1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
|
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import (
"cmd/compile/internal/abi"
"cmd/compile/internal/base"
"cmd/compile/internal/types"
"cmd/internal/src"
"crypto/sha1"
"fmt"
"io"
"math"
"os"
"strings"
)
type writeSyncer interface {
io.Writer
Sync() error
}
// A Func represents a Go func declaration (or function literal) and its body.
// This package compiles each Func independently.
// Funcs are single-use; a new Func must be created for every compiled function.
type Func struct {
Config *Config // architecture information
Cache *Cache // re-usable cache
fe Frontend // frontend state associated with this Func, callbacks into compiler frontend
pass *pass // current pass information (name, options, etc.)
Name string // e.g. NewFunc or (*Func).NumBlocks (no package prefix)
Type *types.Type // type signature of the function.
Blocks []*Block // unordered set of all basic blocks (note: not indexable by ID)
Entry *Block // the entry basic block
bid idAlloc // block ID allocator
vid idAlloc // value ID allocator
// Given an environment variable used for debug hash match,
// what file (if any) receives the yes/no logging?
logfiles map[string]writeSyncer
HTMLWriter *HTMLWriter // html writer, for debugging
DebugTest bool // default true unless $GOSSAHASH != ""; as a debugging aid, make new code conditional on this and use GOSSAHASH to binary search for failing cases
PrintOrHtmlSSA bool // true if GOSSAFUNC matches, true even if fe.Log() (spew phase results to stdout) is false. There's an odd dependence on this in debug.go for method logf.
ruleMatches map[string]int // number of times countRule was called during compilation for any given string
ABI0 *abi.ABIConfig // A copy, for no-sync access
ABI1 *abi.ABIConfig // A copy, for no-sync access
ABISelf *abi.ABIConfig // ABI for function being compiled
ABIDefault *abi.ABIConfig // ABI for rtcall and other no-parsed-signature/pragma functions.
scheduled bool // Values in Blocks are in final order
laidout bool // Blocks are ordered
NoSplit bool // true if function is marked as nosplit. Used by schedule check pass.
dumpFileSeq uint8 // the sequence numbers of dump file. (%s_%02d__%s.dump", funcname, dumpFileSeq, phaseName)
// when register allocation is done, maps value ids to locations
RegAlloc []Location
// map from LocalSlot to set of Values that we want to store in that slot.
NamedValues map[LocalSlot][]*Value
// Names is a copy of NamedValues.Keys. We keep a separate list
// of keys to make iteration order deterministic.
Names []*LocalSlot
// Canonicalize root/top-level local slots, and canonicalize their pieces.
// Because LocalSlot pieces refer to their parents with a pointer, this ensures that equivalent slots really are equal.
CanonicalLocalSlots map[LocalSlot]*LocalSlot
CanonicalLocalSplits map[LocalSlotSplitKey]*LocalSlot
// RegArgs is a slice of register-memory pairs that must be spilled and unspilled in the uncommon path of function entry.
RegArgs []Spill
// AuxCall describing parameters and results for this function.
OwnAux *AuxCall
// WBLoads is a list of Blocks that branch on the write
// barrier flag. Safe-points are disabled from the OpLoad that
// reads the write-barrier flag until the control flow rejoins
// below the two successors of this block.
WBLoads []*Block
freeValues *Value // free Values linked by argstorage[0]. All other fields except ID are 0/nil.
freeBlocks *Block // free Blocks linked by succstorage[0].b. All other fields except ID are 0/nil.
cachedPostorder []*Block // cached postorder traversal
cachedIdom []*Block // cached immediate dominators
cachedSdom SparseTree // cached dominator tree
cachedLoopnest *loopnest // cached loop nest information
cachedLineStarts *xposmap // cached map/set of xpos to integers
auxmap auxmap // map from aux values to opaque ids used by CSE
constants map[int64][]*Value // constants cache, keyed by constant value; users must check value's Op and Type
}
type LocalSlotSplitKey struct {
parent *LocalSlot
Off int64 // offset of slot in N
Type *types.Type // type of slot
}
// NewFunc returns a new, empty function object.
// Caller must set f.Config and f.Cache before using f.
func NewFunc(fe Frontend) *Func {
return &Func{fe: fe, NamedValues: make(map[LocalSlot][]*Value), CanonicalLocalSlots: make(map[LocalSlot]*LocalSlot), CanonicalLocalSplits: make(map[LocalSlotSplitKey]*LocalSlot)}
}
// NumBlocks returns an integer larger than the id of any Block in the Func.
func (f *Func) NumBlocks() int {
return f.bid.num()
}
// NumValues returns an integer larger than the id of any Value in the Func.
func (f *Func) NumValues() int {
return f.vid.num()
}
// newSparseSet returns a sparse set that can store at least up to n integers.
func (f *Func) newSparseSet(n int) *sparseSet {
for i, scr := range f.Cache.scrSparseSet {
if scr != nil && scr.cap() >= n {
f.Cache.scrSparseSet[i] = nil
scr.clear()
return scr
}
}
return newSparseSet(n)
}
// retSparseSet returns a sparse set to the config's cache of sparse
// sets to be reused by f.newSparseSet.
func (f *Func) retSparseSet(ss *sparseSet) {
for i, scr := range f.Cache.scrSparseSet {
if scr == nil {
f.Cache.scrSparseSet[i] = ss
return
}
}
f.Cache.scrSparseSet = append(f.Cache.scrSparseSet, ss)
}
// newSparseMap returns a sparse map that can store at least up to n integers.
func (f *Func) newSparseMap(n int) *sparseMap {
for i, scr := range f.Cache.scrSparseMap {
if scr != nil && scr.cap() >= n {
f.Cache.scrSparseMap[i] = nil
scr.clear()
return scr
}
}
return newSparseMap(n)
}
// retSparseMap returns a sparse map to the config's cache of sparse
// sets to be reused by f.newSparseMap.
func (f *Func) retSparseMap(ss *sparseMap) {
for i, scr := range f.Cache.scrSparseMap {
if scr == nil {
f.Cache.scrSparseMap[i] = ss
return
}
}
f.Cache.scrSparseMap = append(f.Cache.scrSparseMap, ss)
}
// newPoset returns a new poset from the internal cache
func (f *Func) newPoset() *poset {
if len(f.Cache.scrPoset) > 0 {
po := f.Cache.scrPoset[len(f.Cache.scrPoset)-1]
f.Cache.scrPoset = f.Cache.scrPoset[:len(f.Cache.scrPoset)-1]
return po
}
return newPoset()
}
// retPoset returns a poset to the internal cache
func (f *Func) retPoset(po *poset) {
f.Cache.scrPoset = append(f.Cache.scrPoset, po)
}
// newDeadcodeLive returns a slice for the
// deadcode pass to use to indicate which values are live.
func (f *Func) newDeadcodeLive() []bool {
r := f.Cache.deadcode.live
f.Cache.deadcode.live = nil
return r
}
// retDeadcodeLive returns a deadcode live value slice for re-use.
func (f *Func) retDeadcodeLive(live []bool) {
f.Cache.deadcode.live = live
}
// newDeadcodeLiveOrderStmts returns a slice for the
// deadcode pass to use to indicate which values
// need special treatment for statement boundaries.
func (f *Func) newDeadcodeLiveOrderStmts() []*Value {
r := f.Cache.deadcode.liveOrderStmts
f.Cache.deadcode.liveOrderStmts = nil
return r
}
// retDeadcodeLiveOrderStmts returns a deadcode liveOrderStmts slice for re-use.
func (f *Func) retDeadcodeLiveOrderStmts(liveOrderStmts []*Value) {
f.Cache.deadcode.liveOrderStmts = liveOrderStmts
}
func (f *Func) localSlotAddr(slot LocalSlot) *LocalSlot {
a, ok := f.CanonicalLocalSlots[slot]
if !ok {
a = new(LocalSlot)
*a = slot // don't escape slot
f.CanonicalLocalSlots[slot] = a
}
return a
}
func (f *Func) SplitString(name *LocalSlot) (*LocalSlot, *LocalSlot) {
ptrType := types.NewPtr(types.Types[types.TUINT8])
lenType := types.Types[types.TINT]
// Split this string up into two separate variables.
p := f.SplitSlot(name, ".ptr", 0, ptrType)
l := f.SplitSlot(name, ".len", ptrType.Size(), lenType)
return p, l
}
func (f *Func) SplitInterface(name *LocalSlot) (*LocalSlot, *LocalSlot) {
n := name.N
u := types.Types[types.TUINTPTR]
t := types.NewPtr(types.Types[types.TUINT8])
// Split this interface up into two separate variables.
sfx := ".itab"
if n.Type().IsEmptyInterface() {
sfx = ".type"
}
c := f.SplitSlot(name, sfx, 0, u) // see comment in typebits.Set
d := f.SplitSlot(name, ".data", u.Size(), t)
return c, d
}
func (f *Func) SplitSlice(name *LocalSlot) (*LocalSlot, *LocalSlot, *LocalSlot) {
ptrType := types.NewPtr(name.Type.Elem())
lenType := types.Types[types.TINT]
p := f.SplitSlot(name, ".ptr", 0, ptrType)
l := f.SplitSlot(name, ".len", ptrType.Size(), lenType)
c := f.SplitSlot(name, ".cap", ptrType.Size()+lenType.Size(), lenType)
return p, l, c
}
func (f *Func) SplitComplex(name *LocalSlot) (*LocalSlot, *LocalSlot) {
s := name.Type.Size() / 2
var t *types.Type
if s == 8 {
t = types.Types[types.TFLOAT64]
} else {
t = types.Types[types.TFLOAT32]
}
r := f.SplitSlot(name, ".real", 0, t)
i := f.SplitSlot(name, ".imag", t.Size(), t)
return r, i
}
func (f *Func) SplitInt64(name *LocalSlot) (*LocalSlot, *LocalSlot) {
var t *types.Type
if name.Type.IsSigned() {
t = types.Types[types.TINT32]
} else {
t = types.Types[types.TUINT32]
}
if f.Config.BigEndian {
return f.SplitSlot(name, ".hi", 0, t), f.SplitSlot(name, ".lo", t.Size(), types.Types[types.TUINT32])
}
return f.SplitSlot(name, ".hi", t.Size(), t), f.SplitSlot(name, ".lo", 0, types.Types[types.TUINT32])
}
func (f *Func) SplitStruct(name *LocalSlot, i int) *LocalSlot {
st := name.Type
return f.SplitSlot(name, st.FieldName(i), st.FieldOff(i), st.FieldType(i))
}
func (f *Func) SplitArray(name *LocalSlot) *LocalSlot {
n := name.N
at := name.Type
if at.NumElem() != 1 {
base.FatalfAt(n.Pos(), "bad array size")
}
et := at.Elem()
return f.SplitSlot(name, "[0]", 0, et)
}
func (f *Func) SplitSlot(name *LocalSlot, sfx string, offset int64, t *types.Type) *LocalSlot {
lssk := LocalSlotSplitKey{name, offset, t}
if als, ok := f.CanonicalLocalSplits[lssk]; ok {
return als
}
// Note: the _ field may appear several times. But
// have no fear, identically-named but distinct Autos are
// ok, albeit maybe confusing for a debugger.
ls := f.fe.SplitSlot(name, sfx, offset, t)
f.CanonicalLocalSplits[lssk] = &ls
return &ls
}
// newValue allocates a new Value with the given fields and places it at the end of b.Values.
func (f *Func) newValue(op Op, t *types.Type, b *Block, pos src.XPos) *Value {
var v *Value
if f.freeValues != nil {
v = f.freeValues
f.freeValues = v.argstorage[0]
v.argstorage[0] = nil
} else {
ID := f.vid.get()
if int(ID) < len(f.Cache.values) {
v = &f.Cache.values[ID]
v.ID = ID
} else {
v = &Value{ID: ID}
}
}
v.Op = op
v.Type = t
v.Block = b
if notStmtBoundary(op) {
pos = pos.WithNotStmt()
}
v.Pos = pos
b.Values = append(b.Values, v)
return v
}
// newValueNoBlock allocates a new Value with the given fields.
// The returned value is not placed in any block. Once the caller
// decides on a block b, it must set b.Block and append
// the returned value to b.Values.
func (f *Func) newValueNoBlock(op Op, t *types.Type, pos src.XPos) *Value {
var v *Value
if f.freeValues != nil {
v = f.freeValues
f.freeValues = v.argstorage[0]
v.argstorage[0] = nil
} else {
ID := f.vid.get()
if int(ID) < len(f.Cache.values) {
v = &f.Cache.values[ID]
v.ID = ID
} else {
v = &Value{ID: ID}
}
}
v.Op = op
v.Type = t
v.Block = nil // caller must fix this.
if notStmtBoundary(op) {
pos = pos.WithNotStmt()
}
v.Pos = pos
return v
}
// logPassStat writes a string key and int value as a warning in a
// tab-separated format easily handled by spreadsheets or awk.
// file names, lines, and function names are included to provide enough (?)
// context to allow item-by-item comparisons across runs.
// For example:
// awk 'BEGIN {FS="\t"} $3~/TIME/{sum+=$4} END{print "t(ns)=",sum}' t.log
func (f *Func) LogStat(key string, args ...interface{}) {
value := ""
for _, a := range args {
value += fmt.Sprintf("\t%v", a)
}
n := "missing_pass"
if f.pass != nil {
n = strings.Replace(f.pass.name, " ", "_", -1)
}
f.Warnl(f.Entry.Pos, "\t%s\t%s%s\t%s", n, key, value, f.Name)
}
// unCacheLine removes v from f's constant cache "line" for aux,
// resets v.InCache when it is found (and removed),
// and returns whether v was found in that line.
func (f *Func) unCacheLine(v *Value, aux int64) bool {
vv := f.constants[aux]
for i, cv := range vv {
if v == cv {
vv[i] = vv[len(vv)-1]
vv[len(vv)-1] = nil
f.constants[aux] = vv[0 : len(vv)-1]
v.InCache = false
return true
}
}
return false
}
// unCache removes v from f's constant cache.
func (f *Func) unCache(v *Value) {
if v.InCache {
aux := v.AuxInt
if f.unCacheLine(v, aux) {
return
}
if aux == 0 {
switch v.Op {
case OpConstNil:
aux = constNilMagic
case OpConstSlice:
aux = constSliceMagic
case OpConstString:
aux = constEmptyStringMagic
case OpConstInterface:
aux = constInterfaceMagic
}
if aux != 0 && f.unCacheLine(v, aux) {
return
}
}
f.Fatalf("unCached value %s not found in cache, auxInt=0x%x, adjusted aux=0x%x", v.LongString(), v.AuxInt, aux)
}
}
// freeValue frees a value. It must no longer be referenced or have any args.
func (f *Func) freeValue(v *Value) {
if v.Block == nil {
f.Fatalf("trying to free an already freed value")
}
if v.Uses != 0 {
f.Fatalf("value %s still has %d uses", v, v.Uses)
}
if len(v.Args) != 0 {
f.Fatalf("value %s still has %d args", v, len(v.Args))
}
// Clear everything but ID (which we reuse).
id := v.ID
if v.InCache {
f.unCache(v)
}
*v = Value{}
v.ID = id
v.argstorage[0] = f.freeValues
f.freeValues = v
}
// newBlock allocates a new Block of the given kind and places it at the end of f.Blocks.
func (f *Func) NewBlock(kind BlockKind) *Block {
var b *Block
if f.freeBlocks != nil {
b = f.freeBlocks
f.freeBlocks = b.succstorage[0].b
b.succstorage[0].b = nil
} else {
ID := f.bid.get()
if int(ID) < len(f.Cache.blocks) {
b = &f.Cache.blocks[ID]
b.ID = ID
} else {
b = &Block{ID: ID}
}
}
b.Kind = kind
b.Func = f
b.Preds = b.predstorage[:0]
b.Succs = b.succstorage[:0]
b.Values = b.valstorage[:0]
f.Blocks = append(f.Blocks, b)
f.invalidateCFG()
return b
}
func (f *Func) freeBlock(b *Block) {
if b.Func == nil {
f.Fatalf("trying to free an already freed block")
}
// Clear everything but ID (which we reuse).
id := b.ID
*b = Block{}
b.ID = id
b.succstorage[0].b = f.freeBlocks
f.freeBlocks = b
}
// NewValue0 returns a new value in the block with no arguments and zero aux values.
func (b *Block) NewValue0(pos src.XPos, op Op, t *types.Type) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = 0
v.Args = v.argstorage[:0]
return v
}
// NewValue returns a new value in the block with no arguments and an auxint value.
func (b *Block) NewValue0I(pos src.XPos, op Op, t *types.Type, auxint int64) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = auxint
v.Args = v.argstorage[:0]
return v
}
// NewValue returns a new value in the block with no arguments and an aux value.
func (b *Block) NewValue0A(pos src.XPos, op Op, t *types.Type, aux Aux) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = 0
v.Aux = aux
v.Args = v.argstorage[:0]
return v
}
// NewValue returns a new value in the block with no arguments and both an auxint and aux values.
func (b *Block) NewValue0IA(pos src.XPos, op Op, t *types.Type, auxint int64, aux Aux) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = auxint
v.Aux = aux
v.Args = v.argstorage[:0]
return v
}
// NewValue1 returns a new value in the block with one argument and zero aux values.
func (b *Block) NewValue1(pos src.XPos, op Op, t *types.Type, arg *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = 0
v.Args = v.argstorage[:1]
v.argstorage[0] = arg
arg.Uses++
return v
}
// NewValue1I returns a new value in the block with one argument and an auxint value.
func (b *Block) NewValue1I(pos src.XPos, op Op, t *types.Type, auxint int64, arg *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = auxint
v.Args = v.argstorage[:1]
v.argstorage[0] = arg
arg.Uses++
return v
}
// NewValue1A returns a new value in the block with one argument and an aux value.
func (b *Block) NewValue1A(pos src.XPos, op Op, t *types.Type, aux Aux, arg *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = 0
v.Aux = aux
v.Args = v.argstorage[:1]
v.argstorage[0] = arg
arg.Uses++
return v
}
// NewValue1IA returns a new value in the block with one argument and both an auxint and aux values.
func (b *Block) NewValue1IA(pos src.XPos, op Op, t *types.Type, auxint int64, aux Aux, arg *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = auxint
v.Aux = aux
v.Args = v.argstorage[:1]
v.argstorage[0] = arg
arg.Uses++
return v
}
// NewValue2 returns a new value in the block with two arguments and zero aux values.
func (b *Block) NewValue2(pos src.XPos, op Op, t *types.Type, arg0, arg1 *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = 0
v.Args = v.argstorage[:2]
v.argstorage[0] = arg0
v.argstorage[1] = arg1
arg0.Uses++
arg1.Uses++
return v
}
// NewValue2A returns a new value in the block with two arguments and one aux values.
func (b *Block) NewValue2A(pos src.XPos, op Op, t *types.Type, aux Aux, arg0, arg1 *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = 0
v.Aux = aux
v.Args = v.argstorage[:2]
v.argstorage[0] = arg0
v.argstorage[1] = arg1
arg0.Uses++
arg1.Uses++
return v
}
// NewValue2I returns a new value in the block with two arguments and an auxint value.
func (b *Block) NewValue2I(pos src.XPos, op Op, t *types.Type, auxint int64, arg0, arg1 *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = auxint
v.Args = v.argstorage[:2]
v.argstorage[0] = arg0
v.argstorage[1] = arg1
arg0.Uses++
arg1.Uses++
return v
}
// NewValue2IA returns a new value in the block with two arguments and both an auxint and aux values.
func (b *Block) NewValue2IA(pos src.XPos, op Op, t *types.Type, auxint int64, aux Aux, arg0, arg1 *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = auxint
v.Aux = aux
v.Args = v.argstorage[:2]
v.argstorage[0] = arg0
v.argstorage[1] = arg1
arg0.Uses++
arg1.Uses++
return v
}
// NewValue3 returns a new value in the block with three arguments and zero aux values.
func (b *Block) NewValue3(pos src.XPos, op Op, t *types.Type, arg0, arg1, arg2 *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = 0
v.Args = v.argstorage[:3]
v.argstorage[0] = arg0
v.argstorage[1] = arg1
v.argstorage[2] = arg2
arg0.Uses++
arg1.Uses++
arg2.Uses++
return v
}
// NewValue3I returns a new value in the block with three arguments and an auxint value.
func (b *Block) NewValue3I(pos src.XPos, op Op, t *types.Type, auxint int64, arg0, arg1, arg2 *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = auxint
v.Args = v.argstorage[:3]
v.argstorage[0] = arg0
v.argstorage[1] = arg1
v.argstorage[2] = arg2
arg0.Uses++
arg1.Uses++
arg2.Uses++
return v
}
// NewValue3A returns a new value in the block with three argument and an aux value.
func (b *Block) NewValue3A(pos src.XPos, op Op, t *types.Type, aux Aux, arg0, arg1, arg2 *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = 0
v.Aux = aux
v.Args = v.argstorage[:3]
v.argstorage[0] = arg0
v.argstorage[1] = arg1
v.argstorage[2] = arg2
arg0.Uses++
arg1.Uses++
arg2.Uses++
return v
}
// NewValue4 returns a new value in the block with four arguments and zero aux values.
func (b *Block) NewValue4(pos src.XPos, op Op, t *types.Type, arg0, arg1, arg2, arg3 *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = 0
v.Args = []*Value{arg0, arg1, arg2, arg3}
arg0.Uses++
arg1.Uses++
arg2.Uses++
arg3.Uses++
return v
}
// NewValue4I returns a new value in the block with four arguments and auxint value.
func (b *Block) NewValue4I(pos src.XPos, op Op, t *types.Type, auxint int64, arg0, arg1, arg2, arg3 *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = auxint
v.Args = []*Value{arg0, arg1, arg2, arg3}
arg0.Uses++
arg1.Uses++
arg2.Uses++
arg3.Uses++
return v
}
// constVal returns a constant value for c.
func (f *Func) constVal(op Op, t *types.Type, c int64, setAuxInt bool) *Value {
if f.constants == nil {
f.constants = make(map[int64][]*Value)
}
vv := f.constants[c]
for _, v := range vv {
if v.Op == op && v.Type.Compare(t) == types.CMPeq {
if setAuxInt && v.AuxInt != c {
panic(fmt.Sprintf("cached const %s should have AuxInt of %d", v.LongString(), c))
}
return v
}
}
var v *Value
if setAuxInt {
v = f.Entry.NewValue0I(src.NoXPos, op, t, c)
} else {
v = f.Entry.NewValue0(src.NoXPos, op, t)
}
f.constants[c] = append(vv, v)
v.InCache = true
return v
}
// These magic auxint values let us easily cache non-numeric constants
// using the same constants map while making collisions unlikely.
// These values are unlikely to occur in regular code and
// are easy to grep for in case of bugs.
const (
constSliceMagic = 1122334455
constInterfaceMagic = 2233445566
constNilMagic = 3344556677
constEmptyStringMagic = 4455667788
)
// ConstInt returns an int constant representing its argument.
func (f *Func) ConstBool(t *types.Type, c bool) *Value {
i := int64(0)
if c {
i = 1
}
return f.constVal(OpConstBool, t, i, true)
}
func (f *Func) ConstInt8(t *types.Type, c int8) *Value {
return f.constVal(OpConst8, t, int64(c), true)
}
func (f *Func) ConstInt16(t *types.Type, c int16) *Value {
return f.constVal(OpConst16, t, int64(c), true)
}
func (f *Func) ConstInt32(t *types.Type, c int32) *Value {
return f.constVal(OpConst32, t, int64(c), true)
}
func (f *Func) ConstInt64(t *types.Type, c int64) *Value {
return f.constVal(OpConst64, t, c, true)
}
func (f *Func) ConstFloat32(t *types.Type, c float64) *Value {
return f.constVal(OpConst32F, t, int64(math.Float64bits(float64(float32(c)))), true)
}
func (f *Func) ConstFloat64(t *types.Type, c float64) *Value {
return f.constVal(OpConst64F, t, int64(math.Float64bits(c)), true)
}
func (f *Func) ConstSlice(t *types.Type) *Value {
return f.constVal(OpConstSlice, t, constSliceMagic, false)
}
func (f *Func) ConstInterface(t *types.Type) *Value {
return f.constVal(OpConstInterface, t, constInterfaceMagic, false)
}
func (f *Func) ConstNil(t *types.Type) *Value {
return f.constVal(OpConstNil, t, constNilMagic, false)
}
func (f *Func) ConstEmptyString(t *types.Type) *Value {
v := f.constVal(OpConstString, t, constEmptyStringMagic, false)
v.Aux = StringToAux("")
return v
}
func (f *Func) ConstOffPtrSP(t *types.Type, c int64, sp *Value) *Value {
v := f.constVal(OpOffPtr, t, c, true)
if len(v.Args) == 0 {
v.AddArg(sp)
}
return v
}
func (f *Func) Frontend() Frontend { return f.fe }
func (f *Func) Warnl(pos src.XPos, msg string, args ...interface{}) { f.fe.Warnl(pos, msg, args...) }
func (f *Func) Logf(msg string, args ...interface{}) { f.fe.Logf(msg, args...) }
func (f *Func) Log() bool { return f.fe.Log() }
func (f *Func) Fatalf(msg string, args ...interface{}) {
stats := "crashed"
if f.Log() {
f.Logf(" pass %s end %s\n", f.pass.name, stats)
printFunc(f)
}
if f.HTMLWriter != nil {
f.HTMLWriter.WritePhase(f.pass.name, fmt.Sprintf("%s <span class=\"stats\">%s</span>", f.pass.name, stats))
f.HTMLWriter.flushPhases()
}
f.fe.Fatalf(f.Entry.Pos, msg, args...)
}
// postorder returns the reachable blocks in f in a postorder traversal.
func (f *Func) postorder() []*Block {
if f.cachedPostorder == nil {
f.cachedPostorder = postorder(f)
}
return f.cachedPostorder
}
func (f *Func) Postorder() []*Block {
return f.postorder()
}
// Idom returns a map from block ID to the immediate dominator of that block.
// f.Entry.ID maps to nil. Unreachable blocks map to nil as well.
func (f *Func) Idom() []*Block {
if f.cachedIdom == nil {
f.cachedIdom = dominators(f)
}
return f.cachedIdom
}
// Sdom returns a sparse tree representing the dominator relationships
// among the blocks of f.
func (f *Func) Sdom() SparseTree {
if f.cachedSdom == nil {
f.cachedSdom = newSparseTree(f, f.Idom())
}
return f.cachedSdom
}
// loopnest returns the loop nest information for f.
func (f *Func) loopnest() *loopnest {
if f.cachedLoopnest == nil {
f.cachedLoopnest = loopnestfor(f)
}
return f.cachedLoopnest
}
// invalidateCFG tells f that its CFG has changed.
func (f *Func) invalidateCFG() {
f.cachedPostorder = nil
f.cachedIdom = nil
f.cachedSdom = nil
f.cachedLoopnest = nil
}
// DebugHashMatch reports whether environment variable evname
// 1) is empty (this is a special more-quickly implemented case of 3)
// 2) is "y" or "Y"
// 3) is a suffix of the sha1 hash of name
// 4) is a suffix of the environment variable
// fmt.Sprintf("%s%d", evname, n)
// provided that all such variables are nonempty for 0 <= i <= n
// Otherwise it returns false.
// When true is returned the message
// "%s triggered %s\n", evname, name
// is printed on the file named in environment variable
// GSHS_LOGFILE
// or standard out if that is empty or there is an error
// opening the file.
func (f *Func) DebugHashMatch(evname string) bool {
name := f.fe.MyImportPath() + "." + f.Name
evhash := os.Getenv(evname)
switch evhash {
case "":
return true // default behavior with no EV is "on"
case "y", "Y":
f.logDebugHashMatch(evname, name)
return true
case "n", "N":
return false
}
// Check the hash of the name against a partial input hash.
// We use this feature to do a binary search to
// find a function that is incorrectly compiled.
hstr := ""
for _, b := range sha1.Sum([]byte(name)) {
hstr += fmt.Sprintf("%08b", b)
}
if strings.HasSuffix(hstr, evhash) {
f.logDebugHashMatch(evname, name)
return true
}
// Iteratively try additional hashes to allow tests for multi-point
// failure.
for i := 0; true; i++ {
ev := fmt.Sprintf("%s%d", evname, i)
evv := os.Getenv(ev)
if evv == "" {
break
}
if strings.HasSuffix(hstr, evv) {
f.logDebugHashMatch(ev, name)
return true
}
}
return false
}
func (f *Func) logDebugHashMatch(evname, name string) {
if f.logfiles == nil {
f.logfiles = make(map[string]writeSyncer)
}
file := f.logfiles[evname]
if file == nil {
file = os.Stdout
if tmpfile := os.Getenv("GSHS_LOGFILE"); tmpfile != "" {
var err error
file, err = os.OpenFile(tmpfile, os.O_RDWR|os.O_CREATE|os.O_APPEND, 0666)
if err != nil {
f.Fatalf("could not open hash-testing logfile %s", tmpfile)
}
}
f.logfiles[evname] = file
}
fmt.Fprintf(file, "%s triggered %s\n", evname, name)
file.Sync()
}
func DebugNameMatch(evname, name string) bool {
return os.Getenv(evname) == name
}
func (f *Func) spSb() (sp, sb *Value) {
initpos := src.NoXPos // These are originally created with no position in ssa.go; if they are optimized out then recreated, should be the same.
for _, v := range f.Entry.Values {
if v.Op == OpSB {
sb = v
}
if v.Op == OpSP {
sp = v
}
if sb != nil && sp != nil {
return
}
}
if sb == nil {
sb = f.Entry.NewValue0(initpos.WithNotStmt(), OpSB, f.Config.Types.Uintptr)
}
if sp == nil {
sp = f.Entry.NewValue0(initpos.WithNotStmt(), OpSP, f.Config.Types.Uintptr)
}
return
}
|