1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
|
// asmcheck
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package codegen
import "math"
var sink64 [8]float64
func approx(x float64) {
// amd64/v2:-".*x86HasSSE41" amd64/v3:-".*x86HasSSE41"
// amd64:"ROUNDSD\t[$]2"
// s390x:"FIDBR\t[$]6"
// arm64:"FRINTPD"
// ppc64:"FRIP"
// ppc64le:"FRIP"
// wasm:"F64Ceil"
sink64[0] = math.Ceil(x)
// amd64/v2:-".*x86HasSSE41" amd64/v3:-".*x86HasSSE41"
// amd64:"ROUNDSD\t[$]1"
// s390x:"FIDBR\t[$]7"
// arm64:"FRINTMD"
// ppc64:"FRIM"
// ppc64le:"FRIM"
// wasm:"F64Floor"
sink64[1] = math.Floor(x)
// s390x:"FIDBR\t[$]1"
// arm64:"FRINTAD"
// ppc64:"FRIN"
// ppc64le:"FRIN"
sink64[2] = math.Round(x)
// amd64/v2:-".*x86HasSSE41" amd64/v3:-".*x86HasSSE41"
// amd64:"ROUNDSD\t[$]3"
// s390x:"FIDBR\t[$]5"
// arm64:"FRINTZD"
// ppc64:"FRIZ"
// ppc64le:"FRIZ"
// wasm:"F64Trunc"
sink64[3] = math.Trunc(x)
// amd64/v2:-".*x86HasSSE41" amd64/v3:-".*x86HasSSE41"
// amd64:"ROUNDSD\t[$]0"
// s390x:"FIDBR\t[$]4"
// arm64:"FRINTND"
// wasm:"F64Nearest"
sink64[4] = math.RoundToEven(x)
}
func sqrt(x float64) float64 {
// amd64:"SQRTSD"
// 386/sse2:"SQRTSD" 386/softfloat:-"SQRTD"
// arm64:"FSQRTD"
// arm/7:"SQRTD"
// mips/hardfloat:"SQRTD" mips/softfloat:-"SQRTD"
// mips64/hardfloat:"SQRTD" mips64/softfloat:-"SQRTD"
// wasm:"F64Sqrt"
return math.Sqrt(x)
}
func sqrt32(x float32) float32 {
// amd64:"SQRTSS"
// 386/sse2:"SQRTSS" 386/softfloat:-"SQRTS"
// arm64:"FSQRTS"
// arm/7:"SQRTF"
// mips/hardfloat:"SQRTF" mips/softfloat:-"SQRTF"
// mips64/hardfloat:"SQRTF" mips64/softfloat:-"SQRTF"
// wasm:"F32Sqrt"
return float32(math.Sqrt(float64(x)))
}
// Check that it's using integer registers
func abs(x, y float64) {
// amd64:"BTRQ\t[$]63"
// arm64:"FABSD\t"
// s390x:"LPDFR\t",-"MOVD\t" (no integer load/store)
// ppc64:"FABS\t"
// ppc64le:"FABS\t"
// riscv64:"FABSD\t"
// wasm:"F64Abs"
// arm/6:"ABSD\t"
sink64[0] = math.Abs(x)
// amd64:"BTRQ\t[$]63","PXOR" (TODO: this should be BTSQ)
// s390x:"LNDFR\t",-"MOVD\t" (no integer load/store)
// ppc64:"FNABS\t"
// ppc64le:"FNABS\t"
sink64[1] = -math.Abs(y)
}
// Check that it's using integer registers
func abs32(x float32) float32 {
// s390x:"LPDFR",-"LDEBR",-"LEDBR" (no float64 conversion)
return float32(math.Abs(float64(x)))
}
// Check that it's using integer registers
func copysign(a, b, c float64) {
// amd64:"BTRQ\t[$]63","ANDQ","ORQ"
// s390x:"CPSDR",-"MOVD" (no integer load/store)
// ppc64:"FCPSGN"
// ppc64le:"FCPSGN"
// riscv64:"FSGNJD"
// wasm:"F64Copysign"
sink64[0] = math.Copysign(a, b)
// amd64:"BTSQ\t[$]63"
// s390x:"LNDFR\t",-"MOVD\t" (no integer load/store)
// ppc64:"FCPSGN"
// ppc64le:"FCPSGN"
// riscv64:"FSGNJD"
// arm64:"ORR", -"AND"
sink64[1] = math.Copysign(c, -1)
// Like math.Copysign(c, -1), but with integer operations. Useful
// for platforms that have a copysign opcode to see if it's detected.
// s390x:"LNDFR\t",-"MOVD\t" (no integer load/store)
sink64[2] = math.Float64frombits(math.Float64bits(a) | 1<<63)
// amd64:"ANDQ","ORQ"
// s390x:"CPSDR\t",-"MOVD\t" (no integer load/store)
// ppc64:"FCPSGN"
// ppc64le:"FCPSGN"
// riscv64:"FSGNJD"
sink64[3] = math.Copysign(-1, c)
}
func fma(x, y, z float64) float64 {
// amd64/v3:-".*x86HasFMA"
// amd64:"VFMADD231SD"
// arm/6:"FMULAD"
// arm64:"FMADDD"
// s390x:"FMADD"
// ppc64:"FMADD"
// ppc64le:"FMADD"
// riscv64:"FMADDD"
return math.FMA(x, y, z)
}
func fms(x, y, z float64) float64 {
// riscv64:"FMSUBD"
return math.FMA(x, y, -z)
}
func fnma(x, y, z float64) float64 {
// riscv64:"FNMADDD"
return math.FMA(-x, y, z)
}
func fnms(x, y, z float64) float64 {
// riscv64:"FNMSUBD"
return math.FMA(x, -y, -z)
}
func fromFloat64(f64 float64) uint64 {
// amd64:"MOVQ\tX.*, [^X].*"
// arm64:"FMOVD\tF.*, R.*"
// ppc64:"MFVSRD"
// ppc64le:"MFVSRD"
return math.Float64bits(f64+1) + 1
}
func fromFloat32(f32 float32) uint32 {
// amd64:"MOVL\tX.*, [^X].*"
// arm64:"FMOVS\tF.*, R.*"
return math.Float32bits(f32+1) + 1
}
func toFloat64(u64 uint64) float64 {
// amd64:"MOVQ\t[^X].*, X.*"
// arm64:"FMOVD\tR.*, F.*"
// ppc64:"MTVSRD"
// ppc64le:"MTVSRD"
return math.Float64frombits(u64+1) + 1
}
func toFloat32(u32 uint32) float32 {
// amd64:"MOVL\t[^X].*, X.*"
// arm64:"FMOVS\tR.*, F.*"
return math.Float32frombits(u32+1) + 1
}
// Test that comparisons with constants converted to float
// are evaluated at compile-time
func constantCheck64() bool {
// amd64:"(MOVB\t[$]0)|(XORL\t[A-Z][A-Z0-9]+, [A-Z][A-Z0-9]+)",-"FCMP",-"MOVB\t[$]1"
// s390x:"MOV(B|BZ|D)\t[$]0,",-"FCMPU",-"MOV(B|BZ|D)\t[$]1,"
return 0.5 == float64(uint32(1)) || 1.5 > float64(uint64(1<<63))
}
func constantCheck32() bool {
// amd64:"MOV(B|L)\t[$]1",-"FCMP",-"MOV(B|L)\t[$]0"
// s390x:"MOV(B|BZ|D)\t[$]1,",-"FCMPU",-"MOV(B|BZ|D)\t[$]0,"
return float32(0.5) <= float32(int64(1)) && float32(1.5) >= float32(int32(-1<<31))
}
// Test that integer constants are converted to floating point constants
// at compile-time
func constantConvert32(x float32) float32 {
// amd64:"MOVSS\t[$]f32.3f800000\\(SB\\)"
// s390x:"FMOVS\t[$]f32.3f800000\\(SB\\)"
// ppc64:"FMOVS\t[$]f32.3f800000\\(SB\\)"
// ppc64le:"FMOVS\t[$]f32.3f800000\\(SB\\)"
// arm64:"FMOVS\t[$]\\(1.0\\)"
if x > math.Float32frombits(0x3f800000) {
return -x
}
return x
}
func constantConvertInt32(x uint32) uint32 {
// amd64:-"MOVSS"
// s390x:-"FMOVS"
// ppc64:-"FMOVS"
// ppc64le:-"FMOVS"
// arm64:-"FMOVS"
if x > math.Float32bits(1) {
return -x
}
return x
}
func nanGenerate64() float64 {
// Test to make sure we don't generate a NaN while constant propagating.
// See issue 36400.
zero := 0.0
// amd64:-"DIVSD"
inf := 1 / zero // +inf. We can constant propagate this one.
negone := -1.0
// amd64:"DIVSD"
z0 := zero / zero
// amd64:"MULSD"
z1 := zero * inf
// amd64:"SQRTSD"
z2 := math.Sqrt(negone)
return z0 + z1 + z2
}
func nanGenerate32() float32 {
zero := float32(0.0)
// amd64:-"DIVSS"
inf := 1 / zero // +inf. We can constant propagate this one.
// amd64:"DIVSS"
z0 := zero / zero
// amd64:"MULSS"
z1 := zero * inf
return z0 + z1
}
|