summaryrefslogtreecommitdiffstats
path: root/src/runtime/debug/garbage_test.go
blob: 7213bbe641dd6e38c64f2e504a23080ea25b3325 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package debug_test

import (
	"internal/testenv"
	"os"
	"runtime"
	. "runtime/debug"
	"testing"
	"time"
)

func TestReadGCStats(t *testing.T) {
	defer SetGCPercent(SetGCPercent(-1))

	var stats GCStats
	var mstats runtime.MemStats
	var min, max time.Duration

	// First ReadGCStats will allocate, second should not,
	// especially if we follow up with an explicit garbage collection.
	stats.PauseQuantiles = make([]time.Duration, 10)
	ReadGCStats(&stats)
	runtime.GC()

	// Assume these will return same data: no GC during ReadGCStats.
	ReadGCStats(&stats)
	runtime.ReadMemStats(&mstats)

	if stats.NumGC != int64(mstats.NumGC) {
		t.Errorf("stats.NumGC = %d, but mstats.NumGC = %d", stats.NumGC, mstats.NumGC)
	}
	if stats.PauseTotal != time.Duration(mstats.PauseTotalNs) {
		t.Errorf("stats.PauseTotal = %d, but mstats.PauseTotalNs = %d", stats.PauseTotal, mstats.PauseTotalNs)
	}
	if stats.LastGC.UnixNano() != int64(mstats.LastGC) {
		t.Errorf("stats.LastGC.UnixNano = %d, but mstats.LastGC = %d", stats.LastGC.UnixNano(), mstats.LastGC)
	}
	n := int(mstats.NumGC)
	if n > len(mstats.PauseNs) {
		n = len(mstats.PauseNs)
	}
	if len(stats.Pause) != n {
		t.Errorf("len(stats.Pause) = %d, want %d", len(stats.Pause), n)
	} else {
		off := (int(mstats.NumGC) + len(mstats.PauseNs) - 1) % len(mstats.PauseNs)
		for i := 0; i < n; i++ {
			dt := stats.Pause[i]
			if dt != time.Duration(mstats.PauseNs[off]) {
				t.Errorf("stats.Pause[%d] = %d, want %d", i, dt, mstats.PauseNs[off])
			}
			if max < dt {
				max = dt
			}
			if min > dt || i == 0 {
				min = dt
			}
			off = (off + len(mstats.PauseNs) - 1) % len(mstats.PauseNs)
		}
	}

	q := stats.PauseQuantiles
	nq := len(q)
	if q[0] != min || q[nq-1] != max {
		t.Errorf("stats.PauseQuantiles = [%d, ..., %d], want [%d, ..., %d]", q[0], q[nq-1], min, max)
	}

	for i := 0; i < nq-1; i++ {
		if q[i] > q[i+1] {
			t.Errorf("stats.PauseQuantiles[%d]=%d > stats.PauseQuantiles[%d]=%d", i, q[i], i+1, q[i+1])
		}
	}

	// compare memory stats with gc stats:
	if len(stats.PauseEnd) != n {
		t.Fatalf("len(stats.PauseEnd) = %d, want %d", len(stats.PauseEnd), n)
	}
	off := (int(mstats.NumGC) + len(mstats.PauseEnd) - 1) % len(mstats.PauseEnd)
	for i := 0; i < n; i++ {
		dt := stats.PauseEnd[i]
		if dt.UnixNano() != int64(mstats.PauseEnd[off]) {
			t.Errorf("stats.PauseEnd[%d] = %d, want %d", i, dt.UnixNano(), mstats.PauseEnd[off])
		}
		off = (off + len(mstats.PauseEnd) - 1) % len(mstats.PauseEnd)
	}
}

var big []byte

func TestFreeOSMemory(t *testing.T) {
	// Tests FreeOSMemory by making big susceptible to collection
	// and checking that at least that much memory is returned to
	// the OS after.

	const bigBytes = 32 << 20
	big = make([]byte, bigBytes)

	// Make sure any in-progress GCs are complete.
	runtime.GC()

	var before runtime.MemStats
	runtime.ReadMemStats(&before)

	// Clear the last reference to the big allocation, making it
	// susceptible to collection.
	big = nil

	// FreeOSMemory runs a GC cycle before releasing memory,
	// so it's fine to skip a GC here.
	//
	// It's possible the background scavenger runs concurrently
	// with this function and does most of the work for it.
	// If that happens, it's OK. What we want is a test that fails
	// often if FreeOSMemory does not work correctly, and a test
	// that passes every time if it does.
	FreeOSMemory()

	var after runtime.MemStats
	runtime.ReadMemStats(&after)

	// Check to make sure that the big allocation (now freed)
	// had its memory shift into HeapReleased as a result of that
	// FreeOSMemory.
	if after.HeapReleased <= before.HeapReleased {
		t.Fatalf("no memory released: %d -> %d", before.HeapReleased, after.HeapReleased)
	}

	// Check to make sure bigBytes was released, plus some slack. Pages may get
	// allocated in between the two measurements above for a variety for reasons,
	// most commonly for GC work bufs. Since this can get fairly high, depending
	// on scheduling and what GOMAXPROCS is, give a lot of slack up-front.
	//
	// Add a little more slack too if the page size is bigger than the runtime page size.
	// "big" could end up unaligned on its ends, forcing the scavenger to skip at worst
	// 2x pages.
	slack := uint64(bigBytes / 2)
	pageSize := uint64(os.Getpagesize())
	if pageSize > 8<<10 {
		slack += pageSize * 2
	}
	if slack > bigBytes {
		// We basically already checked this.
		return
	}
	if after.HeapReleased-before.HeapReleased < bigBytes-slack {
		t.Fatalf("less than %d released: %d -> %d", bigBytes, before.HeapReleased, after.HeapReleased)
	}
}

var (
	setGCPercentBallast any
	setGCPercentSink    any
)

func TestSetGCPercent(t *testing.T) {
	testenv.SkipFlaky(t, 20076)

	// Test that the variable is being set and returned correctly.
	old := SetGCPercent(123)
	new := SetGCPercent(old)
	if new != 123 {
		t.Errorf("SetGCPercent(123); SetGCPercent(x) = %d, want 123", new)
	}

	// Test that the percentage is implemented correctly.
	defer func() {
		SetGCPercent(old)
		setGCPercentBallast, setGCPercentSink = nil, nil
	}()
	SetGCPercent(100)
	runtime.GC()
	// Create 100 MB of live heap as a baseline.
	const baseline = 100 << 20
	var ms runtime.MemStats
	runtime.ReadMemStats(&ms)
	setGCPercentBallast = make([]byte, baseline-ms.Alloc)
	runtime.GC()
	runtime.ReadMemStats(&ms)
	if abs64(baseline-int64(ms.Alloc)) > 10<<20 {
		t.Fatalf("failed to set up baseline live heap; got %d MB, want %d MB", ms.Alloc>>20, baseline>>20)
	}
	// NextGC should be ~200 MB.
	const thresh = 20 << 20 // TODO: Figure out why this is so noisy on some builders
	if want := int64(2 * baseline); abs64(want-int64(ms.NextGC)) > thresh {
		t.Errorf("NextGC = %d MB, want %d±%d MB", ms.NextGC>>20, want>>20, thresh>>20)
	}
	// Create some garbage, but not enough to trigger another GC.
	for i := 0; i < int(1.2*baseline); i += 1 << 10 {
		setGCPercentSink = make([]byte, 1<<10)
	}
	setGCPercentSink = nil
	// Adjust GOGC to 50. NextGC should be ~150 MB.
	SetGCPercent(50)
	runtime.ReadMemStats(&ms)
	if want := int64(1.5 * baseline); abs64(want-int64(ms.NextGC)) > thresh {
		t.Errorf("NextGC = %d MB, want %d±%d MB", ms.NextGC>>20, want>>20, thresh>>20)
	}

	// Trigger a GC and get back to 100 MB live with GOGC=100.
	SetGCPercent(100)
	runtime.GC()
	// Raise live to 120 MB.
	setGCPercentSink = make([]byte, int(0.2*baseline))
	// Lower GOGC to 10. This must force a GC.
	runtime.ReadMemStats(&ms)
	ngc1 := ms.NumGC
	SetGCPercent(10)
	// It may require an allocation to actually force the GC.
	setGCPercentSink = make([]byte, 1<<20)
	runtime.ReadMemStats(&ms)
	ngc2 := ms.NumGC
	if ngc1 == ngc2 {
		t.Errorf("expected GC to run but it did not")
	}
}

func abs64(a int64) int64 {
	if a < 0 {
		return -a
	}
	return a
}

func TestSetMaxThreadsOvf(t *testing.T) {
	// Verify that a big threads count will not overflow the int32
	// maxmcount variable, causing a panic (see Issue 16076).
	//
	// This can only happen when ints are 64 bits, since on platforms
	// with 32 bit ints SetMaxThreads (which takes an int parameter)
	// cannot be given anything that will overflow an int32.
	//
	// Call SetMaxThreads with 1<<31, but only on 64 bit systems.
	nt := SetMaxThreads(1 << (30 + ^uint(0)>>63))
	SetMaxThreads(nt) // restore previous value
}