1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
|
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package flate_test
import (
"bytes"
"compress/flate"
"fmt"
"io"
"log"
"os"
"strings"
"sync"
)
// In performance critical applications, Reset can be used to discard the
// current compressor or decompressor state and reinitialize them quickly
// by taking advantage of previously allocated memory.
func Example_reset() {
proverbs := []string{
"Don't communicate by sharing memory, share memory by communicating.\n",
"Concurrency is not parallelism.\n",
"The bigger the interface, the weaker the abstraction.\n",
"Documentation is for users.\n",
}
var r strings.Reader
var b bytes.Buffer
buf := make([]byte, 32<<10)
zw, err := flate.NewWriter(nil, flate.DefaultCompression)
if err != nil {
log.Fatal(err)
}
zr := flate.NewReader(nil)
for _, s := range proverbs {
r.Reset(s)
b.Reset()
// Reset the compressor and encode from some input stream.
zw.Reset(&b)
if _, err := io.CopyBuffer(zw, &r, buf); err != nil {
log.Fatal(err)
}
if err := zw.Close(); err != nil {
log.Fatal(err)
}
// Reset the decompressor and decode to some output stream.
if err := zr.(flate.Resetter).Reset(&b, nil); err != nil {
log.Fatal(err)
}
if _, err := io.CopyBuffer(os.Stdout, zr, buf); err != nil {
log.Fatal(err)
}
if err := zr.Close(); err != nil {
log.Fatal(err)
}
}
// Output:
// Don't communicate by sharing memory, share memory by communicating.
// Concurrency is not parallelism.
// The bigger the interface, the weaker the abstraction.
// Documentation is for users.
}
// A preset dictionary can be used to improve the compression ratio.
// The downside to using a dictionary is that the compressor and decompressor
// must agree in advance what dictionary to use.
func Example_dictionary() {
// The dictionary is a string of bytes. When compressing some input data,
// the compressor will attempt to substitute substrings with matches found
// in the dictionary. As such, the dictionary should only contain substrings
// that are expected to be found in the actual data stream.
const dict = `<?xml version="1.0"?>` + `<book>` + `<data>` + `<meta name="` + `" content="`
// The data to compress should (but is not required to) contain frequent
// substrings that match those in the dictionary.
const data = `<?xml version="1.0"?>
<book>
<meta name="title" content="The Go Programming Language"/>
<meta name="authors" content="Alan Donovan and Brian Kernighan"/>
<meta name="published" content="2015-10-26"/>
<meta name="isbn" content="978-0134190440"/>
<data>...</data>
</book>
`
var b bytes.Buffer
// Compress the data using the specially crafted dictionary.
zw, err := flate.NewWriterDict(&b, flate.DefaultCompression, []byte(dict))
if err != nil {
log.Fatal(err)
}
if _, err := io.Copy(zw, strings.NewReader(data)); err != nil {
log.Fatal(err)
}
if err := zw.Close(); err != nil {
log.Fatal(err)
}
// The decompressor must use the same dictionary as the compressor.
// Otherwise, the input may appear as corrupted.
fmt.Println("Decompressed output using the dictionary:")
zr := flate.NewReaderDict(bytes.NewReader(b.Bytes()), []byte(dict))
if _, err := io.Copy(os.Stdout, zr); err != nil {
log.Fatal(err)
}
if err := zr.Close(); err != nil {
log.Fatal(err)
}
fmt.Println()
// Substitute all of the bytes in the dictionary with a '#' to visually
// demonstrate the approximate effectiveness of using a preset dictionary.
fmt.Println("Substrings matched by the dictionary are marked with #:")
hashDict := []byte(dict)
for i := range hashDict {
hashDict[i] = '#'
}
zr = flate.NewReaderDict(&b, hashDict)
if _, err := io.Copy(os.Stdout, zr); err != nil {
log.Fatal(err)
}
if err := zr.Close(); err != nil {
log.Fatal(err)
}
// Output:
// Decompressed output using the dictionary:
// <?xml version="1.0"?>
// <book>
// <meta name="title" content="The Go Programming Language"/>
// <meta name="authors" content="Alan Donovan and Brian Kernighan"/>
// <meta name="published" content="2015-10-26"/>
// <meta name="isbn" content="978-0134190440"/>
// <data>...</data>
// </book>
//
// Substrings matched by the dictionary are marked with #:
// #####################
// ######
// ############title###########The Go Programming Language"/#
// ############authors###########Alan Donovan and Brian Kernighan"/#
// ############published###########2015-10-26"/#
// ############isbn###########978-0134190440"/#
// ######...</#####
// </#####
}
// DEFLATE is suitable for transmitting compressed data across the network.
func Example_synchronization() {
var wg sync.WaitGroup
defer wg.Wait()
// Use io.Pipe to simulate a network connection.
// A real network application should take care to properly close the
// underlying connection.
rp, wp := io.Pipe()
// Start a goroutine to act as the transmitter.
wg.Add(1)
go func() {
defer wg.Done()
zw, err := flate.NewWriter(wp, flate.BestSpeed)
if err != nil {
log.Fatal(err)
}
b := make([]byte, 256)
for _, m := range strings.Fields("A long time ago in a galaxy far, far away...") {
// We use a simple framing format where the first byte is the
// message length, followed the message itself.
b[0] = uint8(copy(b[1:], m))
if _, err := zw.Write(b[:1+len(m)]); err != nil {
log.Fatal(err)
}
// Flush ensures that the receiver can read all data sent so far.
if err := zw.Flush(); err != nil {
log.Fatal(err)
}
}
if err := zw.Close(); err != nil {
log.Fatal(err)
}
}()
// Start a goroutine to act as the receiver.
wg.Add(1)
go func() {
defer wg.Done()
zr := flate.NewReader(rp)
b := make([]byte, 256)
for {
// Read the message length.
// This is guaranteed to return for every corresponding
// Flush and Close on the transmitter side.
if _, err := io.ReadFull(zr, b[:1]); err != nil {
if err == io.EOF {
break // The transmitter closed the stream
}
log.Fatal(err)
}
// Read the message content.
n := int(b[0])
if _, err := io.ReadFull(zr, b[:n]); err != nil {
log.Fatal(err)
}
fmt.Printf("Received %d bytes: %s\n", n, b[:n])
}
fmt.Println()
if err := zr.Close(); err != nil {
log.Fatal(err)
}
}()
// Output:
// Received 1 bytes: A
// Received 4 bytes: long
// Received 4 bytes: time
// Received 3 bytes: ago
// Received 2 bytes: in
// Received 1 bytes: a
// Received 6 bytes: galaxy
// Received 4 bytes: far,
// Received 3 bytes: far
// Received 7 bytes: away...
}
|