanAllocStack: atomic.Xaddint64(&stats.inStacks, int64(nbytes)) case spanAllocPtrScalarBits: atomic.Xaddint64(&stats.inPtrScalarBits, int64(nbytes)) case spanAllocWorkBuf: atomic.Xaddint64(&stats.inWorkBufs, int64(nbytes)) } memstats.heapStats.release() // Publish the span in various locations. // This is safe to call without the lock held because the slots // related to this span will only ever be read or modified by // this thread until pointers into the span are published (and // we execute a publication barrier at the end of this function // before that happens) or pageInUse is updated. h.setSpans(s.base(), npages, s) if !typ.manual() { // Mark in-use span in arena page bitmap. // // This publishes the span to the page sweeper, so // it's imperative that the span be completely initialized // prior to this line. arena, pageIdx, pageMask := pageIndexOf(s.base()) atomic.Or8(&arena.pageInUse[pageIdx], pageMask) // Update related page sweeper stats. h.pagesInUse.Add(int64(npages)) } // Make sure the newly allocated span will be observed // by the GC before pointers into the span are published. publicationBarrier() return s } // Try to add at least npage pages of memory to the heap, // returning how much the heap grew by and whether it worked. // // h.lock must be held. func (h *mheap) grow(npage uintptr) (uintptr, bool) { assertLockHeld(&h.lock) // We must grow the heap in whole palloc chunks. // We call sysMap below but note that because we // round up to pallocChunkPages which is on the order // of MiB (generally >= to the huge page size) we // won't be calling it too much. ask := alignUp(npage, pallocChunkPages) * pageSize totalGrowth := uintptr(0) // This may overflow because ask could be very large // and is otherwise unrelated to h.curArena.base. end := h.curArena.base + ask nBase := alignUp(end, physPageSize) if nBase > h.curArena.end || /* overflow */ end < h.curArena.base { // Not enough room in the current arena. Allocate more // arena space. This may not be contiguous with the // current arena, so we have to request the full ask. av, asize := h.sysAlloc(ask) if av == nil { print("runtime: out of memory: cannot allocate ", ask, "-byte block (", memstats.heap_sys, " in use)\n") return 0, false } if uintptr(av) == h.curArena.end { // The new space is contiguous with the old // space, so just extend the current space. h.curArena.end = uintptr(av) + asize } else { // The new space is discontiguous. Track what // remains of the current space and switch to // the new space. This should be rare. if size := h.curArena.end - h.curArena.base; size != 0 { // Transition this space from Reserved to Prepared and mark it // as released since we'll be able to start using it after updating // the page allocator and releasing the lock at any time. sysMap(unsafe.Pointer(h.curArena.base), size, &memstats.heap_sys) // Update stats. atomic.Xadd64(&memstats.heap_released, int64(size)) stats := memstats.heapStats.acquire() atomic.Xaddint64(&stats.released, int64(size)) memstats.heapStats.release() // Update the page allocator's structures to make this // space ready for allocation. h.pages.grow(h.curArena.base, size) totalGrowth += size } // Switch to the new space. h.curArena.base = uintptr(av) h.curArena.end = uintptr(av) + asize } // Recalculate nBase. // We know this won't overflow, because sysAlloc returned // a valid region starting at h.curArena.base which is at // least ask bytes in size. nBase = alignUp(h.curArena.base+ask, physPageSize) } // Grow into the current arena. v := h.curArena.base h.curArena.base = nBase // Transition the space we're going to use from Reserved to Prepared. sysMap(unsafe.Pointer(v), nBase-v, &memstats.heap_sys) // The memory just allocated counts as both released // and idle, even though it's not yet backed by spans. // // The allocation is always aligned to the heap arena // size which is always > physPageSize, so its safe to // just add directly to heap_released. atomic.Xadd64(&memstats.heap_released, int64(nBase-v)) stats := memstats.heapStats.acquire() atomic.Xaddint64(&stats.released, int64(nBase-v)) memstats.heapStats.release() // Update the page allocator's structures to make this // space ready for allocation. h.pages.grow(v, nBase-v) totalGrowth += nBase - v return totalGrowth, true } // Free the span back into the heap. func (h *mheap) freeSpan(s *mspan) { systemstack(func() { lock(&h.lock) if msanenabled { // Tell msan that this entire span is no longer in use. base := unsafe.Pointer(s.base()) bytes := s.npages << _PageShift msanfree(base, bytes) } if asanenabled { // Tell asan that this entire span is no longer in use. base := unsafe.Pointer(s.base()) bytes := s.npages << _PageShift asanpoison(base, bytes) } h.freeSpanLocked(s, spanAllocHeap) unlock(&h.lock) }) } // freeManual frees a manually-managed span returned by allocManual. // typ must be the same as the spanAllocType passed to the allocManual that // allocated s. // // This must only be called when gcphase == _GCoff. See mSpanState for // an explanation. // // freeManual must be called on the system stack because it acquires // the heap lock. See mheap for details. // //go:systemstack func (h *mheap) freeManual(s *mspan, typ spanAllocType) { s.needzero = 1 lock(&h.lock) h.freeSpanLocked(s, typ) unlock(&h.lock) } func (h *mheap) freeSpanLocked(s *mspan, typ spanAllocType) { assertLockHeld(&h.lock) switch s.state.get() { case mSpanManual: if s.allocCount != 0 { throw("mheap.freeSpanLocked - invalid stack free") } case mSpanInUse: if s.allocCount != 0 || s.sweepgen != h.sweepgen { print("mheap.freeSpanLocked - span ", s, " ptr ", hex(s.base()), " allocCount ", s.allocCount, " sweepgen ", s.sweepgen, "/", h.sweepgen, "\n") throw("mheap.freeSpanLocked - invalid free") } h.pagesInUse.Add(-int64(s.npages)) // Clear in-use bit in arena page bitmap. arena, pageIdx, pageMask := pageIndexOf(s.base()) atomic.And8(&arena.pageInUse[pageIdx], ^pageMask) default: throw("mheap.freeSpanLocked - invalid span state") } // Update stats. // // Mirrors the code in allocSpan. nbytes := s.npages * pageSize if typ == spanAllocHeap { atomic.Xadd64(&memstats.heap_inuse, -int64(nbytes)) } if typ.manual() { // Manually managed memory doesn't count toward heap_sys, so add it back. memstats.heap_sys.add(int64(nbytes)) } // Update consistent stats. stats := memstats.heapStats.acquire() switch typ { case spanAllocHeap: atomic.Xaddint64(&stats.inHeap, -int64(nbytes)) case spanAllocStack: atomic.Xaddint64(&stats.inStacks, -int64(nbytes)) case spanAllocPtrScalarBits: atomic.Xaddint64(&stats.inPtrScalarBits, -int64(nbytes)) case spanAllocWorkBuf: atomic.Xaddint64(&stats.inWorkBufs, -int64(nbytes)) } memstats.heapStats.release() // Mark the space as free. h.pages.free(s.base(), s.npages, false) // Free the span structure. We no longer have a use for it. s.state.set(mSpanDead) h.freeMSpanLocked(s) } // scavengeAll acquires the heap lock (blocking any additional // manipulation of the page allocator) and iterates over the whole // heap, scavenging every free page available. func (h *mheap) scavengeAll() { // Disallow malloc or panic while holding the heap lock. We do // this here because this is a non-mallocgc entry-point to // the mheap API. gp := getg() gp.m.mallocing++ lock(&h.lock) // Start a new scavenge generation so we have a chance to walk // over the whole heap. h.pages.scavengeStartGen() unlock(&h.lock) released := h.pages.scavenge(^uintptr(0)) lock(&h.pages.scav.lock) gen := h.pages.scav.gen unlock(&h.pages.scav.lock) gp.m.mallocing-- if debug.scavtrace > 0 { printScavTrace(gen, released, true) } } //go:linkname runtime_debug_freeOSMemory runtime/debug.freeOSMemory func runtime_debug_freeOSMemory() { GC() systemstack(func() { mheap_.scavengeAll() }) } // Initialize a new span with the given start and npages. func (span *mspan) init(base uintptr, npages uintptr) { // span is *not* zeroed. span.next = nil span.prev = nil span.list = nil span.startAddr = base span.npages = npages span.allocCount = 0 span.spanclass = 0 span.elemsize = 0 span.speciallock.key = 0 span.specials = nil span.needzero = 0 span.freeindex = 0 span.freeIndexForScan = 0 span.allocBits = nil span.gcmarkBits = nil span.state.set(mSpanDead) lockInit(&span.speciallock, lockRankMspanSpecial) } func (span *mspan) inList() bool { return span.list != nil } // Initialize an empty doubly-linked list. func (list *mSpanList) init() { list.first = nil list.last = nil } func (list *mSpanList) remove(span *mspan) { if span.list != list { print("runtime: failed mSpanList.remove span.npages=", span.npages, " span=", span, " prev=", span.prev, " span.list=", span.list, " list=", list, "\n") throw("mSpanList.remove") } if list.first == span { list.first = span.next } else { span.prev.next = span.next } if list.last == span { list.last = span.prev } else { span.next.prev = span.prev } span.next = nil span.prev = nil span.list = nil } func (list *mSpanList) isEmpty() bool { return list.first == nil } func (list *mSpanList) insert(span *mspan) { if span.next != nil || span.prev != nil || span.list != nil { println("runtime: failed mSpanList.insert", span, span.next, span.prev, span.list) throw("mSpanList.insert") } span.next = list.first if list.first != nil { // The list contains at least one span; link it in. // The last span in the list doesn't change. list.first.prev = span } else { // The list contains no spans, so this is also the last span. list.last = span } list.first = span span.list = list } func (list *mSpanList) insertBack(span *mspan) { if span.next != nil || span.prev != nil || span.list != nil { println("runtime: failed mSpanList.insertBack", span, span.next, span.prev, span.list) throw("mSpanList.insertBack") } span.prev = list.last if list.last != nil { // The list contains at least one span. list.last.next = span } else { // The list contains no spans, so this is also the first span. list.first = span } list.last = span span.list = list } // takeAll removes all spans from other and inserts them at the front // of list. func (list *mSpanList) takeAll(other *mSpanList) { if other.isEmpty() { return } // Reparent everything in other to list. for s := other.first; s != nil; s = s.next { s.list = list } // Concatenate the lists. if list.isEmpty() { *list = *other } else { // Neither list is empty. Put other before list. other.last.next = list.first list.first.prev = other.last list.first = other.first } other.first, other.last = nil, nil } const ( _KindSpecialFinalizer = 1 _KindSpecialProfile = 2 // _KindSpecialReachable is a special used for tracking // reachability during testing. _KindSpecialReachable = 3 // Note: The finalizer special must be first because if we're freeing // an object, a finalizer special will cause the freeing operation // to abort, and we want to keep the other special records around // if that happens. ) //go:notinheap type special struct { next *special // linked list in span offset uint16 // span offset of object kind byte // kind of special } // spanHasSpecials marks a span as having specials in the arena bitmap. func spanHasSpecials(s *mspan) { arenaPage := (s.base() / pageSize) % pagesPerArena ai := arenaIndex(s.base()) ha := mheap_.arenas[ai.l1()][ai.l2()] atomic.Or8(&ha.pageSpecials[arenaPage/8], uint8(1)<<(arenaPage%8)) } // spanHasNoSpecials marks a span as having no specials in the arena bitmap. func spanHasNoSpecials(s *mspan) { arenaPage := (s.base() / pageSize) % pagesPerArena ai := arenaIndex(s.base()) ha := mheap_.arenas[ai.l1()][ai.l2()] atomic.And8(&ha.pageSpecials[arenaPage/8], ^(uint8(1) << (arenaPage % 8))) } // Adds the special record s to the list of special records for // the object p. All fields of s should be filled in except for // offset & next, which this routine will fill in. // Returns true if the special was successfully added, false otherwise. // (The add will fail only if a record with the same p and s->kind // already exists.) func addspecial(p unsafe.Pointer, s *special) bool { span := spanOfHeap(uintptr(p)) if span == nil { throw("addspecial on invalid pointer") } // Ensure that the span is swept. // Sweeping accesses the specials list w/o locks, so we have // to synchronize with it. And it's just much safer. mp := acquirem() span.ensureSwept() offset := uintptr(p) - span.base() kind := s.kind lock(&span.speciallock) // Find splice point, check for existing record. t := &span.specials for { x := *t if x == nil { break } if offset == uintptr(x.offset) && kind == x.kind { unlock(&span.speciallock) releasem(mp) return false // already exists } if offset < uintptr(x.offset) || (offset == uintptr(x.offset) && kind < x.kind) { break } t = &x.next } // Splice in record, fill in offset. s.offset = uint16(offset) s.next = *t *t = s spanHasSpecials(span) unlock(&span.speciallock) releasem(mp) return true } // Removes the Special record of the given kind for the object p. // Returns the record if the record existed, nil otherwise. // The caller must FixAlloc_Free the result. func removespecial(p unsafe.Pointer, kind uint8) *special { span := spanOfHeap(uintptr(p)) if span == nil { throw("removespecial on invalid pointer") } // Ensure that the span is swept. // Sweeping accesses the specials list w/o locks, so we have // to synchronize with it. And it's just much safer. mp := acquirem() span.ensureSwept() offset := uintptr(p) - span.base() var result *special lock(&span.speciallock) t := &span.specials for { s := *t if s == nil { break } // This function is used for finalizers only, so we don't check for // "interior" specials (p must be exactly equal to s->offset). if offset == uintptr(s.offset) && kind == s.kind { *t = s.next result = s break } t = &s.next } if span.specials == nil { spanHasNoSpecials(span) } unlock(&span.speciallock) releasem(mp) return result } // The described object has a finalizer set for it. // // specialfinalizer is allocated from non-GC'd memory, so any heap // pointers must be specially handled. // //go:notinheap type specialfinalizer struct { special special fn *funcval // May be a heap pointer. nret uintptr fint *_type // May be a heap pointer, but always live. ot *ptrtype // May be a heap pointer, but always live. } // Adds a finalizer to the object p. Returns true if it succeeded. func addfinalizer(p unsafe.Pointer, f *funcval, nret uintptr, fint *_type, ot *ptrtype) bool { lock(&mheap_.speciallock) s := (*specialfinalizer)(mheap_.specialfinalizeralloc.alloc()) unlock(&mheap_.speciallock) s.special.kind = _KindSpecialFinalizer s.fn = f s.nret = nret s.fint = fint s.ot = ot if addspecial(p, &s.special) { // This is responsible for maintaining the same // GC-related invariants as markrootSpans in any // situation where it's possible that markrootSpans // has already run but mark termination hasn't yet. if gcphase != _GCoff { base, _, _ := findObject(uintptr(p), 0, 0) mp := acquirem() gcw := &mp.p.ptr().gcw // Mark everything reachable from the object // so it's retained for the finalizer. scanobject(base, gcw) // Mark the finalizer itself, since the // special isn't part of the GC'd heap. scanblock(uintptr(unsafe.Pointer(&s.fn)), goarch.PtrSize, &oneptrmask[0], gcw, nil) releasem(mp) } return true } // There was an old finalizer lock(&mheap_.speciallock) mheap_.specialfinalizeralloc.free(unsafe.Pointer(s)) unlock(&mheap_.speciallock) return false } // Removes the finalizer (if any) from the object p. func removefinalizer(p unsafe.Pointer) { s := (*specialfinalizer)(unsafe.Pointer(removespecial(p, _KindSpecialFinalizer))) if s == nil { return // there wasn't a finalizer to remove } lock(&mheap_.speciallock) mheap_.specialfinalizeralloc.free(unsafe.Pointer(s)) unlock(&mheap_.speciallock) } // The described object is being heap profiled. // //go:notinheap type specialprofile struct { special special b *bucket } // Set the heap profile bucket associated with addr to b. func setprofilebucket(p unsafe.Pointer, b *bucket) { lock(&mheap_.speciallock) s := (*specialprofile)(mheap_.specialprofilealloc.alloc()) unlock(&mheap_.speciallock) s.special.kind = _KindSpecialProfile s.b = b if !addspecial(p, &s.special) { throw("setprofilebucket: profile already set") } } // specialReachable tracks whether an object is reachable on the next // GC cycle. This is used by testing. type specialReachable struct { special special done bool reachable bool } // specialsIter helps iterate over specials lists. type specialsIter struct { pprev **special s *special } func newSpecialsIter(span *mspan) specialsIter { return specialsIter{&span.specials, span.specials} } func (i *specialsIter) valid() bool { return i.s != nil } func (i *specialsIter) next() { i.pprev = &i.s.next i.s = *i.pprev } // unlinkAndNext removes the current special from the list and moves // the iterator to the next special. It returns the unlinked special. func (i *specialsIter) unlinkAndNext() *special { cur := i.s i.s = cur.next *i.pprev = i.s return cur } // freeSpecial performs any cleanup on special s and deallocates it. // s must already be unlinked from the specials list. func freeSpecial(s *special, p unsafe.Pointer, size uintptr) { switch s.kind { case _KindSpecialFinalizer: sf := (*specialfinalizer)(unsafe.Pointer(s)) queuefinalizer(p, sf.fn, sf.nret, sf.fint, sf.ot) lock(&mheap_.speciallock) mheap_.specialfinalizeralloc.free(unsafe.Pointer(sf)) unlock(&mheap_.speciallock) case _KindSpecialProfile: sp := (*specialprofile)(unsafe.Pointer(s)) mProf_Free(sp.b, size) lock(&mheap_.speciallock) mheap_.specialprofilealloc.free(unsafe.Pointer(sp)) unlock(&mheap_.speciallock) case _KindSpecialReachable: sp := (*specialReachable)(unsafe.Pointer(s)) sp.done = true // The creator frees these. default: throw("bad special kind") panic("not reached") } } // gcBits is an alloc/mark bitmap. This is always used as *gcBits. // //go:notinheap type gcBits uint8 // bytep returns a pointer to the n'th byte of b. func (b *gcBits) bytep(n uintptr) *uint8 { return addb((*uint8)(b), n) } // bitp returns a pointer to the byte containing bit n and a mask for // selecting that bit from *bytep. func (b *gcBits) bitp(n uintptr) (bytep *uint8, mask uint8) { return b.bytep(n / 8), 1 << (n % 8) } const gcBitsChunkBytes = uintptr(64 << 10) const gcBitsHeaderBytes = unsafe.Sizeof(gcBitsHeader{}) type gcBitsHeader struct { free uintptr // free is the index into bits of the next free byte. next uintptr // *gcBits triggers recursive type bug. (issue 14620) } //go:notinheap type gcBitsArena struct { // gcBitsHeader // side step recursive type bug (issue 14620) by including fields by hand. free uintptr // free is the index into bits of the next free byte; read/write atomically next *gcBitsArena bits [gcBitsChunkBytes - gcBitsHeaderBytes]gcBits } var gcBitsArenas struct { lock mutex free *gcBitsArena next *gcBitsArena // Read atomically. Write atomically under lock. current *gcBitsArena previous *gcBitsArena } // tryAlloc allocates from b or returns nil if b does not have enough room. // This is safe to call concurrently. func (b *gcBitsArena) tryAlloc(bytes uintptr) *gcBits { if b == nil || atomic.Loaduintptr(&b.free)+bytes > uintptr(len(b.bits)) { return nil } // Try to allocate from this block. end := atomic.Xadduintptr(&b.free, bytes) if end > uintptr(len(b.bits)) { return nil } // There was enough room. start := end - bytes return &b.bits[start] } // newMarkBits returns a pointer to 8 byte aligned bytes // to be used for a span's mark bits. func newMarkBits(nelems uintptr) *gcBits { blocksNeeded := uintptr((nelems + 63) / 64) bytesNeeded := blocksNeeded * 8 // Try directly allocating from the current head arena. head := (*gcBitsArena)(atomic.Loadp(unsafe.Pointer(&gcBitsArenas.next))) if p := head.tryAlloc(bytesNeeded); p != nil { return p } // There's not enough room in the head arena. We may need to // allocate a new arena. lock(&gcBitsArenas.lock) // Try the head arena again, since it may have changed. Now // that we hold the lock, the list head can't change, but its // free position still can. if p := gcBitsArenas.next.tryAlloc(bytesNeeded); p != nil { unlock(&gcBitsArenas.lock) return p } // Allocate a new arena. This may temporarily drop the lock. fresh := newArenaMayUnlock() // If newArenaMayUnlock dropped the lock, another thread may // have put a fresh arena on the "next" list. Try allocating // from next again. if p := gcBitsArenas.next.tryAlloc(bytesNeeded); p != nil { // Put fresh back on the free list. // TODO: Mark it "already zeroed" fresh.next = gcBitsArenas.free gcBitsArenas.free = fresh unlock(&gcBitsArenas.lock) return p } // Allocate from the fresh arena. We haven't linked it in yet, so // this cannot race and is guaranteed to succeed. p := fresh.tryAlloc(bytesNeeded) if p == nil { throw("markBits overflow") } // Add the fresh arena to the "next" list. fresh.next = gcBitsArenas.next atomic.StorepNoWB(unsafe.Pointer(&gcBitsArenas.next), unsafe.Pointer(fresh)) unlock(&gcBitsArenas.lock) return p } // newAllocBits returns a pointer to 8 byte aligned bytes // to be used for this span's alloc bits. // newAllocBits is used to provide newly initialized spans // allocation bits. For spans not being initialized the // mark bits are repurposed as allocation bits when // the span is swept. func newAllocBits(nelems uintptr) *gcBits { return newMarkBits(nelems) } // nextMarkBitArenaEpoch establishes a new epoch for the arenas // holding the mark bits. The arenas are named relative to the // current GC cycle which is demarcated by the call to finishweep_m. // // All current spans have been swept. // During that sweep each span allocated room for its gcmarkBits in // gcBitsArenas.next block. gcBitsArenas.next becomes the gcBitsArenas.current // where the GC will mark objects and after each span is swept these bits // will be used to allocate objects. // gcBitsArenas.current becomes gcBitsArenas.previous where the span's // gcAllocBits live until all the spans have been swept during this GC cycle. // The span's sweep extinguishes all the references to gcBitsArenas.previous // by pointing gcAllocBits into the gcBitsArenas.current. // The gcBitsArenas.previous is released to the gcBitsArenas.free list. func nextMarkBitArenaEpoch() { lock(&gcBitsArenas.lock) if gcBitsArenas.previous != nil { if gcBitsArenas.free == nil { gcBitsArenas.free = gcBitsArenas.previous } else { // Find end of previous arenas. last := gcBitsArenas.previous for last = gcBitsArenas.previous; last.next != nil; last = last.next { } last.next = gcBitsArenas.free gcBitsArenas.free = gcBitsArenas.previous } } gcBitsArenas.previous = gcBitsArenas.current gcBitsArenas.current = gcBitsArenas.next atomic.StorepNoWB(unsafe.Pointer(&gcBitsArenas.next), nil) // newMarkBits calls newArena when needed unlock(&gcBitsArenas.lock) } // newArenaMayUnlock allocates and zeroes a gcBits arena. // The caller must hold gcBitsArena.lock. This may temporarily release it. func newArenaMayUnlock() *gcBitsArena { var result *gcBitsArena if gcBitsArenas.free == nil { unlock(&gcBitsArenas.lock) result = (*gcBitsArena)(sysAlloc(gcBitsChunkBytes, &memstats.gcMiscSys)) if result == nil { throw("runtime: cannot allocate memory") } lock(&gcBitsArenas.lock) } else { result = gcBitsArenas.free gcBitsArenas.free = gcBitsArenas.free.next memclrNoHeapPointers(unsafe.Pointer(result), gcBitsChunkBytes) } result.next = nil // If result.bits is not 8 byte aligned adjust index so // that &result.bits[result.free] is 8 byte aligned. if uintptr(unsafe.Offsetof(gcBitsArena{}.bits))&7 == 0 { result.free = 0 } else { result.free = 8 - (uintptr(unsafe.Pointer(&result.bits[0])) & 7) } return result }