summaryrefslogtreecommitdiffstats
path: root/src/math/rand/rand_test.go
blob: 462de8b73b4d574597984a4cf5da6f6b2078fbd6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package rand_test

import (
	"bytes"
	"errors"
	"fmt"
	"internal/testenv"
	"io"
	"math"
	. "math/rand"
	"os"
	"runtime"
	"testing"
	"testing/iotest"
)

const (
	numTestSamples = 10000
)

var rn, kn, wn, fn = GetNormalDistributionParameters()
var re, ke, we, fe = GetExponentialDistributionParameters()

type statsResults struct {
	mean        float64
	stddev      float64
	closeEnough float64
	maxError    float64
}

func max(a, b float64) float64 {
	if a > b {
		return a
	}
	return b
}

func nearEqual(a, b, closeEnough, maxError float64) bool {
	absDiff := math.Abs(a - b)
	if absDiff < closeEnough { // Necessary when one value is zero and one value is close to zero.
		return true
	}
	return absDiff/max(math.Abs(a), math.Abs(b)) < maxError
}

var testSeeds = []int64{1, 1754801282, 1698661970, 1550503961}

// checkSimilarDistribution returns success if the mean and stddev of the
// two statsResults are similar.
func (this *statsResults) checkSimilarDistribution(expected *statsResults) error {
	if !nearEqual(this.mean, expected.mean, expected.closeEnough, expected.maxError) {
		s := fmt.Sprintf("mean %v != %v (allowed error %v, %v)", this.mean, expected.mean, expected.closeEnough, expected.maxError)
		fmt.Println(s)
		return errors.New(s)
	}
	if !nearEqual(this.stddev, expected.stddev, expected.closeEnough, expected.maxError) {
		s := fmt.Sprintf("stddev %v != %v (allowed error %v, %v)", this.stddev, expected.stddev, expected.closeEnough, expected.maxError)
		fmt.Println(s)
		return errors.New(s)
	}
	return nil
}

func getStatsResults(samples []float64) *statsResults {
	res := new(statsResults)
	var sum, squaresum float64
	for _, s := range samples {
		sum += s
		squaresum += s * s
	}
	res.mean = sum / float64(len(samples))
	res.stddev = math.Sqrt(squaresum/float64(len(samples)) - res.mean*res.mean)
	return res
}

func checkSampleDistribution(t *testing.T, samples []float64, expected *statsResults) {
	t.Helper()
	actual := getStatsResults(samples)
	err := actual.checkSimilarDistribution(expected)
	if err != nil {
		t.Errorf(err.Error())
	}
}

func checkSampleSliceDistributions(t *testing.T, samples []float64, nslices int, expected *statsResults) {
	t.Helper()
	chunk := len(samples) / nslices
	for i := 0; i < nslices; i++ {
		low := i * chunk
		var high int
		if i == nslices-1 {
			high = len(samples) - 1
		} else {
			high = (i + 1) * chunk
		}
		checkSampleDistribution(t, samples[low:high], expected)
	}
}

//
// Normal distribution tests
//

func generateNormalSamples(nsamples int, mean, stddev float64, seed int64) []float64 {
	r := New(NewSource(seed))
	samples := make([]float64, nsamples)
	for i := range samples {
		samples[i] = r.NormFloat64()*stddev + mean
	}
	return samples
}

func testNormalDistribution(t *testing.T, nsamples int, mean, stddev float64, seed int64) {
	//fmt.Printf("testing nsamples=%v mean=%v stddev=%v seed=%v\n", nsamples, mean, stddev, seed);

	samples := generateNormalSamples(nsamples, mean, stddev, seed)
	errorScale := max(1.0, stddev) // Error scales with stddev
	expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale}

	// Make sure that the entire set matches the expected distribution.
	checkSampleDistribution(t, samples, expected)

	// Make sure that each half of the set matches the expected distribution.
	checkSampleSliceDistributions(t, samples, 2, expected)

	// Make sure that each 7th of the set matches the expected distribution.
	checkSampleSliceDistributions(t, samples, 7, expected)
}

// Actual tests

func TestStandardNormalValues(t *testing.T) {
	for _, seed := range testSeeds {
		testNormalDistribution(t, numTestSamples, 0, 1, seed)
	}
}

func TestNonStandardNormalValues(t *testing.T) {
	sdmax := 1000.0
	mmax := 1000.0
	if testing.Short() {
		sdmax = 5
		mmax = 5
	}
	for sd := 0.5; sd < sdmax; sd *= 2 {
		for m := 0.5; m < mmax; m *= 2 {
			for _, seed := range testSeeds {
				testNormalDistribution(t, numTestSamples, m, sd, seed)
				if testing.Short() {
					break
				}
			}
		}
	}
}

//
// Exponential distribution tests
//

func generateExponentialSamples(nsamples int, rate float64, seed int64) []float64 {
	r := New(NewSource(seed))
	samples := make([]float64, nsamples)
	for i := range samples {
		samples[i] = r.ExpFloat64() / rate
	}
	return samples
}

func testExponentialDistribution(t *testing.T, nsamples int, rate float64, seed int64) {
	//fmt.Printf("testing nsamples=%v rate=%v seed=%v\n", nsamples, rate, seed);

	mean := 1 / rate
	stddev := mean

	samples := generateExponentialSamples(nsamples, rate, seed)
	errorScale := max(1.0, 1/rate) // Error scales with the inverse of the rate
	expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.20 * errorScale}

	// Make sure that the entire set matches the expected distribution.
	checkSampleDistribution(t, samples, expected)

	// Make sure that each half of the set matches the expected distribution.
	checkSampleSliceDistributions(t, samples, 2, expected)

	// Make sure that each 7th of the set matches the expected distribution.
	checkSampleSliceDistributions(t, samples, 7, expected)
}

// Actual tests

func TestStandardExponentialValues(t *testing.T) {
	for _, seed := range testSeeds {
		testExponentialDistribution(t, numTestSamples, 1, seed)
	}
}

func TestNonStandardExponentialValues(t *testing.T) {
	for rate := 0.05; rate < 10; rate *= 2 {
		for _, seed := range testSeeds {
			testExponentialDistribution(t, numTestSamples, rate, seed)
			if testing.Short() {
				break
			}
		}
	}
}

//
// Table generation tests
//

func initNorm() (testKn []uint32, testWn, testFn []float32) {
	const m1 = 1 << 31
	var (
		dn float64 = rn
		tn         = dn
		vn float64 = 9.91256303526217e-3
	)

	testKn = make([]uint32, 128)
	testWn = make([]float32, 128)
	testFn = make([]float32, 128)

	q := vn / math.Exp(-0.5*dn*dn)
	testKn[0] = uint32((dn / q) * m1)
	testKn[1] = 0
	testWn[0] = float32(q / m1)
	testWn[127] = float32(dn / m1)
	testFn[0] = 1.0
	testFn[127] = float32(math.Exp(-0.5 * dn * dn))
	for i := 126; i >= 1; i-- {
		dn = math.Sqrt(-2.0 * math.Log(vn/dn+math.Exp(-0.5*dn*dn)))
		testKn[i+1] = uint32((dn / tn) * m1)
		tn = dn
		testFn[i] = float32(math.Exp(-0.5 * dn * dn))
		testWn[i] = float32(dn / m1)
	}
	return
}

func initExp() (testKe []uint32, testWe, testFe []float32) {
	const m2 = 1 << 32
	var (
		de float64 = re
		te         = de
		ve float64 = 3.9496598225815571993e-3
	)

	testKe = make([]uint32, 256)
	testWe = make([]float32, 256)
	testFe = make([]float32, 256)

	q := ve / math.Exp(-de)
	testKe[0] = uint32((de / q) * m2)
	testKe[1] = 0
	testWe[0] = float32(q / m2)
	testWe[255] = float32(de / m2)
	testFe[0] = 1.0
	testFe[255] = float32(math.Exp(-de))
	for i := 254; i >= 1; i-- {
		de = -math.Log(ve/de + math.Exp(-de))
		testKe[i+1] = uint32((de / te) * m2)
		te = de
		testFe[i] = float32(math.Exp(-de))
		testWe[i] = float32(de / m2)
	}
	return
}

// compareUint32Slices returns the first index where the two slices
// disagree, or <0 if the lengths are the same and all elements
// are identical.
func compareUint32Slices(s1, s2 []uint32) int {
	if len(s1) != len(s2) {
		if len(s1) > len(s2) {
			return len(s2) + 1
		}
		return len(s1) + 1
	}
	for i := range s1 {
		if s1[i] != s2[i] {
			return i
		}
	}
	return -1
}

// compareFloat32Slices returns the first index where the two slices
// disagree, or <0 if the lengths are the same and all elements
// are identical.
func compareFloat32Slices(s1, s2 []float32) int {
	if len(s1) != len(s2) {
		if len(s1) > len(s2) {
			return len(s2) + 1
		}
		return len(s1) + 1
	}
	for i := range s1 {
		if !nearEqual(float64(s1[i]), float64(s2[i]), 0, 1e-7) {
			return i
		}
	}
	return -1
}

func TestNormTables(t *testing.T) {
	testKn, testWn, testFn := initNorm()
	if i := compareUint32Slices(kn[0:], testKn); i >= 0 {
		t.Errorf("kn disagrees at index %v; %v != %v", i, kn[i], testKn[i])
	}
	if i := compareFloat32Slices(wn[0:], testWn); i >= 0 {
		t.Errorf("wn disagrees at index %v; %v != %v", i, wn[i], testWn[i])
	}
	if i := compareFloat32Slices(fn[0:], testFn); i >= 0 {
		t.Errorf("fn disagrees at index %v; %v != %v", i, fn[i], testFn[i])
	}
}

func TestExpTables(t *testing.T) {
	testKe, testWe, testFe := initExp()
	if i := compareUint32Slices(ke[0:], testKe); i >= 0 {
		t.Errorf("ke disagrees at index %v; %v != %v", i, ke[i], testKe[i])
	}
	if i := compareFloat32Slices(we[0:], testWe); i >= 0 {
		t.Errorf("we disagrees at index %v; %v != %v", i, we[i], testWe[i])
	}
	if i := compareFloat32Slices(fe[0:], testFe); i >= 0 {
		t.Errorf("fe disagrees at index %v; %v != %v", i, fe[i], testFe[i])
	}
}

func hasSlowFloatingPoint() bool {
	switch runtime.GOARCH {
	case "arm":
		return os.Getenv("GOARM") == "5"
	case "mips", "mipsle", "mips64", "mips64le":
		// Be conservative and assume that all mips boards
		// have emulated floating point.
		// TODO: detect what it actually has.
		return true
	}
	return false
}

func TestFloat32(t *testing.T) {
	// For issue 6721, the problem came after 7533753 calls, so check 10e6.
	num := int(10e6)
	// But do the full amount only on builders (not locally).
	// But ARM5 floating point emulation is slow (Issue 10749), so
	// do less for that builder:
	if testing.Short() && (testenv.Builder() == "" || hasSlowFloatingPoint()) {
		num /= 100 // 1.72 seconds instead of 172 seconds
	}

	r := New(NewSource(1))
	for ct := 0; ct < num; ct++ {
		f := r.Float32()
		if f >= 1 {
			t.Fatal("Float32() should be in range [0,1). ct:", ct, "f:", f)
		}
	}
}

func testReadUniformity(t *testing.T, n int, seed int64) {
	r := New(NewSource(seed))
	buf := make([]byte, n)
	nRead, err := r.Read(buf)
	if err != nil {
		t.Errorf("Read err %v", err)
	}
	if nRead != n {
		t.Errorf("Read returned unexpected n; %d != %d", nRead, n)
	}

	// Expect a uniform distribution of byte values, which lie in [0, 255].
	var (
		mean       = 255.0 / 2
		stddev     = 256.0 / math.Sqrt(12.0)
		errorScale = stddev / math.Sqrt(float64(n))
	)

	expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale}

	// Cast bytes as floats to use the common distribution-validity checks.
	samples := make([]float64, n)
	for i, val := range buf {
		samples[i] = float64(val)
	}
	// Make sure that the entire set matches the expected distribution.
	checkSampleDistribution(t, samples, expected)
}

func TestReadUniformity(t *testing.T) {
	testBufferSizes := []int{
		2, 4, 7, 64, 1024, 1 << 16, 1 << 20,
	}
	for _, seed := range testSeeds {
		for _, n := range testBufferSizes {
			testReadUniformity(t, n, seed)
		}
	}
}

func TestReadEmpty(t *testing.T) {
	r := New(NewSource(1))
	buf := make([]byte, 0)
	n, err := r.Read(buf)
	if err != nil {
		t.Errorf("Read err into empty buffer; %v", err)
	}
	if n != 0 {
		t.Errorf("Read into empty buffer returned unexpected n of %d", n)
	}
}

func TestReadByOneByte(t *testing.T) {
	r := New(NewSource(1))
	b1 := make([]byte, 100)
	_, err := io.ReadFull(iotest.OneByteReader(r), b1)
	if err != nil {
		t.Errorf("read by one byte: %v", err)
	}
	r = New(NewSource(1))
	b2 := make([]byte, 100)
	_, err = r.Read(b2)
	if err != nil {
		t.Errorf("read: %v", err)
	}
	if !bytes.Equal(b1, b2) {
		t.Errorf("read by one byte vs single read:\n%x\n%x", b1, b2)
	}
}

func TestReadSeedReset(t *testing.T) {
	r := New(NewSource(42))
	b1 := make([]byte, 128)
	_, err := r.Read(b1)
	if err != nil {
		t.Errorf("read: %v", err)
	}
	r.Seed(42)
	b2 := make([]byte, 128)
	_, err = r.Read(b2)
	if err != nil {
		t.Errorf("read: %v", err)
	}
	if !bytes.Equal(b1, b2) {
		t.Errorf("mismatch after re-seed:\n%x\n%x", b1, b2)
	}
}

func TestShuffleSmall(t *testing.T) {
	// Check that Shuffle allows n=0 and n=1, but that swap is never called for them.
	r := New(NewSource(1))
	for n := 0; n <= 1; n++ {
		r.Shuffle(n, func(i, j int) { t.Fatalf("swap called, n=%d i=%d j=%d", n, i, j) })
	}
}

// encodePerm converts from a permuted slice of length n, such as Perm generates, to an int in [0, n!).
// See https://en.wikipedia.org/wiki/Lehmer_code.
// encodePerm modifies the input slice.
func encodePerm(s []int) int {
	// Convert to Lehmer code.
	for i, x := range s {
		r := s[i+1:]
		for j, y := range r {
			if y > x {
				r[j]--
			}
		}
	}
	// Convert to int in [0, n!).
	m := 0
	fact := 1
	for i := len(s) - 1; i >= 0; i-- {
		m += s[i] * fact
		fact *= len(s) - i
	}
	return m
}

// TestUniformFactorial tests several ways of generating a uniform value in [0, n!).
func TestUniformFactorial(t *testing.T) {
	r := New(NewSource(testSeeds[0]))
	top := 6
	if testing.Short() {
		top = 3
	}
	for n := 3; n <= top; n++ {
		t.Run(fmt.Sprintf("n=%d", n), func(t *testing.T) {
			// Calculate n!.
			nfact := 1
			for i := 2; i <= n; i++ {
				nfact *= i
			}

			// Test a few different ways to generate a uniform distribution.
			p := make([]int, n) // re-usable slice for Shuffle generator
			tests := [...]struct {
				name string
				fn   func() int
			}{
				{name: "Int31n", fn: func() int { return int(r.Int31n(int32(nfact))) }},
				{name: "int31n", fn: func() int { return int(Int31nForTest(r, int32(nfact))) }},
				{name: "Perm", fn: func() int { return encodePerm(r.Perm(n)) }},
				{name: "Shuffle", fn: func() int {
					// Generate permutation using Shuffle.
					for i := range p {
						p[i] = i
					}
					r.Shuffle(n, func(i, j int) { p[i], p[j] = p[j], p[i] })
					return encodePerm(p)
				}},
			}

			for _, test := range tests {
				t.Run(test.name, func(t *testing.T) {
					// Gather chi-squared values and check that they follow
					// the expected normal distribution given n!-1 degrees of freedom.
					// See https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test and
					// https://www.johndcook.com/Beautiful_Testing_ch10.pdf.
					nsamples := 10 * nfact
					if nsamples < 200 {
						nsamples = 200
					}
					samples := make([]float64, nsamples)
					for i := range samples {
						// Generate some uniformly distributed values and count their occurrences.
						const iters = 1000
						counts := make([]int, nfact)
						for i := 0; i < iters; i++ {
							counts[test.fn()]++
						}
						// Calculate chi-squared and add to samples.
						want := iters / float64(nfact)
						var χ2 float64
						for _, have := range counts {
							err := float64(have) - want
							χ2 += err * err
						}
						χ2 /= want
						samples[i] = χ2
					}

					// Check that our samples approximate the appropriate normal distribution.
					dof := float64(nfact - 1)
					expected := &statsResults{mean: dof, stddev: math.Sqrt(2 * dof)}
					errorScale := max(1.0, expected.stddev)
					expected.closeEnough = 0.10 * errorScale
					expected.maxError = 0.08 // TODO: What is the right value here? See issue 21211.
					checkSampleDistribution(t, samples, expected)
				})
			}
		})
	}
}

// Benchmarks

func BenchmarkInt63Threadsafe(b *testing.B) {
	for n := b.N; n > 0; n-- {
		Int63()
	}
}

func BenchmarkInt63ThreadsafeParallel(b *testing.B) {
	b.RunParallel(func(pb *testing.PB) {
		for pb.Next() {
			Int63()
		}
	})
}

func BenchmarkInt63Unthreadsafe(b *testing.B) {
	r := New(NewSource(1))
	for n := b.N; n > 0; n-- {
		r.Int63()
	}
}

func BenchmarkIntn1000(b *testing.B) {
	r := New(NewSource(1))
	for n := b.N; n > 0; n-- {
		r.Intn(1000)
	}
}

func BenchmarkInt63n1000(b *testing.B) {
	r := New(NewSource(1))
	for n := b.N; n > 0; n-- {
		r.Int63n(1000)
	}
}

func BenchmarkInt31n1000(b *testing.B) {
	r := New(NewSource(1))
	for n := b.N; n > 0; n-- {
		r.Int31n(1000)
	}
}

func BenchmarkFloat32(b *testing.B) {
	r := New(NewSource(1))
	for n := b.N; n > 0; n-- {
		r.Float32()
	}
}

func BenchmarkFloat64(b *testing.B) {
	r := New(NewSource(1))
	for n := b.N; n > 0; n-- {
		r.Float64()
	}
}

func BenchmarkPerm3(b *testing.B) {
	r := New(NewSource(1))
	for n := b.N; n > 0; n-- {
		r.Perm(3)
	}
}

func BenchmarkPerm30(b *testing.B) {
	r := New(NewSource(1))
	for n := b.N; n > 0; n-- {
		r.Perm(30)
	}
}

func BenchmarkPerm30ViaShuffle(b *testing.B) {
	r := New(NewSource(1))
	for n := b.N; n > 0; n-- {
		p := make([]int, 30)
		for i := range p {
			p[i] = i
		}
		r.Shuffle(30, func(i, j int) { p[i], p[j] = p[j], p[i] })
	}
}

// BenchmarkShuffleOverhead uses a minimal swap function
// to measure just the shuffling overhead.
func BenchmarkShuffleOverhead(b *testing.B) {
	r := New(NewSource(1))
	for n := b.N; n > 0; n-- {
		r.Shuffle(52, func(i, j int) {
			if i < 0 || i >= 52 || j < 0 || j >= 52 {
				b.Fatalf("bad swap(%d, %d)", i, j)
			}
		})
	}
}

func BenchmarkRead3(b *testing.B) {
	r := New(NewSource(1))
	buf := make([]byte, 3)
	b.ResetTimer()
	for n := b.N; n > 0; n-- {
		r.Read(buf)
	}
}

func BenchmarkRead64(b *testing.B) {
	r := New(NewSource(1))
	buf := make([]byte, 64)
	b.ResetTimer()
	for n := b.N; n > 0; n-- {
		r.Read(buf)
	}
}

func BenchmarkRead1000(b *testing.B) {
	r := New(NewSource(1))
	buf := make([]byte, 1000)
	b.ResetTimer()
	for n := b.N; n > 0; n-- {
		r.Read(buf)
	}
}