summaryrefslogtreecommitdiffstats
path: root/src/crypto/elliptic/elliptic.go
blob: 7ead09f8d3fd39129b2d1901f6b76eecb7c31240 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package elliptic implements the standard NIST P-224, P-256, P-384, and P-521
// elliptic curves over prime fields.
package elliptic

import (
	"io"
	"math/big"
	"sync"
)

// A Curve represents a short-form Weierstrass curve with a=-3.
//
// The behavior of Add, Double, and ScalarMult when the input is not a point on
// the curve is undefined.
//
// Note that the conventional point at infinity (0, 0) is not considered on the
// curve, although it can be returned by Add, Double, ScalarMult, or
// ScalarBaseMult (but not the Unmarshal or UnmarshalCompressed functions).
type Curve interface {
	// Params returns the parameters for the curve.
	Params() *CurveParams
	// IsOnCurve reports whether the given (x,y) lies on the curve.
	IsOnCurve(x, y *big.Int) bool
	// Add returns the sum of (x1,y1) and (x2,y2)
	Add(x1, y1, x2, y2 *big.Int) (x, y *big.Int)
	// Double returns 2*(x,y)
	Double(x1, y1 *big.Int) (x, y *big.Int)
	// ScalarMult returns k*(Bx,By) where k is a number in big-endian form.
	ScalarMult(x1, y1 *big.Int, k []byte) (x, y *big.Int)
	// ScalarBaseMult returns k*G, where G is the base point of the group
	// and k is an integer in big-endian form.
	ScalarBaseMult(k []byte) (x, y *big.Int)
}

func matchesSpecificCurve(params *CurveParams, available ...Curve) (Curve, bool) {
	for _, c := range available {
		if params == c.Params() {
			return c, true
		}
	}
	return nil, false
}

// CurveParams contains the parameters of an elliptic curve and also provides
// a generic, non-constant time implementation of Curve.
type CurveParams struct {
	P       *big.Int // the order of the underlying field
	N       *big.Int // the order of the base point
	B       *big.Int // the constant of the curve equation
	Gx, Gy  *big.Int // (x,y) of the base point
	BitSize int      // the size of the underlying field
	Name    string   // the canonical name of the curve
}

func (curve *CurveParams) Params() *CurveParams {
	return curve
}

// CurveParams operates, internally, on Jacobian coordinates. For a given
// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1)
// where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole
// calculation can be performed within the transform (as in ScalarMult and
// ScalarBaseMult). But even for Add and Double, it's faster to apply and
// reverse the transform than to operate in affine coordinates.

// polynomial returns x³ - 3x + b.
func (curve *CurveParams) polynomial(x *big.Int) *big.Int {
	x3 := new(big.Int).Mul(x, x)
	x3.Mul(x3, x)

	threeX := new(big.Int).Lsh(x, 1)
	threeX.Add(threeX, x)

	x3.Sub(x3, threeX)
	x3.Add(x3, curve.B)
	x3.Mod(x3, curve.P)

	return x3
}

func (curve *CurveParams) IsOnCurve(x, y *big.Int) bool {
	// If there is a dedicated constant-time implementation for this curve operation,
	// use that instead of the generic one.
	if specific, ok := matchesSpecificCurve(curve, p224, p384, p521); ok {
		return specific.IsOnCurve(x, y)
	}

	if x.Sign() < 0 || x.Cmp(curve.P) >= 0 ||
		y.Sign() < 0 || y.Cmp(curve.P) >= 0 {
		return false
	}

	// y² = x³ - 3x + b
	y2 := new(big.Int).Mul(y, y)
	y2.Mod(y2, curve.P)

	return curve.polynomial(x).Cmp(y2) == 0
}

// zForAffine returns a Jacobian Z value for the affine point (x, y). If x and
// y are zero, it assumes that they represent the point at infinity because (0,
// 0) is not on the any of the curves handled here.
func zForAffine(x, y *big.Int) *big.Int {
	z := new(big.Int)
	if x.Sign() != 0 || y.Sign() != 0 {
		z.SetInt64(1)
	}
	return z
}

// affineFromJacobian reverses the Jacobian transform. See the comment at the
// top of the file. If the point is ∞ it returns 0, 0.
func (curve *CurveParams) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
	if z.Sign() == 0 {
		return new(big.Int), new(big.Int)
	}

	zinv := new(big.Int).ModInverse(z, curve.P)
	zinvsq := new(big.Int).Mul(zinv, zinv)

	xOut = new(big.Int).Mul(x, zinvsq)
	xOut.Mod(xOut, curve.P)
	zinvsq.Mul(zinvsq, zinv)
	yOut = new(big.Int).Mul(y, zinvsq)
	yOut.Mod(yOut, curve.P)
	return
}

func (curve *CurveParams) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
	// If there is a dedicated constant-time implementation for this curve operation,
	// use that instead of the generic one.
	if specific, ok := matchesSpecificCurve(curve, p224, p384, p521); ok {
		return specific.Add(x1, y1, x2, y2)
	}

	z1 := zForAffine(x1, y1)
	z2 := zForAffine(x2, y2)
	return curve.affineFromJacobian(curve.addJacobian(x1, y1, z1, x2, y2, z2))
}

// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
// (x2, y2, z2) and returns their sum, also in Jacobian form.
func (curve *CurveParams) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
	// See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl
	x3, y3, z3 := new(big.Int), new(big.Int), new(big.Int)
	if z1.Sign() == 0 {
		x3.Set(x2)
		y3.Set(y2)
		z3.Set(z2)
		return x3, y3, z3
	}
	if z2.Sign() == 0 {
		x3.Set(x1)
		y3.Set(y1)
		z3.Set(z1)
		return x3, y3, z3
	}

	z1z1 := new(big.Int).Mul(z1, z1)
	z1z1.Mod(z1z1, curve.P)
	z2z2 := new(big.Int).Mul(z2, z2)
	z2z2.Mod(z2z2, curve.P)

	u1 := new(big.Int).Mul(x1, z2z2)
	u1.Mod(u1, curve.P)
	u2 := new(big.Int).Mul(x2, z1z1)
	u2.Mod(u2, curve.P)
	h := new(big.Int).Sub(u2, u1)
	xEqual := h.Sign() == 0
	if h.Sign() == -1 {
		h.Add(h, curve.P)
	}
	i := new(big.Int).Lsh(h, 1)
	i.Mul(i, i)
	j := new(big.Int).Mul(h, i)

	s1 := new(big.Int).Mul(y1, z2)
	s1.Mul(s1, z2z2)
	s1.Mod(s1, curve.P)
	s2 := new(big.Int).Mul(y2, z1)
	s2.Mul(s2, z1z1)
	s2.Mod(s2, curve.P)
	r := new(big.Int).Sub(s2, s1)
	if r.Sign() == -1 {
		r.Add(r, curve.P)
	}
	yEqual := r.Sign() == 0
	if xEqual && yEqual {
		return curve.doubleJacobian(x1, y1, z1)
	}
	r.Lsh(r, 1)
	v := new(big.Int).Mul(u1, i)

	x3.Set(r)
	x3.Mul(x3, x3)
	x3.Sub(x3, j)
	x3.Sub(x3, v)
	x3.Sub(x3, v)
	x3.Mod(x3, curve.P)

	y3.Set(r)
	v.Sub(v, x3)
	y3.Mul(y3, v)
	s1.Mul(s1, j)
	s1.Lsh(s1, 1)
	y3.Sub(y3, s1)
	y3.Mod(y3, curve.P)

	z3.Add(z1, z2)
	z3.Mul(z3, z3)
	z3.Sub(z3, z1z1)
	z3.Sub(z3, z2z2)
	z3.Mul(z3, h)
	z3.Mod(z3, curve.P)

	return x3, y3, z3
}

func (curve *CurveParams) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
	// If there is a dedicated constant-time implementation for this curve operation,
	// use that instead of the generic one.
	if specific, ok := matchesSpecificCurve(curve, p224, p384, p521); ok {
		return specific.Double(x1, y1)
	}

	z1 := zForAffine(x1, y1)
	return curve.affineFromJacobian(curve.doubleJacobian(x1, y1, z1))
}

// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
// returns its double, also in Jacobian form.
func (curve *CurveParams) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
	// See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
	delta := new(big.Int).Mul(z, z)
	delta.Mod(delta, curve.P)
	gamma := new(big.Int).Mul(y, y)
	gamma.Mod(gamma, curve.P)
	alpha := new(big.Int).Sub(x, delta)
	if alpha.Sign() == -1 {
		alpha.Add(alpha, curve.P)
	}
	alpha2 := new(big.Int).Add(x, delta)
	alpha.Mul(alpha, alpha2)
	alpha2.Set(alpha)
	alpha.Lsh(alpha, 1)
	alpha.Add(alpha, alpha2)

	beta := alpha2.Mul(x, gamma)

	x3 := new(big.Int).Mul(alpha, alpha)
	beta8 := new(big.Int).Lsh(beta, 3)
	beta8.Mod(beta8, curve.P)
	x3.Sub(x3, beta8)
	if x3.Sign() == -1 {
		x3.Add(x3, curve.P)
	}
	x3.Mod(x3, curve.P)

	z3 := new(big.Int).Add(y, z)
	z3.Mul(z3, z3)
	z3.Sub(z3, gamma)
	if z3.Sign() == -1 {
		z3.Add(z3, curve.P)
	}
	z3.Sub(z3, delta)
	if z3.Sign() == -1 {
		z3.Add(z3, curve.P)
	}
	z3.Mod(z3, curve.P)

	beta.Lsh(beta, 2)
	beta.Sub(beta, x3)
	if beta.Sign() == -1 {
		beta.Add(beta, curve.P)
	}
	y3 := alpha.Mul(alpha, beta)

	gamma.Mul(gamma, gamma)
	gamma.Lsh(gamma, 3)
	gamma.Mod(gamma, curve.P)

	y3.Sub(y3, gamma)
	if y3.Sign() == -1 {
		y3.Add(y3, curve.P)
	}
	y3.Mod(y3, curve.P)

	return x3, y3, z3
}

func (curve *CurveParams) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
	// If there is a dedicated constant-time implementation for this curve operation,
	// use that instead of the generic one.
	if specific, ok := matchesSpecificCurve(curve, p224, p256, p384, p521); ok {
		return specific.ScalarMult(Bx, By, k)
	}

	Bz := new(big.Int).SetInt64(1)
	x, y, z := new(big.Int), new(big.Int), new(big.Int)

	for _, byte := range k {
		for bitNum := 0; bitNum < 8; bitNum++ {
			x, y, z = curve.doubleJacobian(x, y, z)
			if byte&0x80 == 0x80 {
				x, y, z = curve.addJacobian(Bx, By, Bz, x, y, z)
			}
			byte <<= 1
		}
	}

	return curve.affineFromJacobian(x, y, z)
}

func (curve *CurveParams) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
	// If there is a dedicated constant-time implementation for this curve operation,
	// use that instead of the generic one.
	if specific, ok := matchesSpecificCurve(curve, p224, p256, p384, p521); ok {
		return specific.ScalarBaseMult(k)
	}

	return curve.ScalarMult(curve.Gx, curve.Gy, k)
}

var mask = []byte{0xff, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f}

// GenerateKey returns a public/private key pair. The private key is
// generated using the given reader, which must return random data.
func GenerateKey(curve Curve, rand io.Reader) (priv []byte, x, y *big.Int, err error) {
	N := curve.Params().N
	bitSize := N.BitLen()
	byteLen := (bitSize + 7) / 8
	priv = make([]byte, byteLen)

	for x == nil {
		_, err = io.ReadFull(rand, priv)
		if err != nil {
			return
		}
		// We have to mask off any excess bits in the case that the size of the
		// underlying field is not a whole number of bytes.
		priv[0] &= mask[bitSize%8]
		// This is because, in tests, rand will return all zeros and we don't
		// want to get the point at infinity and loop forever.
		priv[1] ^= 0x42

		// If the scalar is out of range, sample another random number.
		if new(big.Int).SetBytes(priv).Cmp(N) >= 0 {
			continue
		}

		x, y = curve.ScalarBaseMult(priv)
	}
	return
}

// Marshal converts a point on the curve into the uncompressed form specified in
// SEC 1, Version 2.0, Section 2.3.3. If the point is not on the curve (or is
// the conventional point at infinity), the behavior is undefined.
func Marshal(curve Curve, x, y *big.Int) []byte {
	byteLen := (curve.Params().BitSize + 7) / 8

	ret := make([]byte, 1+2*byteLen)
	ret[0] = 4 // uncompressed point

	x.FillBytes(ret[1 : 1+byteLen])
	y.FillBytes(ret[1+byteLen : 1+2*byteLen])

	return ret
}

// MarshalCompressed converts a point on the curve into the compressed form
// specified in SEC 1, Version 2.0, Section 2.3.3. If the point is not on the
// curve (or is the conventional point at infinity), the behavior is undefined.
func MarshalCompressed(curve Curve, x, y *big.Int) []byte {
	byteLen := (curve.Params().BitSize + 7) / 8
	compressed := make([]byte, 1+byteLen)
	compressed[0] = byte(y.Bit(0)) | 2
	x.FillBytes(compressed[1:])
	return compressed
}

// Unmarshal converts a point, serialized by Marshal, into an x, y pair. It is
// an error if the point is not in uncompressed form, is not on the curve, or is
// the point at infinity. On error, x = nil.
func Unmarshal(curve Curve, data []byte) (x, y *big.Int) {
	byteLen := (curve.Params().BitSize + 7) / 8
	if len(data) != 1+2*byteLen {
		return nil, nil
	}
	if data[0] != 4 { // uncompressed form
		return nil, nil
	}
	p := curve.Params().P
	x = new(big.Int).SetBytes(data[1 : 1+byteLen])
	y = new(big.Int).SetBytes(data[1+byteLen:])
	if x.Cmp(p) >= 0 || y.Cmp(p) >= 0 {
		return nil, nil
	}
	if !curve.IsOnCurve(x, y) {
		return nil, nil
	}
	return
}

// UnmarshalCompressed converts a point, serialized by MarshalCompressed, into
// an x, y pair. It is an error if the point is not in compressed form, is not
// on the curve, or is the point at infinity. On error, x = nil.
func UnmarshalCompressed(curve Curve, data []byte) (x, y *big.Int) {
	byteLen := (curve.Params().BitSize + 7) / 8
	if len(data) != 1+byteLen {
		return nil, nil
	}
	if data[0] != 2 && data[0] != 3 { // compressed form
		return nil, nil
	}
	p := curve.Params().P
	x = new(big.Int).SetBytes(data[1:])
	if x.Cmp(p) >= 0 {
		return nil, nil
	}
	// y² = x³ - 3x + b
	y = curve.Params().polynomial(x)
	y = y.ModSqrt(y, p)
	if y == nil {
		return nil, nil
	}
	if byte(y.Bit(0)) != data[0]&1 {
		y.Neg(y).Mod(y, p)
	}
	if !curve.IsOnCurve(x, y) {
		return nil, nil
	}
	return
}

var initonce sync.Once

func initAll() {
	initP224()
	initP256()
	initP384()
	initP521()
}

// P224 returns a Curve which implements NIST P-224 (FIPS 186-3, section D.2.2),
// also known as secp224r1. The CurveParams.Name of this Curve is "P-224".
//
// Multiple invocations of this function will return the same value, so it can
// be used for equality checks and switch statements.
//
// The cryptographic operations are implemented using constant-time algorithms.
func P224() Curve {
	initonce.Do(initAll)
	return p224
}

// P256 returns a Curve which implements NIST P-256 (FIPS 186-3, section D.2.3),
// also known as secp256r1 or prime256v1. The CurveParams.Name of this Curve is
// "P-256".
//
// Multiple invocations of this function will return the same value, so it can
// be used for equality checks and switch statements.
//
// ScalarMult and ScalarBaseMult are implemented using constant-time algorithms.
func P256() Curve {
	initonce.Do(initAll)
	return p256
}

// P384 returns a Curve which implements NIST P-384 (FIPS 186-3, section D.2.4),
// also known as secp384r1. The CurveParams.Name of this Curve is "P-384".
//
// Multiple invocations of this function will return the same value, so it can
// be used for equality checks and switch statements.
//
// The cryptographic operations are implemented using constant-time algorithms.
func P384() Curve {
	initonce.Do(initAll)
	return p384
}

// P521 returns a Curve which implements NIST P-521 (FIPS 186-3, section D.2.5),
// also known as secp521r1. The CurveParams.Name of this Curve is "P-521".
//
// Multiple invocations of this function will return the same value, so it can
// be used for equality checks and switch statements.
//
// The cryptographic operations are implemented using constant-time algorithms.
func P521() Curve {
	initonce.Do(initAll)
	return p521
}