diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 13:18:25 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 13:18:25 +0000 |
commit | 109be507377fe7f6e8819ac94041d3fdcdf6fd2f (patch) | |
tree | 2806a689f8fab4a2ec9fc949830ef270a91d667d /src/cmd/cgo | |
parent | Initial commit. (diff) | |
download | golang-1.19-109be507377fe7f6e8819ac94041d3fdcdf6fd2f.tar.xz golang-1.19-109be507377fe7f6e8819ac94041d3fdcdf6fd2f.zip |
Adding upstream version 1.19.8.upstream/1.19.8upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/cmd/cgo')
-rw-r--r-- | src/cmd/cgo/ast.go | 538 | ||||
-rw-r--r-- | src/cmd/cgo/ast_go1.go | 17 | ||||
-rw-r--r-- | src/cmd/cgo/ast_go118.go | 25 | ||||
-rw-r--r-- | src/cmd/cgo/doc.go | 1038 | ||||
-rw-r--r-- | src/cmd/cgo/gcc.go | 3427 | ||||
-rw-r--r-- | src/cmd/cgo/godefs.go | 171 | ||||
-rw-r--r-- | src/cmd/cgo/main.go | 489 | ||||
-rw-r--r-- | src/cmd/cgo/out.go | 1979 | ||||
-rw-r--r-- | src/cmd/cgo/util.go | 135 |
9 files changed, 7819 insertions, 0 deletions
diff --git a/src/cmd/cgo/ast.go b/src/cmd/cgo/ast.go new file mode 100644 index 0000000..28879e3 --- /dev/null +++ b/src/cmd/cgo/ast.go @@ -0,0 +1,538 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Parse input AST and prepare Prog structure. + +package main + +import ( + "fmt" + "go/ast" + "go/parser" + "go/scanner" + "go/token" + "os" + "strings" +) + +func parse(name string, src []byte, flags parser.Mode) *ast.File { + ast1, err := parser.ParseFile(fset, name, src, flags) + if err != nil { + if list, ok := err.(scanner.ErrorList); ok { + // If err is a scanner.ErrorList, its String will print just + // the first error and then (+n more errors). + // Instead, turn it into a new Error that will return + // details for all the errors. + for _, e := range list { + fmt.Fprintln(os.Stderr, e) + } + os.Exit(2) + } + fatalf("parsing %s: %s", name, err) + } + return ast1 +} + +func sourceLine(n ast.Node) int { + return fset.Position(n.Pos()).Line +} + +// ParseGo populates f with information learned from the Go source code +// which was read from the named file. It gathers the C preamble +// attached to the import "C" comment, a list of references to C.xxx, +// a list of exported functions, and the actual AST, to be rewritten and +// printed. +func (f *File) ParseGo(abspath string, src []byte) { + // Two different parses: once with comments, once without. + // The printer is not good enough at printing comments in the + // right place when we start editing the AST behind its back, + // so we use ast1 to look for the doc comments on import "C" + // and on exported functions, and we use ast2 for translating + // and reprinting. + // In cgo mode, we ignore ast2 and just apply edits directly + // the text behind ast1. In godefs mode we modify and print ast2. + ast1 := parse(abspath, src, parser.ParseComments) + ast2 := parse(abspath, src, 0) + + f.Package = ast1.Name.Name + f.Name = make(map[string]*Name) + f.NamePos = make(map[*Name]token.Pos) + + // In ast1, find the import "C" line and get any extra C preamble. + sawC := false + for _, decl := range ast1.Decls { + d, ok := decl.(*ast.GenDecl) + if !ok { + continue + } + for _, spec := range d.Specs { + s, ok := spec.(*ast.ImportSpec) + if !ok || s.Path.Value != `"C"` { + continue + } + sawC = true + if s.Name != nil { + error_(s.Path.Pos(), `cannot rename import "C"`) + } + cg := s.Doc + if cg == nil && len(d.Specs) == 1 { + cg = d.Doc + } + if cg != nil { + f.Preamble += fmt.Sprintf("#line %d %q\n", sourceLine(cg), abspath) + f.Preamble += commentText(cg) + "\n" + f.Preamble += "#line 1 \"cgo-generated-wrapper\"\n" + } + } + } + if !sawC { + error_(ast1.Package, `cannot find import "C"`) + } + + // In ast2, strip the import "C" line. + if *godefs { + w := 0 + for _, decl := range ast2.Decls { + d, ok := decl.(*ast.GenDecl) + if !ok { + ast2.Decls[w] = decl + w++ + continue + } + ws := 0 + for _, spec := range d.Specs { + s, ok := spec.(*ast.ImportSpec) + if !ok || s.Path.Value != `"C"` { + d.Specs[ws] = spec + ws++ + } + } + if ws == 0 { + continue + } + d.Specs = d.Specs[0:ws] + ast2.Decls[w] = d + w++ + } + ast2.Decls = ast2.Decls[0:w] + } else { + for _, decl := range ast2.Decls { + d, ok := decl.(*ast.GenDecl) + if !ok { + continue + } + for _, spec := range d.Specs { + if s, ok := spec.(*ast.ImportSpec); ok && s.Path.Value == `"C"` { + // Replace "C" with _ "unsafe", to keep program valid. + // (Deleting import statement or clause is not safe if it is followed + // in the source by an explicit semicolon.) + f.Edit.Replace(f.offset(s.Path.Pos()), f.offset(s.Path.End()), `_ "unsafe"`) + } + } + } + } + + // Accumulate pointers to uses of C.x. + if f.Ref == nil { + f.Ref = make([]*Ref, 0, 8) + } + f.walk(ast2, ctxProg, (*File).validateIdents) + f.walk(ast2, ctxProg, (*File).saveExprs) + + // Accumulate exported functions. + // The comments are only on ast1 but we need to + // save the function bodies from ast2. + // The first walk fills in ExpFunc, and the + // second walk changes the entries to + // refer to ast2 instead. + f.walk(ast1, ctxProg, (*File).saveExport) + f.walk(ast2, ctxProg, (*File).saveExport2) + + f.Comments = ast1.Comments + f.AST = ast2 +} + +// Like ast.CommentGroup's Text method but preserves +// leading blank lines, so that line numbers line up. +func commentText(g *ast.CommentGroup) string { + var pieces []string + for _, com := range g.List { + c := com.Text + // Remove comment markers. + // The parser has given us exactly the comment text. + switch c[1] { + case '/': + //-style comment (no newline at the end) + c = c[2:] + "\n" + case '*': + /*-style comment */ + c = c[2 : len(c)-2] + } + pieces = append(pieces, c) + } + return strings.Join(pieces, "") +} + +func (f *File) validateIdents(x interface{}, context astContext) { + if x, ok := x.(*ast.Ident); ok { + if f.isMangledName(x.Name) { + error_(x.Pos(), "identifier %q may conflict with identifiers generated by cgo", x.Name) + } + } +} + +// Save various references we are going to need later. +func (f *File) saveExprs(x interface{}, context astContext) { + switch x := x.(type) { + case *ast.Expr: + switch (*x).(type) { + case *ast.SelectorExpr: + f.saveRef(x, context) + } + case *ast.CallExpr: + f.saveCall(x, context) + } +} + +// Save references to C.xxx for later processing. +func (f *File) saveRef(n *ast.Expr, context astContext) { + sel := (*n).(*ast.SelectorExpr) + // For now, assume that the only instance of capital C is when + // used as the imported package identifier. + // The parser should take care of scoping in the future, so + // that we will be able to distinguish a "top-level C" from a + // local C. + if l, ok := sel.X.(*ast.Ident); !ok || l.Name != "C" { + return + } + if context == ctxAssign2 { + context = ctxExpr + } + if context == ctxEmbedType { + error_(sel.Pos(), "cannot embed C type") + } + goname := sel.Sel.Name + if goname == "errno" { + error_(sel.Pos(), "cannot refer to errno directly; see documentation") + return + } + if goname == "_CMalloc" { + error_(sel.Pos(), "cannot refer to C._CMalloc; use C.malloc") + return + } + if goname == "malloc" { + goname = "_CMalloc" + } + name := f.Name[goname] + if name == nil { + name = &Name{ + Go: goname, + } + f.Name[goname] = name + f.NamePos[name] = sel.Pos() + } + f.Ref = append(f.Ref, &Ref{ + Name: name, + Expr: n, + Context: context, + }) +} + +// Save calls to C.xxx for later processing. +func (f *File) saveCall(call *ast.CallExpr, context astContext) { + sel, ok := call.Fun.(*ast.SelectorExpr) + if !ok { + return + } + if l, ok := sel.X.(*ast.Ident); !ok || l.Name != "C" { + return + } + c := &Call{Call: call, Deferred: context == ctxDefer} + f.Calls = append(f.Calls, c) +} + +// If a function should be exported add it to ExpFunc. +func (f *File) saveExport(x interface{}, context astContext) { + n, ok := x.(*ast.FuncDecl) + if !ok { + return + } + + if n.Doc == nil { + return + } + for _, c := range n.Doc.List { + if !strings.HasPrefix(c.Text, "//export ") { + continue + } + + name := strings.TrimSpace(c.Text[9:]) + if name == "" { + error_(c.Pos(), "export missing name") + } + + if name != n.Name.Name { + error_(c.Pos(), "export comment has wrong name %q, want %q", name, n.Name.Name) + } + + doc := "" + for _, c1 := range n.Doc.List { + if c1 != c { + doc += c1.Text + "\n" + } + } + + f.ExpFunc = append(f.ExpFunc, &ExpFunc{ + Func: n, + ExpName: name, + Doc: doc, + }) + break + } +} + +// Make f.ExpFunc[i] point at the Func from this AST instead of the other one. +func (f *File) saveExport2(x interface{}, context astContext) { + n, ok := x.(*ast.FuncDecl) + if !ok { + return + } + + for _, exp := range f.ExpFunc { + if exp.Func.Name.Name == n.Name.Name { + exp.Func = n + break + } + } +} + +type astContext int + +const ( + ctxProg astContext = iota + ctxEmbedType + ctxType + ctxStmt + ctxExpr + ctxField + ctxParam + ctxAssign2 // assignment of a single expression to two variables + ctxSwitch + ctxTypeSwitch + ctxFile + ctxDecl + ctxSpec + ctxDefer + ctxCall // any function call other than ctxCall2 + ctxCall2 // function call whose result is assigned to two variables + ctxSelector +) + +// walk walks the AST x, calling visit(f, x, context) for each node. +func (f *File) walk(x interface{}, context astContext, visit func(*File, interface{}, astContext)) { + visit(f, x, context) + switch n := x.(type) { + case *ast.Expr: + f.walk(*n, context, visit) + + // everything else just recurs + default: + f.walkUnexpected(x, context, visit) + + case nil: + + // These are ordered and grouped to match ../../go/ast/ast.go + case *ast.Field: + if len(n.Names) == 0 && context == ctxField { + f.walk(&n.Type, ctxEmbedType, visit) + } else { + f.walk(&n.Type, ctxType, visit) + } + case *ast.FieldList: + for _, field := range n.List { + f.walk(field, context, visit) + } + case *ast.BadExpr: + case *ast.Ident: + case *ast.Ellipsis: + f.walk(&n.Elt, ctxType, visit) + case *ast.BasicLit: + case *ast.FuncLit: + f.walk(n.Type, ctxType, visit) + f.walk(n.Body, ctxStmt, visit) + case *ast.CompositeLit: + f.walk(&n.Type, ctxType, visit) + f.walk(n.Elts, ctxExpr, visit) + case *ast.ParenExpr: + f.walk(&n.X, context, visit) + case *ast.SelectorExpr: + f.walk(&n.X, ctxSelector, visit) + case *ast.IndexExpr: + f.walk(&n.X, ctxExpr, visit) + f.walk(&n.Index, ctxExpr, visit) + case *ast.SliceExpr: + f.walk(&n.X, ctxExpr, visit) + if n.Low != nil { + f.walk(&n.Low, ctxExpr, visit) + } + if n.High != nil { + f.walk(&n.High, ctxExpr, visit) + } + if n.Max != nil { + f.walk(&n.Max, ctxExpr, visit) + } + case *ast.TypeAssertExpr: + f.walk(&n.X, ctxExpr, visit) + f.walk(&n.Type, ctxType, visit) + case *ast.CallExpr: + if context == ctxAssign2 { + f.walk(&n.Fun, ctxCall2, visit) + } else { + f.walk(&n.Fun, ctxCall, visit) + } + f.walk(n.Args, ctxExpr, visit) + case *ast.StarExpr: + f.walk(&n.X, context, visit) + case *ast.UnaryExpr: + f.walk(&n.X, ctxExpr, visit) + case *ast.BinaryExpr: + f.walk(&n.X, ctxExpr, visit) + f.walk(&n.Y, ctxExpr, visit) + case *ast.KeyValueExpr: + f.walk(&n.Key, ctxExpr, visit) + f.walk(&n.Value, ctxExpr, visit) + + case *ast.ArrayType: + f.walk(&n.Len, ctxExpr, visit) + f.walk(&n.Elt, ctxType, visit) + case *ast.StructType: + f.walk(n.Fields, ctxField, visit) + case *ast.FuncType: + f.walk(n.Params, ctxParam, visit) + if n.Results != nil { + f.walk(n.Results, ctxParam, visit) + } + case *ast.InterfaceType: + f.walk(n.Methods, ctxField, visit) + case *ast.MapType: + f.walk(&n.Key, ctxType, visit) + f.walk(&n.Value, ctxType, visit) + case *ast.ChanType: + f.walk(&n.Value, ctxType, visit) + + case *ast.BadStmt: + case *ast.DeclStmt: + f.walk(n.Decl, ctxDecl, visit) + case *ast.EmptyStmt: + case *ast.LabeledStmt: + f.walk(n.Stmt, ctxStmt, visit) + case *ast.ExprStmt: + f.walk(&n.X, ctxExpr, visit) + case *ast.SendStmt: + f.walk(&n.Chan, ctxExpr, visit) + f.walk(&n.Value, ctxExpr, visit) + case *ast.IncDecStmt: + f.walk(&n.X, ctxExpr, visit) + case *ast.AssignStmt: + f.walk(n.Lhs, ctxExpr, visit) + if len(n.Lhs) == 2 && len(n.Rhs) == 1 { + f.walk(n.Rhs, ctxAssign2, visit) + } else { + f.walk(n.Rhs, ctxExpr, visit) + } + case *ast.GoStmt: + f.walk(n.Call, ctxExpr, visit) + case *ast.DeferStmt: + f.walk(n.Call, ctxDefer, visit) + case *ast.ReturnStmt: + f.walk(n.Results, ctxExpr, visit) + case *ast.BranchStmt: + case *ast.BlockStmt: + f.walk(n.List, context, visit) + case *ast.IfStmt: + f.walk(n.Init, ctxStmt, visit) + f.walk(&n.Cond, ctxExpr, visit) + f.walk(n.Body, ctxStmt, visit) + f.walk(n.Else, ctxStmt, visit) + case *ast.CaseClause: + if context == ctxTypeSwitch { + context = ctxType + } else { + context = ctxExpr + } + f.walk(n.List, context, visit) + f.walk(n.Body, ctxStmt, visit) + case *ast.SwitchStmt: + f.walk(n.Init, ctxStmt, visit) + f.walk(&n.Tag, ctxExpr, visit) + f.walk(n.Body, ctxSwitch, visit) + case *ast.TypeSwitchStmt: + f.walk(n.Init, ctxStmt, visit) + f.walk(n.Assign, ctxStmt, visit) + f.walk(n.Body, ctxTypeSwitch, visit) + case *ast.CommClause: + f.walk(n.Comm, ctxStmt, visit) + f.walk(n.Body, ctxStmt, visit) + case *ast.SelectStmt: + f.walk(n.Body, ctxStmt, visit) + case *ast.ForStmt: + f.walk(n.Init, ctxStmt, visit) + f.walk(&n.Cond, ctxExpr, visit) + f.walk(n.Post, ctxStmt, visit) + f.walk(n.Body, ctxStmt, visit) + case *ast.RangeStmt: + f.walk(&n.Key, ctxExpr, visit) + f.walk(&n.Value, ctxExpr, visit) + f.walk(&n.X, ctxExpr, visit) + f.walk(n.Body, ctxStmt, visit) + + case *ast.ImportSpec: + case *ast.ValueSpec: + f.walk(&n.Type, ctxType, visit) + if len(n.Names) == 2 && len(n.Values) == 1 { + f.walk(&n.Values[0], ctxAssign2, visit) + } else { + f.walk(n.Values, ctxExpr, visit) + } + case *ast.TypeSpec: + f.walk(&n.Type, ctxType, visit) + + case *ast.BadDecl: + case *ast.GenDecl: + f.walk(n.Specs, ctxSpec, visit) + case *ast.FuncDecl: + if n.Recv != nil { + f.walk(n.Recv, ctxParam, visit) + } + f.walk(n.Type, ctxType, visit) + if n.Body != nil { + f.walk(n.Body, ctxStmt, visit) + } + + case *ast.File: + f.walk(n.Decls, ctxDecl, visit) + + case *ast.Package: + for _, file := range n.Files { + f.walk(file, ctxFile, visit) + } + + case []ast.Decl: + for _, d := range n { + f.walk(d, context, visit) + } + case []ast.Expr: + for i := range n { + f.walk(&n[i], context, visit) + } + case []ast.Stmt: + for _, s := range n { + f.walk(s, context, visit) + } + case []ast.Spec: + for _, s := range n { + f.walk(s, context, visit) + } + } +} diff --git a/src/cmd/cgo/ast_go1.go b/src/cmd/cgo/ast_go1.go new file mode 100644 index 0000000..f52bf00 --- /dev/null +++ b/src/cmd/cgo/ast_go1.go @@ -0,0 +1,17 @@ +// Copyright 2021 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +//go:build compiler_bootstrap +// +build compiler_bootstrap + +package main + +import ( + "go/token" +) + +func (f *File) walkUnexpected(x interface{}, context astContext, visit func(*File, interface{}, astContext)) { + error_(token.NoPos, "unexpected type %T in walk", x) + panic("unexpected type") +} diff --git a/src/cmd/cgo/ast_go118.go b/src/cmd/cgo/ast_go118.go new file mode 100644 index 0000000..db0108e --- /dev/null +++ b/src/cmd/cgo/ast_go118.go @@ -0,0 +1,25 @@ +// Copyright 2021 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +//go:build !compiler_bootstrap +// +build !compiler_bootstrap + +package main + +import ( + "go/ast" + "go/token" +) + +func (f *File) walkUnexpected(x interface{}, context astContext, visit func(*File, interface{}, astContext)) { + switch n := x.(type) { + default: + error_(token.NoPos, "unexpected type %T in walk", x) + panic("unexpected type") + + case *ast.IndexListExpr: + f.walk(&n.X, ctxExpr, visit) + f.walk(n.Indices, ctxExpr, visit) + } +} diff --git a/src/cmd/cgo/doc.go b/src/cmd/cgo/doc.go new file mode 100644 index 0000000..7fb6179 --- /dev/null +++ b/src/cmd/cgo/doc.go @@ -0,0 +1,1038 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +/* +Cgo enables the creation of Go packages that call C code. + +# Using cgo with the go command + +To use cgo write normal Go code that imports a pseudo-package "C". +The Go code can then refer to types such as C.size_t, variables such +as C.stdout, or functions such as C.putchar. + +If the import of "C" is immediately preceded by a comment, that +comment, called the preamble, is used as a header when compiling +the C parts of the package. For example: + + // #include <stdio.h> + // #include <errno.h> + import "C" + +The preamble may contain any C code, including function and variable +declarations and definitions. These may then be referred to from Go +code as though they were defined in the package "C". All names +declared in the preamble may be used, even if they start with a +lower-case letter. Exception: static variables in the preamble may +not be referenced from Go code; static functions are permitted. + +See $GOROOT/misc/cgo/stdio and $GOROOT/misc/cgo/gmp for examples. See +"C? Go? Cgo!" for an introduction to using cgo: +https://golang.org/doc/articles/c_go_cgo.html. + +CFLAGS, CPPFLAGS, CXXFLAGS, FFLAGS and LDFLAGS may be defined with pseudo +#cgo directives within these comments to tweak the behavior of the C, C++ +or Fortran compiler. Values defined in multiple directives are concatenated +together. The directive can include a list of build constraints limiting its +effect to systems satisfying one of the constraints +(see https://golang.org/pkg/go/build/#hdr-Build_Constraints for details about the constraint syntax). +For example: + + // #cgo CFLAGS: -DPNG_DEBUG=1 + // #cgo amd64 386 CFLAGS: -DX86=1 + // #cgo LDFLAGS: -lpng + // #include <png.h> + import "C" + +Alternatively, CPPFLAGS and LDFLAGS may be obtained via the pkg-config tool +using a '#cgo pkg-config:' directive followed by the package names. +For example: + + // #cgo pkg-config: png cairo + // #include <png.h> + import "C" + +The default pkg-config tool may be changed by setting the PKG_CONFIG environment variable. + +For security reasons, only a limited set of flags are allowed, notably -D, -U, -I, and -l. +To allow additional flags, set CGO_CFLAGS_ALLOW to a regular expression +matching the new flags. To disallow flags that would otherwise be allowed, +set CGO_CFLAGS_DISALLOW to a regular expression matching arguments +that must be disallowed. In both cases the regular expression must match +a full argument: to allow -mfoo=bar, use CGO_CFLAGS_ALLOW='-mfoo.*', +not just CGO_CFLAGS_ALLOW='-mfoo'. Similarly named variables control +the allowed CPPFLAGS, CXXFLAGS, FFLAGS, and LDFLAGS. + +Also for security reasons, only a limited set of characters are +permitted, notably alphanumeric characters and a few symbols, such as +'.', that will not be interpreted in unexpected ways. Attempts to use +forbidden characters will get a "malformed #cgo argument" error. + +When building, the CGO_CFLAGS, CGO_CPPFLAGS, CGO_CXXFLAGS, CGO_FFLAGS and +CGO_LDFLAGS environment variables are added to the flags derived from +these directives. Package-specific flags should be set using the +directives, not the environment variables, so that builds work in +unmodified environments. Flags obtained from environment variables +are not subject to the security limitations described above. + +All the cgo CPPFLAGS and CFLAGS directives in a package are concatenated and +used to compile C files in that package. All the CPPFLAGS and CXXFLAGS +directives in a package are concatenated and used to compile C++ files in that +package. All the CPPFLAGS and FFLAGS directives in a package are concatenated +and used to compile Fortran files in that package. All the LDFLAGS directives +in any package in the program are concatenated and used at link time. All the +pkg-config directives are concatenated and sent to pkg-config simultaneously +to add to each appropriate set of command-line flags. + +When the cgo directives are parsed, any occurrence of the string ${SRCDIR} +will be replaced by the absolute path to the directory containing the source +file. This allows pre-compiled static libraries to be included in the package +directory and linked properly. +For example if package foo is in the directory /go/src/foo: + + // #cgo LDFLAGS: -L${SRCDIR}/libs -lfoo + +Will be expanded to: + + // #cgo LDFLAGS: -L/go/src/foo/libs -lfoo + +When the Go tool sees that one or more Go files use the special import +"C", it will look for other non-Go files in the directory and compile +them as part of the Go package. Any .c, .s, .S or .sx files will be +compiled with the C compiler. Any .cc, .cpp, or .cxx files will be +compiled with the C++ compiler. Any .f, .F, .for or .f90 files will be +compiled with the fortran compiler. Any .h, .hh, .hpp, or .hxx files will +not be compiled separately, but, if these header files are changed, +the package (including its non-Go source files) will be recompiled. +Note that changes to files in other directories do not cause the package +to be recompiled, so all non-Go source code for the package should be +stored in the package directory, not in subdirectories. +The default C and C++ compilers may be changed by the CC and CXX +environment variables, respectively; those environment variables +may include command line options. + +The cgo tool will always invoke the C compiler with the source file's +directory in the include path; i.e. -I${SRCDIR} is always implied. This +means that if a header file foo/bar.h exists both in the source +directory and also in the system include directory (or some other place +specified by a -I flag), then "#include <foo/bar.h>" will always find the +local version in preference to any other version. + +The cgo tool is enabled by default for native builds on systems where +it is expected to work. It is disabled by default when +cross-compiling. You can control this by setting the CGO_ENABLED +environment variable when running the go tool: set it to 1 to enable +the use of cgo, and to 0 to disable it. The go tool will set the +build constraint "cgo" if cgo is enabled. The special import "C" +implies the "cgo" build constraint, as though the file also said +"// +build cgo". Therefore, if cgo is disabled, files that import +"C" will not be built by the go tool. (For more about build constraints +see https://golang.org/pkg/go/build/#hdr-Build_Constraints). + +When cross-compiling, you must specify a C cross-compiler for cgo to +use. You can do this by setting the generic CC_FOR_TARGET or the +more specific CC_FOR_${GOOS}_${GOARCH} (for example, CC_FOR_linux_arm) +environment variable when building the toolchain using make.bash, +or you can set the CC environment variable any time you run the go tool. + +The CXX_FOR_TARGET, CXX_FOR_${GOOS}_${GOARCH}, and CXX +environment variables work in a similar way for C++ code. + +# Go references to C + +Within the Go file, C's struct field names that are keywords in Go +can be accessed by prefixing them with an underscore: if x points at a C +struct with a field named "type", x._type accesses the field. +C struct fields that cannot be expressed in Go, such as bit fields +or misaligned data, are omitted in the Go struct, replaced by +appropriate padding to reach the next field or the end of the struct. + +The standard C numeric types are available under the names +C.char, C.schar (signed char), C.uchar (unsigned char), +C.short, C.ushort (unsigned short), C.int, C.uint (unsigned int), +C.long, C.ulong (unsigned long), C.longlong (long long), +C.ulonglong (unsigned long long), C.float, C.double, +C.complexfloat (complex float), and C.complexdouble (complex double). +The C type void* is represented by Go's unsafe.Pointer. +The C types __int128_t and __uint128_t are represented by [16]byte. + +A few special C types which would normally be represented by a pointer +type in Go are instead represented by a uintptr. See the Special +cases section below. + +To access a struct, union, or enum type directly, prefix it with +struct_, union_, or enum_, as in C.struct_stat. + +The size of any C type T is available as C.sizeof_T, as in +C.sizeof_struct_stat. + +A C function may be declared in the Go file with a parameter type of +the special name _GoString_. This function may be called with an +ordinary Go string value. The string length, and a pointer to the +string contents, may be accessed by calling the C functions + + size_t _GoStringLen(_GoString_ s); + const char *_GoStringPtr(_GoString_ s); + +These functions are only available in the preamble, not in other C +files. The C code must not modify the contents of the pointer returned +by _GoStringPtr. Note that the string contents may not have a trailing +NUL byte. + +As Go doesn't have support for C's union type in the general case, +C's union types are represented as a Go byte array with the same length. + +Go structs cannot embed fields with C types. + +Go code cannot refer to zero-sized fields that occur at the end of +non-empty C structs. To get the address of such a field (which is the +only operation you can do with a zero-sized field) you must take the +address of the struct and add the size of the struct. + +Cgo translates C types into equivalent unexported Go types. +Because the translations are unexported, a Go package should not +expose C types in its exported API: a C type used in one Go package +is different from the same C type used in another. + +Any C function (even void functions) may be called in a multiple +assignment context to retrieve both the return value (if any) and the +C errno variable as an error (use _ to skip the result value if the +function returns void). For example: + + n, err = C.sqrt(-1) + _, err := C.voidFunc() + var n, err = C.sqrt(1) + +Calling C function pointers is currently not supported, however you can +declare Go variables which hold C function pointers and pass them +back and forth between Go and C. C code may call function pointers +received from Go. For example: + + package main + + // typedef int (*intFunc) (); + // + // int + // bridge_int_func(intFunc f) + // { + // return f(); + // } + // + // int fortytwo() + // { + // return 42; + // } + import "C" + import "fmt" + + func main() { + f := C.intFunc(C.fortytwo) + fmt.Println(int(C.bridge_int_func(f))) + // Output: 42 + } + +In C, a function argument written as a fixed size array +actually requires a pointer to the first element of the array. +C compilers are aware of this calling convention and adjust +the call accordingly, but Go cannot. In Go, you must pass +the pointer to the first element explicitly: C.f(&C.x[0]). + +Calling variadic C functions is not supported. It is possible to +circumvent this by using a C function wrapper. For example: + + package main + + // #include <stdio.h> + // #include <stdlib.h> + // + // static void myprint(char* s) { + // printf("%s\n", s); + // } + import "C" + import "unsafe" + + func main() { + cs := C.CString("Hello from stdio") + C.myprint(cs) + C.free(unsafe.Pointer(cs)) + } + +A few special functions convert between Go and C types +by making copies of the data. In pseudo-Go definitions: + + // Go string to C string + // The C string is allocated in the C heap using malloc. + // It is the caller's responsibility to arrange for it to be + // freed, such as by calling C.free (be sure to include stdlib.h + // if C.free is needed). + func C.CString(string) *C.char + + // Go []byte slice to C array + // The C array is allocated in the C heap using malloc. + // It is the caller's responsibility to arrange for it to be + // freed, such as by calling C.free (be sure to include stdlib.h + // if C.free is needed). + func C.CBytes([]byte) unsafe.Pointer + + // C string to Go string + func C.GoString(*C.char) string + + // C data with explicit length to Go string + func C.GoStringN(*C.char, C.int) string + + // C data with explicit length to Go []byte + func C.GoBytes(unsafe.Pointer, C.int) []byte + +As a special case, C.malloc does not call the C library malloc directly +but instead calls a Go helper function that wraps the C library malloc +but guarantees never to return nil. If C's malloc indicates out of memory, +the helper function crashes the program, like when Go itself runs out +of memory. Because C.malloc cannot fail, it has no two-result form +that returns errno. + +# C references to Go + +Go functions can be exported for use by C code in the following way: + + //export MyFunction + func MyFunction(arg1, arg2 int, arg3 string) int64 {...} + + //export MyFunction2 + func MyFunction2(arg1, arg2 int, arg3 string) (int64, *C.char) {...} + +They will be available in the C code as: + + extern GoInt64 MyFunction(int arg1, int arg2, GoString arg3); + extern struct MyFunction2_return MyFunction2(int arg1, int arg2, GoString arg3); + +found in the _cgo_export.h generated header, after any preambles +copied from the cgo input files. Functions with multiple +return values are mapped to functions returning a struct. + +Not all Go types can be mapped to C types in a useful way. +Go struct types are not supported; use a C struct type. +Go array types are not supported; use a C pointer. + +Go functions that take arguments of type string may be called with the +C type _GoString_, described above. The _GoString_ type will be +automatically defined in the preamble. Note that there is no way for C +code to create a value of this type; this is only useful for passing +string values from Go to C and back to Go. + +Using //export in a file places a restriction on the preamble: +since it is copied into two different C output files, it must not +contain any definitions, only declarations. If a file contains both +definitions and declarations, then the two output files will produce +duplicate symbols and the linker will fail. To avoid this, definitions +must be placed in preambles in other files, or in C source files. + +# Passing pointers + +Go is a garbage collected language, and the garbage collector needs to +know the location of every pointer to Go memory. Because of this, +there are restrictions on passing pointers between Go and C. + +In this section the term Go pointer means a pointer to memory +allocated by Go (such as by using the & operator or calling the +predefined new function) and the term C pointer means a pointer to +memory allocated by C (such as by a call to C.malloc). Whether a +pointer is a Go pointer or a C pointer is a dynamic property +determined by how the memory was allocated; it has nothing to do with +the type of the pointer. + +Note that values of some Go types, other than the type's zero value, +always include Go pointers. This is true of string, slice, interface, +channel, map, and function types. A pointer type may hold a Go pointer +or a C pointer. Array and struct types may or may not include Go +pointers, depending on the element types. All the discussion below +about Go pointers applies not just to pointer types, but also to other +types that include Go pointers. + +Go code may pass a Go pointer to C provided the Go memory to which it +points does not contain any Go pointers. The C code must preserve +this property: it must not store any Go pointers in Go memory, even +temporarily. When passing a pointer to a field in a struct, the Go +memory in question is the memory occupied by the field, not the entire +struct. When passing a pointer to an element in an array or slice, +the Go memory in question is the entire array or the entire backing +array of the slice. + +C code may not keep a copy of a Go pointer after the call returns. +This includes the _GoString_ type, which, as noted above, includes a +Go pointer; _GoString_ values may not be retained by C code. + +A Go function called by C code may not return a Go pointer (which +implies that it may not return a string, slice, channel, and so +forth). A Go function called by C code may take C pointers as +arguments, and it may store non-pointer or C pointer data through +those pointers, but it may not store a Go pointer in memory pointed to +by a C pointer. A Go function called by C code may take a Go pointer +as an argument, but it must preserve the property that the Go memory +to which it points does not contain any Go pointers. + +Go code may not store a Go pointer in C memory. C code may store Go +pointers in C memory, subject to the rule above: it must stop storing +the Go pointer when the C function returns. + +These rules are checked dynamically at runtime. The checking is +controlled by the cgocheck setting of the GODEBUG environment +variable. The default setting is GODEBUG=cgocheck=1, which implements +reasonably cheap dynamic checks. These checks may be disabled +entirely using GODEBUG=cgocheck=0. Complete checking of pointer +handling, at some cost in run time, is available via GODEBUG=cgocheck=2. + +It is possible to defeat this enforcement by using the unsafe package, +and of course there is nothing stopping the C code from doing anything +it likes. However, programs that break these rules are likely to fail +in unexpected and unpredictable ways. + +The runtime/cgo.Handle type can be used to safely pass Go values +between Go and C. See the runtime/cgo package documentation for details. + +Note: the current implementation has a bug. While Go code is permitted +to write nil or a C pointer (but not a Go pointer) to C memory, the +current implementation may sometimes cause a runtime error if the +contents of the C memory appear to be a Go pointer. Therefore, avoid +passing uninitialized C memory to Go code if the Go code is going to +store pointer values in it. Zero out the memory in C before passing it +to Go. + +# Special cases + +A few special C types which would normally be represented by a pointer +type in Go are instead represented by a uintptr. Those include: + +1. The *Ref types on Darwin, rooted at CoreFoundation's CFTypeRef type. + +2. The object types from Java's JNI interface: + + jobject + jclass + jthrowable + jstring + jarray + jbooleanArray + jbyteArray + jcharArray + jshortArray + jintArray + jlongArray + jfloatArray + jdoubleArray + jobjectArray + jweak + +3. The EGLDisplay and EGLConfig types from the EGL API. + +These types are uintptr on the Go side because they would otherwise +confuse the Go garbage collector; they are sometimes not really +pointers but data structures encoded in a pointer type. All operations +on these types must happen in C. The proper constant to initialize an +empty such reference is 0, not nil. + +These special cases were introduced in Go 1.10. For auto-updating code +from Go 1.9 and earlier, use the cftype or jni rewrites in the Go fix tool: + + go tool fix -r cftype <pkg> + go tool fix -r jni <pkg> + +It will replace nil with 0 in the appropriate places. + +The EGLDisplay case was introduced in Go 1.12. Use the egl rewrite +to auto-update code from Go 1.11 and earlier: + + go tool fix -r egl <pkg> + +The EGLConfig case was introduced in Go 1.15. Use the eglconf rewrite +to auto-update code from Go 1.14 and earlier: + + go tool fix -r eglconf <pkg> + +# Using cgo directly + +Usage: + + go tool cgo [cgo options] [-- compiler options] gofiles... + +Cgo transforms the specified input Go source files into several output +Go and C source files. + +The compiler options are passed through uninterpreted when +invoking the C compiler to compile the C parts of the package. + +The following options are available when running cgo directly: + + -V + Print cgo version and exit. + -debug-define + Debugging option. Print #defines. + -debug-gcc + Debugging option. Trace C compiler execution and output. + -dynimport file + Write list of symbols imported by file. Write to + -dynout argument or to standard output. Used by go + build when building a cgo package. + -dynlinker + Write dynamic linker as part of -dynimport output. + -dynout file + Write -dynimport output to file. + -dynpackage package + Set Go package for -dynimport output. + -exportheader file + If there are any exported functions, write the + generated export declarations to file. + C code can #include this to see the declarations. + -importpath string + The import path for the Go package. Optional; used for + nicer comments in the generated files. + -import_runtime_cgo + If set (which it is by default) import runtime/cgo in + generated output. + -import_syscall + If set (which it is by default) import syscall in + generated output. + -gccgo + Generate output for the gccgo compiler rather than the + gc compiler. + -gccgoprefix prefix + The -fgo-prefix option to be used with gccgo. + -gccgopkgpath path + The -fgo-pkgpath option to be used with gccgo. + -godefs + Write out input file in Go syntax replacing C package + names with real values. Used to generate files in the + syscall package when bootstrapping a new target. + -objdir directory + Put all generated files in directory. + -srcdir directory +*/ +package main + +/* +Implementation details. + +Cgo provides a way for Go programs to call C code linked into the same +address space. This comment explains the operation of cgo. + +Cgo reads a set of Go source files and looks for statements saying +import "C". If the import has a doc comment, that comment is +taken as literal C code to be used as a preamble to any C code +generated by cgo. A typical preamble #includes necessary definitions: + + // #include <stdio.h> + import "C" + +For more details about the usage of cgo, see the documentation +comment at the top of this file. + +Understanding C + +Cgo scans the Go source files that import "C" for uses of that +package, such as C.puts. It collects all such identifiers. The next +step is to determine each kind of name. In C.xxx the xxx might refer +to a type, a function, a constant, or a global variable. Cgo must +decide which. + +The obvious thing for cgo to do is to process the preamble, expanding +#includes and processing the corresponding C code. That would require +a full C parser and type checker that was also aware of any extensions +known to the system compiler (for example, all the GNU C extensions) as +well as the system-specific header locations and system-specific +pre-#defined macros. This is certainly possible to do, but it is an +enormous amount of work. + +Cgo takes a different approach. It determines the meaning of C +identifiers not by parsing C code but by feeding carefully constructed +programs into the system C compiler and interpreting the generated +error messages, debug information, and object files. In practice, +parsing these is significantly less work and more robust than parsing +C source. + +Cgo first invokes gcc -E -dM on the preamble, in order to find out +about simple #defines for constants and the like. These are recorded +for later use. + +Next, cgo needs to identify the kinds for each identifier. For the +identifiers C.foo, cgo generates this C program: + + <preamble> + #line 1 "not-declared" + void __cgo_f_1_1(void) { __typeof__(foo) *__cgo_undefined__1; } + #line 1 "not-type" + void __cgo_f_1_2(void) { foo *__cgo_undefined__2; } + #line 1 "not-int-const" + void __cgo_f_1_3(void) { enum { __cgo_undefined__3 = (foo)*1 }; } + #line 1 "not-num-const" + void __cgo_f_1_4(void) { static const double __cgo_undefined__4 = (foo); } + #line 1 "not-str-lit" + void __cgo_f_1_5(void) { static const char __cgo_undefined__5[] = (foo); } + +This program will not compile, but cgo can use the presence or absence +of an error message on a given line to deduce the information it +needs. The program is syntactically valid regardless of whether each +name is a type or an ordinary identifier, so there will be no syntax +errors that might stop parsing early. + +An error on not-declared:1 indicates that foo is undeclared. +An error on not-type:1 indicates that foo is not a type (if declared at all, it is an identifier). +An error on not-int-const:1 indicates that foo is not an integer constant. +An error on not-num-const:1 indicates that foo is not a number constant. +An error on not-str-lit:1 indicates that foo is not a string literal. +An error on not-signed-int-const:1 indicates that foo is not a signed integer constant. + +The line number specifies the name involved. In the example, 1 is foo. + +Next, cgo must learn the details of each type, variable, function, or +constant. It can do this by reading object files. If cgo has decided +that t1 is a type, v2 and v3 are variables or functions, and i4, i5 +are integer constants, u6 is an unsigned integer constant, and f7 and f8 +are float constants, and s9 and s10 are string constants, it generates: + + <preamble> + __typeof__(t1) *__cgo__1; + __typeof__(v2) *__cgo__2; + __typeof__(v3) *__cgo__3; + __typeof__(i4) *__cgo__4; + enum { __cgo_enum__4 = i4 }; + __typeof__(i5) *__cgo__5; + enum { __cgo_enum__5 = i5 }; + __typeof__(u6) *__cgo__6; + enum { __cgo_enum__6 = u6 }; + __typeof__(f7) *__cgo__7; + __typeof__(f8) *__cgo__8; + __typeof__(s9) *__cgo__9; + __typeof__(s10) *__cgo__10; + + long long __cgodebug_ints[] = { + 0, // t1 + 0, // v2 + 0, // v3 + i4, + i5, + u6, + 0, // f7 + 0, // f8 + 0, // s9 + 0, // s10 + 1 + }; + + double __cgodebug_floats[] = { + 0, // t1 + 0, // v2 + 0, // v3 + 0, // i4 + 0, // i5 + 0, // u6 + f7, + f8, + 0, // s9 + 0, // s10 + 1 + }; + + const char __cgodebug_str__9[] = s9; + const unsigned long long __cgodebug_strlen__9 = sizeof(s9)-1; + const char __cgodebug_str__10[] = s10; + const unsigned long long __cgodebug_strlen__10 = sizeof(s10)-1; + +and again invokes the system C compiler, to produce an object file +containing debug information. Cgo parses the DWARF debug information +for __cgo__N to learn the type of each identifier. (The types also +distinguish functions from global variables.) Cgo reads the constant +values from the __cgodebug_* from the object file's data segment. + +At this point cgo knows the meaning of each C.xxx well enough to start +the translation process. + +Translating Go + +Given the input Go files x.go and y.go, cgo generates these source +files: + + x.cgo1.go # for gc (cmd/compile) + y.cgo1.go # for gc + _cgo_gotypes.go # for gc + _cgo_import.go # for gc (if -dynout _cgo_import.go) + x.cgo2.c # for gcc + y.cgo2.c # for gcc + _cgo_defun.c # for gcc (if -gccgo) + _cgo_export.c # for gcc + _cgo_export.h # for gcc + _cgo_main.c # for gcc + _cgo_flags # for alternative build tools + +The file x.cgo1.go is a copy of x.go with the import "C" removed and +references to C.xxx replaced with names like _Cfunc_xxx or _Ctype_xxx. +The definitions of those identifiers, written as Go functions, types, +or variables, are provided in _cgo_gotypes.go. + +Here is a _cgo_gotypes.go containing definitions for needed C types: + + type _Ctype_char int8 + type _Ctype_int int32 + type _Ctype_void [0]byte + +The _cgo_gotypes.go file also contains the definitions of the +functions. They all have similar bodies that invoke runtime·cgocall +to make a switch from the Go runtime world to the system C (GCC-based) +world. + +For example, here is the definition of _Cfunc_puts: + + //go:cgo_import_static _cgo_be59f0f25121_Cfunc_puts + //go:linkname __cgofn__cgo_be59f0f25121_Cfunc_puts _cgo_be59f0f25121_Cfunc_puts + var __cgofn__cgo_be59f0f25121_Cfunc_puts byte + var _cgo_be59f0f25121_Cfunc_puts = unsafe.Pointer(&__cgofn__cgo_be59f0f25121_Cfunc_puts) + + func _Cfunc_puts(p0 *_Ctype_char) (r1 _Ctype_int) { + _cgo_runtime_cgocall(_cgo_be59f0f25121_Cfunc_puts, uintptr(unsafe.Pointer(&p0))) + return + } + +The hexadecimal number is a hash of cgo's input, chosen to be +deterministic yet unlikely to collide with other uses. The actual +function _cgo_be59f0f25121_Cfunc_puts is implemented in a C source +file compiled by gcc, the file x.cgo2.c: + + void + _cgo_be59f0f25121_Cfunc_puts(void *v) + { + struct { + char* p0; + int r; + char __pad12[4]; + } __attribute__((__packed__, __gcc_struct__)) *a = v; + a->r = puts((void*)a->p0); + } + +It extracts the arguments from the pointer to _Cfunc_puts's argument +frame, invokes the system C function (in this case, puts), stores the +result in the frame, and returns. + +Linking + +Once the _cgo_export.c and *.cgo2.c files have been compiled with gcc, +they need to be linked into the final binary, along with the libraries +they might depend on (in the case of puts, stdio). cmd/link has been +extended to understand basic ELF files, but it does not understand ELF +in the full complexity that modern C libraries embrace, so it cannot +in general generate direct references to the system libraries. + +Instead, the build process generates an object file using dynamic +linkage to the desired libraries. The main function is provided by +_cgo_main.c: + + int main() { return 0; } + void crosscall2(void(*fn)(void*), void *a, int c, uintptr_t ctxt) { } + uintptr_t _cgo_wait_runtime_init_done(void) { return 0; } + void _cgo_release_context(uintptr_t ctxt) { } + char* _cgo_topofstack(void) { return (char*)0; } + void _cgo_allocate(void *a, int c) { } + void _cgo_panic(void *a, int c) { } + void _cgo_reginit(void) { } + +The extra functions here are stubs to satisfy the references in the C +code generated for gcc. The build process links this stub, along with +_cgo_export.c and *.cgo2.c, into a dynamic executable and then lets +cgo examine the executable. Cgo records the list of shared library +references and resolved names and writes them into a new file +_cgo_import.go, which looks like: + + //go:cgo_dynamic_linker "/lib64/ld-linux-x86-64.so.2" + //go:cgo_import_dynamic puts puts#GLIBC_2.2.5 "libc.so.6" + //go:cgo_import_dynamic __libc_start_main __libc_start_main#GLIBC_2.2.5 "libc.so.6" + //go:cgo_import_dynamic stdout stdout#GLIBC_2.2.5 "libc.so.6" + //go:cgo_import_dynamic fflush fflush#GLIBC_2.2.5 "libc.so.6" + //go:cgo_import_dynamic _ _ "libpthread.so.0" + //go:cgo_import_dynamic _ _ "libc.so.6" + +In the end, the compiled Go package, which will eventually be +presented to cmd/link as part of a larger program, contains: + + _go_.o # gc-compiled object for _cgo_gotypes.go, _cgo_import.go, *.cgo1.go + _all.o # gcc-compiled object for _cgo_export.c, *.cgo2.c + +If there is an error generating the _cgo_import.go file, then, instead +of adding _cgo_import.go to the package, the go tool adds an empty +file named dynimportfail. The _cgo_import.go file is only needed when +using internal linking mode, which is not the default when linking +programs that use cgo (as described below). If the linker sees a file +named dynimportfail it reports an error if it has been told to use +internal linking mode. This approach is taken because generating +_cgo_import.go requires doing a full C link of the package, which can +fail for reasons that are irrelevant when using external linking mode. + +The final program will be a dynamic executable, so that cmd/link can avoid +needing to process arbitrary .o files. It only needs to process the .o +files generated from C files that cgo writes, and those are much more +limited in the ELF or other features that they use. + +In essence, the _cgo_import.o file includes the extra linking +directives that cmd/link is not sophisticated enough to derive from _all.o +on its own. Similarly, the _all.o uses dynamic references to real +system object code because cmd/link is not sophisticated enough to process +the real code. + +The main benefits of this system are that cmd/link remains relatively simple +(it does not need to implement a complete ELF and Mach-O linker) and +that gcc is not needed after the package is compiled. For example, +package net uses cgo for access to name resolution functions provided +by libc. Although gcc is needed to compile package net, gcc is not +needed to link programs that import package net. + +Runtime + +When using cgo, Go must not assume that it owns all details of the +process. In particular it needs to coordinate with C in the use of +threads and thread-local storage. The runtime package declares a few +variables: + + var ( + iscgo bool + _cgo_init unsafe.Pointer + _cgo_thread_start unsafe.Pointer + ) + +Any package using cgo imports "runtime/cgo", which provides +initializations for these variables. It sets iscgo to true, _cgo_init +to a gcc-compiled function that can be called early during program +startup, and _cgo_thread_start to a gcc-compiled function that can be +used to create a new thread, in place of the runtime's usual direct +system calls. + +Internal and External Linking + +The text above describes "internal" linking, in which cmd/link parses and +links host object files (ELF, Mach-O, PE, and so on) into the final +executable itself. Keeping cmd/link simple means we cannot possibly +implement the full semantics of the host linker, so the kinds of +objects that can be linked directly into the binary is limited (other +code can only be used as a dynamic library). On the other hand, when +using internal linking, cmd/link can generate Go binaries by itself. + +In order to allow linking arbitrary object files without requiring +dynamic libraries, cgo supports an "external" linking mode too. In +external linking mode, cmd/link does not process any host object files. +Instead, it collects all the Go code and writes a single go.o object +file containing it. Then it invokes the host linker (usually gcc) to +combine the go.o object file and any supporting non-Go code into a +final executable. External linking avoids the dynamic library +requirement but introduces a requirement that the host linker be +present to create such a binary. + +Most builds both compile source code and invoke the linker to create a +binary. When cgo is involved, the compile step already requires gcc, so +it is not problematic for the link step to require gcc too. + +An important exception is builds using a pre-compiled copy of the +standard library. In particular, package net uses cgo on most systems, +and we want to preserve the ability to compile pure Go code that +imports net without requiring gcc to be present at link time. (In this +case, the dynamic library requirement is less significant, because the +only library involved is libc.so, which can usually be assumed +present.) + +This conflict between functionality and the gcc requirement means we +must support both internal and external linking, depending on the +circumstances: if net is the only cgo-using package, then internal +linking is probably fine, but if other packages are involved, so that there +are dependencies on libraries beyond libc, external linking is likely +to work better. The compilation of a package records the relevant +information to support both linking modes, leaving the decision +to be made when linking the final binary. + +Linking Directives + +In either linking mode, package-specific directives must be passed +through to cmd/link. These are communicated by writing //go: directives in a +Go source file compiled by gc. The directives are copied into the .o +object file and then processed by the linker. + +The directives are: + +//go:cgo_import_dynamic <local> [<remote> ["<library>"]] + + In internal linking mode, allow an unresolved reference to + <local>, assuming it will be resolved by a dynamic library + symbol. The optional <remote> specifies the symbol's name and + possibly version in the dynamic library, and the optional "<library>" + names the specific library where the symbol should be found. + + On AIX, the library pattern is slightly different. It must be + "lib.a/obj.o" with obj.o the member of this library exporting + this symbol. + + In the <remote>, # or @ can be used to introduce a symbol version. + + Examples: + //go:cgo_import_dynamic puts + //go:cgo_import_dynamic puts puts#GLIBC_2.2.5 + //go:cgo_import_dynamic puts puts#GLIBC_2.2.5 "libc.so.6" + + A side effect of the cgo_import_dynamic directive with a + library is to make the final binary depend on that dynamic + library. To get the dependency without importing any specific + symbols, use _ for local and remote. + + Example: + //go:cgo_import_dynamic _ _ "libc.so.6" + + For compatibility with current versions of SWIG, + #pragma dynimport is an alias for //go:cgo_import_dynamic. + +//go:cgo_dynamic_linker "<path>" + + In internal linking mode, use "<path>" as the dynamic linker + in the final binary. This directive is only needed from one + package when constructing a binary; by convention it is + supplied by runtime/cgo. + + Example: + //go:cgo_dynamic_linker "/lib/ld-linux.so.2" + +//go:cgo_export_dynamic <local> <remote> + + In internal linking mode, put the Go symbol + named <local> into the program's exported symbol table as + <remote>, so that C code can refer to it by that name. This + mechanism makes it possible for C code to call back into Go or + to share Go's data. + + For compatibility with current versions of SWIG, + #pragma dynexport is an alias for //go:cgo_export_dynamic. + +//go:cgo_import_static <local> + + In external linking mode, allow unresolved references to + <local> in the go.o object file prepared for the host linker, + under the assumption that <local> will be supplied by the + other object files that will be linked with go.o. + + Example: + //go:cgo_import_static puts_wrapper + +//go:cgo_export_static <local> <remote> + + In external linking mode, put the Go symbol + named <local> into the program's exported symbol table as + <remote>, so that C code can refer to it by that name. This + mechanism makes it possible for C code to call back into Go or + to share Go's data. + +//go:cgo_ldflag "<arg>" + + In external linking mode, invoke the host linker (usually gcc) + with "<arg>" as a command-line argument following the .o files. + Note that the arguments are for "gcc", not "ld". + + Example: + //go:cgo_ldflag "-lpthread" + //go:cgo_ldflag "-L/usr/local/sqlite3/lib" + +A package compiled with cgo will include directives for both +internal and external linking; the linker will select the appropriate +subset for the chosen linking mode. + +Example + +As a simple example, consider a package that uses cgo to call C.sin. +The following code will be generated by cgo: + + // compiled by gc + + //go:cgo_ldflag "-lm" + + type _Ctype_double float64 + + //go:cgo_import_static _cgo_gcc_Cfunc_sin + //go:linkname __cgo_gcc_Cfunc_sin _cgo_gcc_Cfunc_sin + var __cgo_gcc_Cfunc_sin byte + var _cgo_gcc_Cfunc_sin = unsafe.Pointer(&__cgo_gcc_Cfunc_sin) + + func _Cfunc_sin(p0 _Ctype_double) (r1 _Ctype_double) { + _cgo_runtime_cgocall(_cgo_gcc_Cfunc_sin, uintptr(unsafe.Pointer(&p0))) + return + } + + // compiled by gcc, into foo.cgo2.o + + void + _cgo_gcc_Cfunc_sin(void *v) + { + struct { + double p0; + double r; + } __attribute__((__packed__)) *a = v; + a->r = sin(a->p0); + } + +What happens at link time depends on whether the final binary is linked +using the internal or external mode. If other packages are compiled in +"external only" mode, then the final link will be an external one. +Otherwise the link will be an internal one. + +The linking directives are used according to the kind of final link +used. + +In internal mode, cmd/link itself processes all the host object files, in +particular foo.cgo2.o. To do so, it uses the cgo_import_dynamic and +cgo_dynamic_linker directives to learn that the otherwise undefined +reference to sin in foo.cgo2.o should be rewritten to refer to the +symbol sin with version GLIBC_2.2.5 from the dynamic library +"libm.so.6", and the binary should request "/lib/ld-linux.so.2" as its +runtime dynamic linker. + +In external mode, cmd/link does not process any host object files, in +particular foo.cgo2.o. It links together the gc-generated object +files, along with any other Go code, into a go.o file. While doing +that, cmd/link will discover that there is no definition for +_cgo_gcc_Cfunc_sin, referred to by the gc-compiled source file. This +is okay, because cmd/link also processes the cgo_import_static directive and +knows that _cgo_gcc_Cfunc_sin is expected to be supplied by a host +object file, so cmd/link does not treat the missing symbol as an error when +creating go.o. Indeed, the definition for _cgo_gcc_Cfunc_sin will be +provided to the host linker by foo2.cgo.o, which in turn will need the +symbol 'sin'. cmd/link also processes the cgo_ldflag directives, so that it +knows that the eventual host link command must include the -lm +argument, so that the host linker will be able to find 'sin' in the +math library. + +cmd/link Command Line Interface + +The go command and any other Go-aware build systems invoke cmd/link +to link a collection of packages into a single binary. By default, cmd/link will +present the same interface it does today: + + cmd/link main.a + +produces a file named a.out, even if cmd/link does so by invoking the host +linker in external linking mode. + +By default, cmd/link will decide the linking mode as follows: if the only +packages using cgo are those on a list of known standard library +packages (net, os/user, runtime/cgo), cmd/link will use internal linking +mode. Otherwise, there are non-standard cgo packages involved, and cmd/link +will use external linking mode. The first rule means that a build of +the godoc binary, which uses net but no other cgo, can run without +needing gcc available. The second rule means that a build of a +cgo-wrapped library like sqlite3 can generate a standalone executable +instead of needing to refer to a dynamic library. The specific choice +can be overridden using a command line flag: cmd/link -linkmode=internal or +cmd/link -linkmode=external. + +In an external link, cmd/link will create a temporary directory, write any +host object files found in package archives to that directory (renamed +to avoid conflicts), write the go.o file to that directory, and invoke +the host linker. The default value for the host linker is $CC, split +into fields, or else "gcc". The specific host linker command line can +be overridden using command line flags: cmd/link -extld=clang +-extldflags='-ggdb -O3'. If any package in a build includes a .cc or +other file compiled by the C++ compiler, the go tool will use the +-extld option to set the host linker to the C++ compiler. + +These defaults mean that Go-aware build systems can ignore the linking +changes and keep running plain 'cmd/link' and get reasonable results, but +they can also control the linking details if desired. + +*/ diff --git a/src/cmd/cgo/gcc.go b/src/cmd/cgo/gcc.go new file mode 100644 index 0000000..d89bff2 --- /dev/null +++ b/src/cmd/cgo/gcc.go @@ -0,0 +1,3427 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Annotate Ref in Prog with C types by parsing gcc debug output. +// Conversion of debug output to Go types. + +package main + +import ( + "bytes" + "debug/dwarf" + "debug/elf" + "debug/macho" + "debug/pe" + "encoding/binary" + "errors" + "flag" + "fmt" + "go/ast" + "go/parser" + "go/token" + "internal/xcoff" + "math" + "os" + "os/exec" + "strconv" + "strings" + "unicode" + "unicode/utf8" + + "cmd/internal/quoted" +) + +var debugDefine = flag.Bool("debug-define", false, "print relevant #defines") +var debugGcc = flag.Bool("debug-gcc", false, "print gcc invocations") + +var nameToC = map[string]string{ + "schar": "signed char", + "uchar": "unsigned char", + "ushort": "unsigned short", + "uint": "unsigned int", + "ulong": "unsigned long", + "longlong": "long long", + "ulonglong": "unsigned long long", + "complexfloat": "float _Complex", + "complexdouble": "double _Complex", +} + +// cname returns the C name to use for C.s. +// The expansions are listed in nameToC and also +// struct_foo becomes "struct foo", and similarly for +// union and enum. +func cname(s string) string { + if t, ok := nameToC[s]; ok { + return t + } + + if strings.HasPrefix(s, "struct_") { + return "struct " + s[len("struct_"):] + } + if strings.HasPrefix(s, "union_") { + return "union " + s[len("union_"):] + } + if strings.HasPrefix(s, "enum_") { + return "enum " + s[len("enum_"):] + } + if strings.HasPrefix(s, "sizeof_") { + return "sizeof(" + cname(s[len("sizeof_"):]) + ")" + } + return s +} + +// DiscardCgoDirectives processes the import C preamble, and discards +// all #cgo CFLAGS and LDFLAGS directives, so they don't make their +// way into _cgo_export.h. +func (f *File) DiscardCgoDirectives() { + linesIn := strings.Split(f.Preamble, "\n") + linesOut := make([]string, 0, len(linesIn)) + for _, line := range linesIn { + l := strings.TrimSpace(line) + if len(l) < 5 || l[:4] != "#cgo" || !unicode.IsSpace(rune(l[4])) { + linesOut = append(linesOut, line) + } else { + linesOut = append(linesOut, "") + } + } + f.Preamble = strings.Join(linesOut, "\n") +} + +// addToFlag appends args to flag. All flags are later written out onto the +// _cgo_flags file for the build system to use. +func (p *Package) addToFlag(flag string, args []string) { + p.CgoFlags[flag] = append(p.CgoFlags[flag], args...) + if flag == "CFLAGS" { + // We'll also need these when preprocessing for dwarf information. + // However, discard any -g options: we need to be able + // to parse the debug info, so stick to what we expect. + for _, arg := range args { + if !strings.HasPrefix(arg, "-g") { + p.GccOptions = append(p.GccOptions, arg) + } + } + } +} + +// splitQuoted splits the string s around each instance of one or more consecutive +// white space characters while taking into account quotes and escaping, and +// returns an array of substrings of s or an empty list if s contains only white space. +// Single quotes and double quotes are recognized to prevent splitting within the +// quoted region, and are removed from the resulting substrings. If a quote in s +// isn't closed err will be set and r will have the unclosed argument as the +// last element. The backslash is used for escaping. +// +// For example, the following string: +// +// `a b:"c d" 'e''f' "g\""` +// +// Would be parsed as: +// +// []string{"a", "b:c d", "ef", `g"`} +func splitQuoted(s string) (r []string, err error) { + var args []string + arg := make([]rune, len(s)) + escaped := false + quoted := false + quote := '\x00' + i := 0 + for _, r := range s { + switch { + case escaped: + escaped = false + case r == '\\': + escaped = true + continue + case quote != 0: + if r == quote { + quote = 0 + continue + } + case r == '"' || r == '\'': + quoted = true + quote = r + continue + case unicode.IsSpace(r): + if quoted || i > 0 { + quoted = false + args = append(args, string(arg[:i])) + i = 0 + } + continue + } + arg[i] = r + i++ + } + if quoted || i > 0 { + args = append(args, string(arg[:i])) + } + if quote != 0 { + err = errors.New("unclosed quote") + } else if escaped { + err = errors.New("unfinished escaping") + } + return args, err +} + +// Translate rewrites f.AST, the original Go input, to remove +// references to the imported package C, replacing them with +// references to the equivalent Go types, functions, and variables. +func (p *Package) Translate(f *File) { + for _, cref := range f.Ref { + // Convert C.ulong to C.unsigned long, etc. + cref.Name.C = cname(cref.Name.Go) + } + + var conv typeConv + conv.Init(p.PtrSize, p.IntSize) + + p.loadDefines(f) + p.typedefs = map[string]bool{} + p.typedefList = nil + numTypedefs := -1 + for len(p.typedefs) > numTypedefs { + numTypedefs = len(p.typedefs) + // Also ask about any typedefs we've seen so far. + for _, info := range p.typedefList { + if f.Name[info.typedef] != nil { + continue + } + n := &Name{ + Go: info.typedef, + C: info.typedef, + } + f.Name[info.typedef] = n + f.NamePos[n] = info.pos + } + needType := p.guessKinds(f) + if len(needType) > 0 { + p.loadDWARF(f, &conv, needType) + } + + // In godefs mode we're OK with the typedefs, which + // will presumably also be defined in the file, we + // don't want to resolve them to their base types. + if *godefs { + break + } + } + p.prepareNames(f) + if p.rewriteCalls(f) { + // Add `import _cgo_unsafe "unsafe"` after the package statement. + f.Edit.Insert(f.offset(f.AST.Name.End()), "; import _cgo_unsafe \"unsafe\"") + } + p.rewriteRef(f) +} + +// loadDefines coerces gcc into spitting out the #defines in use +// in the file f and saves relevant renamings in f.Name[name].Define. +func (p *Package) loadDefines(f *File) { + var b bytes.Buffer + b.WriteString(builtinProlog) + b.WriteString(f.Preamble) + stdout := p.gccDefines(b.Bytes()) + + for _, line := range strings.Split(stdout, "\n") { + if len(line) < 9 || line[0:7] != "#define" { + continue + } + + line = strings.TrimSpace(line[8:]) + + var key, val string + spaceIndex := strings.Index(line, " ") + tabIndex := strings.Index(line, "\t") + + if spaceIndex == -1 && tabIndex == -1 { + continue + } else if tabIndex == -1 || (spaceIndex != -1 && spaceIndex < tabIndex) { + key = line[0:spaceIndex] + val = strings.TrimSpace(line[spaceIndex:]) + } else { + key = line[0:tabIndex] + val = strings.TrimSpace(line[tabIndex:]) + } + + if key == "__clang__" { + p.GccIsClang = true + } + + if n := f.Name[key]; n != nil { + if *debugDefine { + fmt.Fprintf(os.Stderr, "#define %s %s\n", key, val) + } + n.Define = val + } + } +} + +// guessKinds tricks gcc into revealing the kind of each +// name xxx for the references C.xxx in the Go input. +// The kind is either a constant, type, or variable. +func (p *Package) guessKinds(f *File) []*Name { + // Determine kinds for names we already know about, + // like #defines or 'struct foo', before bothering with gcc. + var names, needType []*Name + optional := map[*Name]bool{} + for _, key := range nameKeys(f.Name) { + n := f.Name[key] + // If we've already found this name as a #define + // and we can translate it as a constant value, do so. + if n.Define != "" { + if i, err := strconv.ParseInt(n.Define, 0, 64); err == nil { + n.Kind = "iconst" + // Turn decimal into hex, just for consistency + // with enum-derived constants. Otherwise + // in the cgo -godefs output half the constants + // are in hex and half are in whatever the #define used. + n.Const = fmt.Sprintf("%#x", i) + } else if n.Define[0] == '\'' { + if _, err := parser.ParseExpr(n.Define); err == nil { + n.Kind = "iconst" + n.Const = n.Define + } + } else if n.Define[0] == '"' { + if _, err := parser.ParseExpr(n.Define); err == nil { + n.Kind = "sconst" + n.Const = n.Define + } + } + + if n.IsConst() { + continue + } + } + + // If this is a struct, union, or enum type name, no need to guess the kind. + if strings.HasPrefix(n.C, "struct ") || strings.HasPrefix(n.C, "union ") || strings.HasPrefix(n.C, "enum ") { + n.Kind = "type" + needType = append(needType, n) + continue + } + + if (goos == "darwin" || goos == "ios") && strings.HasSuffix(n.C, "Ref") { + // For FooRef, find out if FooGetTypeID exists. + s := n.C[:len(n.C)-3] + "GetTypeID" + n := &Name{Go: s, C: s} + names = append(names, n) + optional[n] = true + } + + // Otherwise, we'll need to find out from gcc. + names = append(names, n) + } + + // Bypass gcc if there's nothing left to find out. + if len(names) == 0 { + return needType + } + + // Coerce gcc into telling us whether each name is a type, a value, or undeclared. + // For names, find out whether they are integer constants. + // We used to look at specific warning or error messages here, but that tied the + // behavior too closely to specific versions of the compilers. + // Instead, arrange that we can infer what we need from only the presence or absence + // of an error on a specific line. + // + // For each name, we generate these lines, where xxx is the index in toSniff plus one. + // + // #line xxx "not-declared" + // void __cgo_f_xxx_1(void) { __typeof__(name) *__cgo_undefined__1; } + // #line xxx "not-type" + // void __cgo_f_xxx_2(void) { name *__cgo_undefined__2; } + // #line xxx "not-int-const" + // void __cgo_f_xxx_3(void) { enum { __cgo_undefined__3 = (name)*1 }; } + // #line xxx "not-num-const" + // void __cgo_f_xxx_4(void) { static const double __cgo_undefined__4 = (name); } + // #line xxx "not-str-lit" + // void __cgo_f_xxx_5(void) { static const char __cgo_undefined__5[] = (name); } + // + // If we see an error at not-declared:xxx, the corresponding name is not declared. + // If we see an error at not-type:xxx, the corresponding name is not a type. + // If we see an error at not-int-const:xxx, the corresponding name is not an integer constant. + // If we see an error at not-num-const:xxx, the corresponding name is not a number constant. + // If we see an error at not-str-lit:xxx, the corresponding name is not a string literal. + // + // The specific input forms are chosen so that they are valid C syntax regardless of + // whether name denotes a type or an expression. + + var b bytes.Buffer + b.WriteString(builtinProlog) + b.WriteString(f.Preamble) + + for i, n := range names { + fmt.Fprintf(&b, "#line %d \"not-declared\"\n"+ + "void __cgo_f_%d_1(void) { __typeof__(%s) *__cgo_undefined__1; }\n"+ + "#line %d \"not-type\"\n"+ + "void __cgo_f_%d_2(void) { %s *__cgo_undefined__2; }\n"+ + "#line %d \"not-int-const\"\n"+ + "void __cgo_f_%d_3(void) { enum { __cgo_undefined__3 = (%s)*1 }; }\n"+ + "#line %d \"not-num-const\"\n"+ + "void __cgo_f_%d_4(void) { static const double __cgo_undefined__4 = (%s); }\n"+ + "#line %d \"not-str-lit\"\n"+ + "void __cgo_f_%d_5(void) { static const char __cgo_undefined__5[] = (%s); }\n", + i+1, i+1, n.C, + i+1, i+1, n.C, + i+1, i+1, n.C, + i+1, i+1, n.C, + i+1, i+1, n.C, + ) + } + fmt.Fprintf(&b, "#line 1 \"completed\"\n"+ + "int __cgo__1 = __cgo__2;\n") + + // We need to parse the output from this gcc command, so ensure that it + // doesn't have any ANSI escape sequences in it. (TERM=dumb is + // insufficient; if the user specifies CGO_CFLAGS=-fdiagnostics-color, + // GCC will ignore TERM, and GCC can also be configured at compile-time + // to ignore TERM.) + stderr := p.gccErrors(b.Bytes(), "-fdiagnostics-color=never") + if strings.Contains(stderr, "unrecognized command line option") { + // We're using an old version of GCC that doesn't understand + // -fdiagnostics-color. Those versions can't print color anyway, + // so just rerun without that option. + stderr = p.gccErrors(b.Bytes()) + } + if stderr == "" { + fatalf("%s produced no output\non input:\n%s", gccBaseCmd[0], b.Bytes()) + } + + completed := false + sniff := make([]int, len(names)) + const ( + notType = 1 << iota + notIntConst + notNumConst + notStrLiteral + notDeclared + ) + sawUnmatchedErrors := false + for _, line := range strings.Split(stderr, "\n") { + // Ignore warnings and random comments, with one + // exception: newer GCC versions will sometimes emit + // an error on a macro #define with a note referring + // to where the expansion occurs. We care about where + // the expansion occurs, so in that case treat the note + // as an error. + isError := strings.Contains(line, ": error:") + isErrorNote := strings.Contains(line, ": note:") && sawUnmatchedErrors + if !isError && !isErrorNote { + continue + } + + c1 := strings.Index(line, ":") + if c1 < 0 { + continue + } + c2 := strings.Index(line[c1+1:], ":") + if c2 < 0 { + continue + } + c2 += c1 + 1 + + filename := line[:c1] + i, _ := strconv.Atoi(line[c1+1 : c2]) + i-- + if i < 0 || i >= len(names) { + if isError { + sawUnmatchedErrors = true + } + continue + } + + switch filename { + case "completed": + // Strictly speaking, there is no guarantee that seeing the error at completed:1 + // (at the end of the file) means we've seen all the errors from earlier in the file, + // but usually it does. Certainly if we don't see the completed:1 error, we did + // not get all the errors we expected. + completed = true + + case "not-declared": + sniff[i] |= notDeclared + case "not-type": + sniff[i] |= notType + case "not-int-const": + sniff[i] |= notIntConst + case "not-num-const": + sniff[i] |= notNumConst + case "not-str-lit": + sniff[i] |= notStrLiteral + default: + if isError { + sawUnmatchedErrors = true + } + continue + } + + sawUnmatchedErrors = false + } + + if !completed { + fatalf("%s did not produce error at completed:1\non input:\n%s\nfull error output:\n%s", gccBaseCmd[0], b.Bytes(), stderr) + } + + for i, n := range names { + switch sniff[i] { + default: + if sniff[i]¬Declared != 0 && optional[n] { + // Ignore optional undeclared identifiers. + // Don't report an error, and skip adding n to the needType array. + continue + } + error_(f.NamePos[n], "could not determine kind of name for C.%s", fixGo(n.Go)) + case notStrLiteral | notType: + n.Kind = "iconst" + case notIntConst | notStrLiteral | notType: + n.Kind = "fconst" + case notIntConst | notNumConst | notType: + n.Kind = "sconst" + case notIntConst | notNumConst | notStrLiteral: + n.Kind = "type" + case notIntConst | notNumConst | notStrLiteral | notType: + n.Kind = "not-type" + } + needType = append(needType, n) + } + if nerrors > 0 { + // Check if compiling the preamble by itself causes any errors, + // because the messages we've printed out so far aren't helpful + // to users debugging preamble mistakes. See issue 8442. + preambleErrors := p.gccErrors([]byte(builtinProlog + f.Preamble)) + if len(preambleErrors) > 0 { + error_(token.NoPos, "\n%s errors for preamble:\n%s", gccBaseCmd[0], preambleErrors) + } + + fatalf("unresolved names") + } + + return needType +} + +// loadDWARF parses the DWARF debug information generated +// by gcc to learn the details of the constants, variables, and types +// being referred to as C.xxx. +func (p *Package) loadDWARF(f *File, conv *typeConv, names []*Name) { + // Extract the types from the DWARF section of an object + // from a well-formed C program. Gcc only generates DWARF info + // for symbols in the object file, so it is not enough to print the + // preamble and hope the symbols we care about will be there. + // Instead, emit + // __typeof__(names[i]) *__cgo__i; + // for each entry in names and then dereference the type we + // learn for __cgo__i. + var b bytes.Buffer + b.WriteString(builtinProlog) + b.WriteString(f.Preamble) + b.WriteString("#line 1 \"cgo-dwarf-inference\"\n") + for i, n := range names { + fmt.Fprintf(&b, "__typeof__(%s) *__cgo__%d;\n", n.C, i) + if n.Kind == "iconst" { + fmt.Fprintf(&b, "enum { __cgo_enum__%d = %s };\n", i, n.C) + } + } + + // We create a data block initialized with the values, + // so we can read them out of the object file. + fmt.Fprintf(&b, "long long __cgodebug_ints[] = {\n") + for _, n := range names { + if n.Kind == "iconst" { + fmt.Fprintf(&b, "\t%s,\n", n.C) + } else { + fmt.Fprintf(&b, "\t0,\n") + } + } + // for the last entry, we cannot use 0, otherwise + // in case all __cgodebug_data is zero initialized, + // LLVM-based gcc will place the it in the __DATA.__common + // zero-filled section (our debug/macho doesn't support + // this) + fmt.Fprintf(&b, "\t1\n") + fmt.Fprintf(&b, "};\n") + + // do the same work for floats. + fmt.Fprintf(&b, "double __cgodebug_floats[] = {\n") + for _, n := range names { + if n.Kind == "fconst" { + fmt.Fprintf(&b, "\t%s,\n", n.C) + } else { + fmt.Fprintf(&b, "\t0,\n") + } + } + fmt.Fprintf(&b, "\t1\n") + fmt.Fprintf(&b, "};\n") + + // do the same work for strings. + for i, n := range names { + if n.Kind == "sconst" { + fmt.Fprintf(&b, "const char __cgodebug_str__%d[] = %s;\n", i, n.C) + fmt.Fprintf(&b, "const unsigned long long __cgodebug_strlen__%d = sizeof(%s)-1;\n", i, n.C) + } + } + + d, ints, floats, strs := p.gccDebug(b.Bytes(), len(names)) + + // Scan DWARF info for top-level TagVariable entries with AttrName __cgo__i. + types := make([]dwarf.Type, len(names)) + r := d.Reader() + for { + e, err := r.Next() + if err != nil { + fatalf("reading DWARF entry: %s", err) + } + if e == nil { + break + } + switch e.Tag { + case dwarf.TagVariable: + name, _ := e.Val(dwarf.AttrName).(string) + // As of https://reviews.llvm.org/D123534, clang + // now emits DW_TAG_variable DIEs that have + // no name (so as to be able to describe the + // type and source locations of constant strings + // like the second arg in the call below: + // + // myfunction(42, "foo") + // + // If a var has no name we won't see attempts to + // refer to it via "C.<name>", so skip these vars + // + // See issue 53000 for more context. + if name == "" { + break + } + typOff, _ := e.Val(dwarf.AttrType).(dwarf.Offset) + if typOff == 0 { + if e.Val(dwarf.AttrSpecification) != nil { + // Since we are reading all the DWARF, + // assume we will see the variable elsewhere. + break + } + fatalf("malformed DWARF TagVariable entry") + } + if !strings.HasPrefix(name, "__cgo__") { + break + } + typ, err := d.Type(typOff) + if err != nil { + fatalf("loading DWARF type: %s", err) + } + t, ok := typ.(*dwarf.PtrType) + if !ok || t == nil { + fatalf("internal error: %s has non-pointer type", name) + } + i, err := strconv.Atoi(name[7:]) + if err != nil { + fatalf("malformed __cgo__ name: %s", name) + } + types[i] = t.Type + p.recordTypedefs(t.Type, f.NamePos[names[i]]) + } + if e.Tag != dwarf.TagCompileUnit { + r.SkipChildren() + } + } + + // Record types and typedef information. + for i, n := range names { + if strings.HasSuffix(n.Go, "GetTypeID") && types[i].String() == "func() CFTypeID" { + conv.getTypeIDs[n.Go[:len(n.Go)-9]] = true + } + } + for i, n := range names { + if types[i] == nil { + continue + } + pos := f.NamePos[n] + f, fok := types[i].(*dwarf.FuncType) + if n.Kind != "type" && fok { + n.Kind = "func" + n.FuncType = conv.FuncType(f, pos) + } else { + n.Type = conv.Type(types[i], pos) + switch n.Kind { + case "iconst": + if i < len(ints) { + if _, ok := types[i].(*dwarf.UintType); ok { + n.Const = fmt.Sprintf("%#x", uint64(ints[i])) + } else { + n.Const = fmt.Sprintf("%#x", ints[i]) + } + } + case "fconst": + if i >= len(floats) { + break + } + switch base(types[i]).(type) { + case *dwarf.IntType, *dwarf.UintType: + // This has an integer type so it's + // not really a floating point + // constant. This can happen when the + // C compiler complains about using + // the value as an integer constant, + // but not as a general constant. + // Treat this as a variable of the + // appropriate type, not a constant, + // to get C-style type handling, + // avoiding the problem that C permits + // uint64(-1) but Go does not. + // See issue 26066. + n.Kind = "var" + default: + n.Const = fmt.Sprintf("%f", floats[i]) + } + case "sconst": + if i < len(strs) { + n.Const = fmt.Sprintf("%q", strs[i]) + } + } + } + conv.FinishType(pos) + } +} + +// recordTypedefs remembers in p.typedefs all the typedefs used in dtypes and its children. +func (p *Package) recordTypedefs(dtype dwarf.Type, pos token.Pos) { + p.recordTypedefs1(dtype, pos, map[dwarf.Type]bool{}) +} + +func (p *Package) recordTypedefs1(dtype dwarf.Type, pos token.Pos, visited map[dwarf.Type]bool) { + if dtype == nil { + return + } + if visited[dtype] { + return + } + visited[dtype] = true + switch dt := dtype.(type) { + case *dwarf.TypedefType: + if strings.HasPrefix(dt.Name, "__builtin") { + // Don't look inside builtin types. There be dragons. + return + } + if !p.typedefs[dt.Name] { + p.typedefs[dt.Name] = true + p.typedefList = append(p.typedefList, typedefInfo{dt.Name, pos}) + p.recordTypedefs1(dt.Type, pos, visited) + } + case *dwarf.PtrType: + p.recordTypedefs1(dt.Type, pos, visited) + case *dwarf.ArrayType: + p.recordTypedefs1(dt.Type, pos, visited) + case *dwarf.QualType: + p.recordTypedefs1(dt.Type, pos, visited) + case *dwarf.FuncType: + p.recordTypedefs1(dt.ReturnType, pos, visited) + for _, a := range dt.ParamType { + p.recordTypedefs1(a, pos, visited) + } + case *dwarf.StructType: + for _, f := range dt.Field { + p.recordTypedefs1(f.Type, pos, visited) + } + } +} + +// prepareNames finalizes the Kind field of not-type names and sets +// the mangled name of all names. +func (p *Package) prepareNames(f *File) { + for _, n := range f.Name { + if n.Kind == "not-type" { + if n.Define == "" { + n.Kind = "var" + } else { + n.Kind = "macro" + n.FuncType = &FuncType{ + Result: n.Type, + Go: &ast.FuncType{ + Results: &ast.FieldList{List: []*ast.Field{{Type: n.Type.Go}}}, + }, + } + } + } + p.mangleName(n) + if n.Kind == "type" && typedef[n.Mangle] == nil { + typedef[n.Mangle] = n.Type + } + } +} + +// mangleName does name mangling to translate names +// from the original Go source files to the names +// used in the final Go files generated by cgo. +func (p *Package) mangleName(n *Name) { + // When using gccgo variables have to be + // exported so that they become global symbols + // that the C code can refer to. + prefix := "_C" + if *gccgo && n.IsVar() { + prefix = "C" + } + n.Mangle = prefix + n.Kind + "_" + n.Go +} + +func (f *File) isMangledName(s string) bool { + prefix := "_C" + if strings.HasPrefix(s, prefix) { + t := s[len(prefix):] + for _, k := range nameKinds { + if strings.HasPrefix(t, k+"_") { + return true + } + } + } + return false +} + +// rewriteCalls rewrites all calls that pass pointers to check that +// they follow the rules for passing pointers between Go and C. +// This reports whether the package needs to import unsafe as _cgo_unsafe. +func (p *Package) rewriteCalls(f *File) bool { + needsUnsafe := false + // Walk backward so that in C.f1(C.f2()) we rewrite C.f2 first. + for _, call := range f.Calls { + if call.Done { + continue + } + start := f.offset(call.Call.Pos()) + end := f.offset(call.Call.End()) + str, nu := p.rewriteCall(f, call) + if str != "" { + f.Edit.Replace(start, end, str) + if nu { + needsUnsafe = true + } + } + } + return needsUnsafe +} + +// rewriteCall rewrites one call to add pointer checks. +// If any pointer checks are required, we rewrite the call into a +// function literal that calls _cgoCheckPointer for each pointer +// argument and then calls the original function. +// This returns the rewritten call and whether the package needs to +// import unsafe as _cgo_unsafe. +// If it returns the empty string, the call did not need to be rewritten. +func (p *Package) rewriteCall(f *File, call *Call) (string, bool) { + // This is a call to C.xxx; set goname to "xxx". + // It may have already been mangled by rewriteName. + var goname string + switch fun := call.Call.Fun.(type) { + case *ast.SelectorExpr: + goname = fun.Sel.Name + case *ast.Ident: + goname = strings.TrimPrefix(fun.Name, "_C2func_") + goname = strings.TrimPrefix(goname, "_Cfunc_") + } + if goname == "" || goname == "malloc" { + return "", false + } + name := f.Name[goname] + if name == nil || name.Kind != "func" { + // Probably a type conversion. + return "", false + } + + params := name.FuncType.Params + args := call.Call.Args + end := call.Call.End() + + // Avoid a crash if the number of arguments doesn't match + // the number of parameters. + // This will be caught when the generated file is compiled. + if len(args) != len(params) { + return "", false + } + + any := false + for i, param := range params { + if p.needsPointerCheck(f, param.Go, args[i]) { + any = true + break + } + } + if !any { + return "", false + } + + // We need to rewrite this call. + // + // Rewrite C.f(p) to + // func() { + // _cgo0 := p + // _cgoCheckPointer(_cgo0, nil) + // C.f(_cgo0) + // }() + // Using a function literal like this lets us evaluate the + // function arguments only once while doing pointer checks. + // This is particularly useful when passing additional arguments + // to _cgoCheckPointer, as done in checkIndex and checkAddr. + // + // When the function argument is a conversion to unsafe.Pointer, + // we unwrap the conversion before checking the pointer, + // and then wrap again when calling C.f. This lets us check + // the real type of the pointer in some cases. See issue #25941. + // + // When the call to C.f is deferred, we use an additional function + // literal to evaluate the arguments at the right time. + // defer func() func() { + // _cgo0 := p + // return func() { + // _cgoCheckPointer(_cgo0, nil) + // C.f(_cgo0) + // } + // }()() + // This works because the defer statement evaluates the first + // function literal in order to get the function to call. + + var sb bytes.Buffer + sb.WriteString("func() ") + if call.Deferred { + sb.WriteString("func() ") + } + + needsUnsafe := false + result := false + twoResults := false + if !call.Deferred { + // Check whether this call expects two results. + for _, ref := range f.Ref { + if ref.Expr != &call.Call.Fun { + continue + } + if ref.Context == ctxCall2 { + sb.WriteString("(") + result = true + twoResults = true + } + break + } + + // Add the result type, if any. + if name.FuncType.Result != nil { + rtype := p.rewriteUnsafe(name.FuncType.Result.Go) + if rtype != name.FuncType.Result.Go { + needsUnsafe = true + } + sb.WriteString(gofmtLine(rtype)) + result = true + } + + // Add the second result type, if any. + if twoResults { + if name.FuncType.Result == nil { + // An explicit void result looks odd but it + // seems to be how cgo has worked historically. + sb.WriteString("_Ctype_void") + } + sb.WriteString(", error)") + } + } + + sb.WriteString("{ ") + + // Define _cgoN for each argument value. + // Write _cgoCheckPointer calls to sbCheck. + var sbCheck bytes.Buffer + for i, param := range params { + origArg := args[i] + arg, nu := p.mangle(f, &args[i], true) + if nu { + needsUnsafe = true + } + + // Use "var x T = ..." syntax to explicitly convert untyped + // constants to the parameter type, to avoid a type mismatch. + ptype := p.rewriteUnsafe(param.Go) + + if !p.needsPointerCheck(f, param.Go, args[i]) || param.BadPointer { + if ptype != param.Go { + needsUnsafe = true + } + fmt.Fprintf(&sb, "var _cgo%d %s = %s; ", i, + gofmtLine(ptype), gofmtPos(arg, origArg.Pos())) + continue + } + + // Check for &a[i]. + if p.checkIndex(&sb, &sbCheck, arg, i) { + continue + } + + // Check for &x. + if p.checkAddr(&sb, &sbCheck, arg, i) { + continue + } + + fmt.Fprintf(&sb, "_cgo%d := %s; ", i, gofmtPos(arg, origArg.Pos())) + fmt.Fprintf(&sbCheck, "_cgoCheckPointer(_cgo%d, nil); ", i) + } + + if call.Deferred { + sb.WriteString("return func() { ") + } + + // Write out the calls to _cgoCheckPointer. + sb.WriteString(sbCheck.String()) + + if result { + sb.WriteString("return ") + } + + m, nu := p.mangle(f, &call.Call.Fun, false) + if nu { + needsUnsafe = true + } + sb.WriteString(gofmtPos(m, end)) + + sb.WriteString("(") + for i := range params { + if i > 0 { + sb.WriteString(", ") + } + fmt.Fprintf(&sb, "_cgo%d", i) + } + sb.WriteString("); ") + if call.Deferred { + sb.WriteString("}") + } + sb.WriteString("}") + if call.Deferred { + sb.WriteString("()") + } + sb.WriteString("()") + + return sb.String(), needsUnsafe +} + +// needsPointerCheck reports whether the type t needs a pointer check. +// This is true if t is a pointer and if the value to which it points +// might contain a pointer. +func (p *Package) needsPointerCheck(f *File, t ast.Expr, arg ast.Expr) bool { + // An untyped nil does not need a pointer check, and when + // _cgoCheckPointer returns the untyped nil the type assertion we + // are going to insert will fail. Easier to just skip nil arguments. + // TODO: Note that this fails if nil is shadowed. + if id, ok := arg.(*ast.Ident); ok && id.Name == "nil" { + return false + } + + return p.hasPointer(f, t, true) +} + +// hasPointer is used by needsPointerCheck. If top is true it returns +// whether t is or contains a pointer that might point to a pointer. +// If top is false it reports whether t is or contains a pointer. +// f may be nil. +func (p *Package) hasPointer(f *File, t ast.Expr, top bool) bool { + switch t := t.(type) { + case *ast.ArrayType: + if t.Len == nil { + if !top { + return true + } + return p.hasPointer(f, t.Elt, false) + } + return p.hasPointer(f, t.Elt, top) + case *ast.StructType: + for _, field := range t.Fields.List { + if p.hasPointer(f, field.Type, top) { + return true + } + } + return false + case *ast.StarExpr: // Pointer type. + if !top { + return true + } + // Check whether this is a pointer to a C union (or class) + // type that contains a pointer. + if unionWithPointer[t.X] { + return true + } + return p.hasPointer(f, t.X, false) + case *ast.FuncType, *ast.InterfaceType, *ast.MapType, *ast.ChanType: + return true + case *ast.Ident: + // TODO: Handle types defined within function. + for _, d := range p.Decl { + gd, ok := d.(*ast.GenDecl) + if !ok || gd.Tok != token.TYPE { + continue + } + for _, spec := range gd.Specs { + ts, ok := spec.(*ast.TypeSpec) + if !ok { + continue + } + if ts.Name.Name == t.Name { + return p.hasPointer(f, ts.Type, top) + } + } + } + if def := typedef[t.Name]; def != nil { + return p.hasPointer(f, def.Go, top) + } + if t.Name == "string" { + return !top + } + if t.Name == "error" { + return true + } + if goTypes[t.Name] != nil { + return false + } + // We can't figure out the type. Conservative + // approach is to assume it has a pointer. + return true + case *ast.SelectorExpr: + if l, ok := t.X.(*ast.Ident); !ok || l.Name != "C" { + // Type defined in a different package. + // Conservative approach is to assume it has a + // pointer. + return true + } + if f == nil { + // Conservative approach: assume pointer. + return true + } + name := f.Name[t.Sel.Name] + if name != nil && name.Kind == "type" && name.Type != nil && name.Type.Go != nil { + return p.hasPointer(f, name.Type.Go, top) + } + // We can't figure out the type. Conservative + // approach is to assume it has a pointer. + return true + default: + error_(t.Pos(), "could not understand type %s", gofmt(t)) + return true + } +} + +// mangle replaces references to C names in arg with the mangled names, +// rewriting calls when it finds them. +// It removes the corresponding references in f.Ref and f.Calls, so that we +// don't try to do the replacement again in rewriteRef or rewriteCall. +// If addPosition is true, add position info to the idents of C names in arg. +func (p *Package) mangle(f *File, arg *ast.Expr, addPosition bool) (ast.Expr, bool) { + needsUnsafe := false + f.walk(arg, ctxExpr, func(f *File, arg interface{}, context astContext) { + px, ok := arg.(*ast.Expr) + if !ok { + return + } + sel, ok := (*px).(*ast.SelectorExpr) + if ok { + if l, ok := sel.X.(*ast.Ident); !ok || l.Name != "C" { + return + } + + for _, r := range f.Ref { + if r.Expr == px { + *px = p.rewriteName(f, r, addPosition) + r.Done = true + break + } + } + + return + } + + call, ok := (*px).(*ast.CallExpr) + if !ok { + return + } + + for _, c := range f.Calls { + if !c.Done && c.Call.Lparen == call.Lparen { + cstr, nu := p.rewriteCall(f, c) + if cstr != "" { + // Smuggle the rewritten call through an ident. + *px = ast.NewIdent(cstr) + if nu { + needsUnsafe = true + } + c.Done = true + } + } + } + }) + return *arg, needsUnsafe +} + +// checkIndex checks whether arg has the form &a[i], possibly inside +// type conversions. If so, then in the general case it writes +// +// _cgoIndexNN := a +// _cgoNN := &cgoIndexNN[i] // with type conversions, if any +// +// to sb, and writes +// +// _cgoCheckPointer(_cgoNN, _cgoIndexNN) +// +// to sbCheck, and returns true. If a is a simple variable or field reference, +// it writes +// +// _cgoIndexNN := &a +// +// and dereferences the uses of _cgoIndexNN. Taking the address avoids +// making a copy of an array. +// +// This tells _cgoCheckPointer to check the complete contents of the +// slice or array being indexed, but no other part of the memory allocation. +func (p *Package) checkIndex(sb, sbCheck *bytes.Buffer, arg ast.Expr, i int) bool { + // Strip type conversions. + x := arg + for { + c, ok := x.(*ast.CallExpr) + if !ok || len(c.Args) != 1 || !p.isType(c.Fun) { + break + } + x = c.Args[0] + } + u, ok := x.(*ast.UnaryExpr) + if !ok || u.Op != token.AND { + return false + } + index, ok := u.X.(*ast.IndexExpr) + if !ok { + return false + } + + addr := "" + deref := "" + if p.isVariable(index.X) { + addr = "&" + deref = "*" + } + + fmt.Fprintf(sb, "_cgoIndex%d := %s%s; ", i, addr, gofmtPos(index.X, index.X.Pos())) + origX := index.X + index.X = ast.NewIdent(fmt.Sprintf("_cgoIndex%d", i)) + if deref == "*" { + index.X = &ast.StarExpr{X: index.X} + } + fmt.Fprintf(sb, "_cgo%d := %s; ", i, gofmtPos(arg, arg.Pos())) + index.X = origX + + fmt.Fprintf(sbCheck, "_cgoCheckPointer(_cgo%d, %s_cgoIndex%d); ", i, deref, i) + + return true +} + +// checkAddr checks whether arg has the form &x, possibly inside type +// conversions. If so, it writes +// +// _cgoBaseNN := &x +// _cgoNN := _cgoBaseNN // with type conversions, if any +// +// to sb, and writes +// +// _cgoCheckPointer(_cgoBaseNN, true) +// +// to sbCheck, and returns true. This tells _cgoCheckPointer to check +// just the contents of the pointer being passed, not any other part +// of the memory allocation. This is run after checkIndex, which looks +// for the special case of &a[i], which requires different checks. +func (p *Package) checkAddr(sb, sbCheck *bytes.Buffer, arg ast.Expr, i int) bool { + // Strip type conversions. + px := &arg + for { + c, ok := (*px).(*ast.CallExpr) + if !ok || len(c.Args) != 1 || !p.isType(c.Fun) { + break + } + px = &c.Args[0] + } + if u, ok := (*px).(*ast.UnaryExpr); !ok || u.Op != token.AND { + return false + } + + fmt.Fprintf(sb, "_cgoBase%d := %s; ", i, gofmtPos(*px, (*px).Pos())) + + origX := *px + *px = ast.NewIdent(fmt.Sprintf("_cgoBase%d", i)) + fmt.Fprintf(sb, "_cgo%d := %s; ", i, gofmtPos(arg, arg.Pos())) + *px = origX + + // Use "0 == 0" to do the right thing in the unlikely event + // that "true" is shadowed. + fmt.Fprintf(sbCheck, "_cgoCheckPointer(_cgoBase%d, 0 == 0); ", i) + + return true +} + +// isType reports whether the expression is definitely a type. +// This is conservative--it returns false for an unknown identifier. +func (p *Package) isType(t ast.Expr) bool { + switch t := t.(type) { + case *ast.SelectorExpr: + id, ok := t.X.(*ast.Ident) + if !ok { + return false + } + if id.Name == "unsafe" && t.Sel.Name == "Pointer" { + return true + } + if id.Name == "C" && typedef["_Ctype_"+t.Sel.Name] != nil { + return true + } + return false + case *ast.Ident: + // TODO: This ignores shadowing. + switch t.Name { + case "unsafe.Pointer", "bool", "byte", + "complex64", "complex128", + "error", + "float32", "float64", + "int", "int8", "int16", "int32", "int64", + "rune", "string", + "uint", "uint8", "uint16", "uint32", "uint64", "uintptr": + + return true + } + if strings.HasPrefix(t.Name, "_Ctype_") { + return true + } + case *ast.ParenExpr: + return p.isType(t.X) + case *ast.StarExpr: + return p.isType(t.X) + case *ast.ArrayType, *ast.StructType, *ast.FuncType, *ast.InterfaceType, + *ast.MapType, *ast.ChanType: + + return true + } + return false +} + +// isVariable reports whether x is a variable, possibly with field references. +func (p *Package) isVariable(x ast.Expr) bool { + switch x := x.(type) { + case *ast.Ident: + return true + case *ast.SelectorExpr: + return p.isVariable(x.X) + case *ast.IndexExpr: + return true + } + return false +} + +// rewriteUnsafe returns a version of t with references to unsafe.Pointer +// rewritten to use _cgo_unsafe.Pointer instead. +func (p *Package) rewriteUnsafe(t ast.Expr) ast.Expr { + switch t := t.(type) { + case *ast.Ident: + // We don't see a SelectorExpr for unsafe.Pointer; + // this is created by code in this file. + if t.Name == "unsafe.Pointer" { + return ast.NewIdent("_cgo_unsafe.Pointer") + } + case *ast.ArrayType: + t1 := p.rewriteUnsafe(t.Elt) + if t1 != t.Elt { + r := *t + r.Elt = t1 + return &r + } + case *ast.StructType: + changed := false + fields := *t.Fields + fields.List = nil + for _, f := range t.Fields.List { + ft := p.rewriteUnsafe(f.Type) + if ft == f.Type { + fields.List = append(fields.List, f) + } else { + fn := *f + fn.Type = ft + fields.List = append(fields.List, &fn) + changed = true + } + } + if changed { + r := *t + r.Fields = &fields + return &r + } + case *ast.StarExpr: // Pointer type. + x1 := p.rewriteUnsafe(t.X) + if x1 != t.X { + r := *t + r.X = x1 + return &r + } + } + return t +} + +// rewriteRef rewrites all the C.xxx references in f.AST to refer to the +// Go equivalents, now that we have figured out the meaning of all +// the xxx. In *godefs mode, rewriteRef replaces the names +// with full definitions instead of mangled names. +func (p *Package) rewriteRef(f *File) { + // Keep a list of all the functions, to remove the ones + // only used as expressions and avoid generating bridge + // code for them. + functions := make(map[string]bool) + + for _, n := range f.Name { + if n.Kind == "func" { + functions[n.Go] = false + } + } + + // Now that we have all the name types filled in, + // scan through the Refs to identify the ones that + // are trying to do a ,err call. Also check that + // functions are only used in calls. + for _, r := range f.Ref { + if r.Name.IsConst() && r.Name.Const == "" { + error_(r.Pos(), "unable to find value of constant C.%s", fixGo(r.Name.Go)) + } + + if r.Name.Kind == "func" { + switch r.Context { + case ctxCall, ctxCall2: + functions[r.Name.Go] = true + } + } + + expr := p.rewriteName(f, r, false) + + if *godefs { + // Substitute definition for mangled type name. + if r.Name.Type != nil && r.Name.Kind == "type" { + expr = r.Name.Type.Go + } + if id, ok := expr.(*ast.Ident); ok { + if t := typedef[id.Name]; t != nil { + expr = t.Go + } + if id.Name == r.Name.Mangle && r.Name.Const != "" { + expr = ast.NewIdent(r.Name.Const) + } + } + } + + // Copy position information from old expr into new expr, + // in case expression being replaced is first on line. + // See golang.org/issue/6563. + pos := (*r.Expr).Pos() + if x, ok := expr.(*ast.Ident); ok { + expr = &ast.Ident{NamePos: pos, Name: x.Name} + } + + // Change AST, because some later processing depends on it, + // and also because -godefs mode still prints the AST. + old := *r.Expr + *r.Expr = expr + + // Record source-level edit for cgo output. + if !r.Done { + // Prepend a space in case the earlier code ends + // with '/', which would give us a "//" comment. + repl := " " + gofmtPos(expr, old.Pos()) + end := fset.Position(old.End()) + // Subtract 1 from the column if we are going to + // append a close parenthesis. That will set the + // correct column for the following characters. + sub := 0 + if r.Name.Kind != "type" { + sub = 1 + } + if end.Column > sub { + repl = fmt.Sprintf("%s /*line :%d:%d*/", repl, end.Line, end.Column-sub) + } + if r.Name.Kind != "type" { + repl = "(" + repl + ")" + } + f.Edit.Replace(f.offset(old.Pos()), f.offset(old.End()), repl) + } + } + + // Remove functions only used as expressions, so their respective + // bridge functions are not generated. + for name, used := range functions { + if !used { + delete(f.Name, name) + } + } +} + +// rewriteName returns the expression used to rewrite a reference. +// If addPosition is true, add position info in the ident name. +func (p *Package) rewriteName(f *File, r *Ref, addPosition bool) ast.Expr { + getNewIdent := ast.NewIdent + if addPosition { + getNewIdent = func(newName string) *ast.Ident { + mangledIdent := ast.NewIdent(newName) + if len(newName) == len(r.Name.Go) { + return mangledIdent + } + p := fset.Position((*r.Expr).End()) + if p.Column == 0 { + return mangledIdent + } + return ast.NewIdent(fmt.Sprintf("%s /*line :%d:%d*/", newName, p.Line, p.Column)) + } + } + var expr ast.Expr = getNewIdent(r.Name.Mangle) // default + switch r.Context { + case ctxCall, ctxCall2: + if r.Name.Kind != "func" { + if r.Name.Kind == "type" { + r.Context = ctxType + if r.Name.Type == nil { + error_(r.Pos(), "invalid conversion to C.%s: undefined C type '%s'", fixGo(r.Name.Go), r.Name.C) + } + break + } + error_(r.Pos(), "call of non-function C.%s", fixGo(r.Name.Go)) + break + } + if r.Context == ctxCall2 { + if r.Name.Go == "_CMalloc" { + error_(r.Pos(), "no two-result form for C.malloc") + break + } + // Invent new Name for the two-result function. + n := f.Name["2"+r.Name.Go] + if n == nil { + n = new(Name) + *n = *r.Name + n.AddError = true + n.Mangle = "_C2func_" + n.Go + f.Name["2"+r.Name.Go] = n + } + expr = getNewIdent(n.Mangle) + r.Name = n + break + } + case ctxExpr: + switch r.Name.Kind { + case "func": + if builtinDefs[r.Name.C] != "" { + error_(r.Pos(), "use of builtin '%s' not in function call", fixGo(r.Name.C)) + } + + // Function is being used in an expression, to e.g. pass around a C function pointer. + // Create a new Name for this Ref which causes the variable to be declared in Go land. + fpName := "fp_" + r.Name.Go + name := f.Name[fpName] + if name == nil { + name = &Name{ + Go: fpName, + C: r.Name.C, + Kind: "fpvar", + Type: &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("void*"), Go: ast.NewIdent("unsafe.Pointer")}, + } + p.mangleName(name) + f.Name[fpName] = name + } + r.Name = name + // Rewrite into call to _Cgo_ptr to prevent assignments. The _Cgo_ptr + // function is defined in out.go and simply returns its argument. See + // issue 7757. + expr = &ast.CallExpr{ + Fun: &ast.Ident{NamePos: (*r.Expr).Pos(), Name: "_Cgo_ptr"}, + Args: []ast.Expr{getNewIdent(name.Mangle)}, + } + case "type": + // Okay - might be new(T), T(x), Generic[T], etc. + if r.Name.Type == nil { + error_(r.Pos(), "expression C.%s: undefined C type '%s'", fixGo(r.Name.Go), r.Name.C) + } + case "var": + expr = &ast.StarExpr{Star: (*r.Expr).Pos(), X: expr} + case "macro": + expr = &ast.CallExpr{Fun: expr} + } + case ctxSelector: + if r.Name.Kind == "var" { + expr = &ast.StarExpr{Star: (*r.Expr).Pos(), X: expr} + } else { + error_(r.Pos(), "only C variables allowed in selector expression %s", fixGo(r.Name.Go)) + } + case ctxType: + if r.Name.Kind != "type" { + error_(r.Pos(), "expression C.%s used as type", fixGo(r.Name.Go)) + } else if r.Name.Type == nil { + // Use of C.enum_x, C.struct_x or C.union_x without C definition. + // GCC won't raise an error when using pointers to such unknown types. + error_(r.Pos(), "type C.%s: undefined C type '%s'", fixGo(r.Name.Go), r.Name.C) + } + default: + if r.Name.Kind == "func" { + error_(r.Pos(), "must call C.%s", fixGo(r.Name.Go)) + } + } + return expr +} + +// gofmtPos returns the gofmt-formatted string for an AST node, +// with a comment setting the position before the node. +func gofmtPos(n ast.Expr, pos token.Pos) string { + s := gofmtLine(n) + p := fset.Position(pos) + if p.Column == 0 { + return s + } + return fmt.Sprintf("/*line :%d:%d*/%s", p.Line, p.Column, s) +} + +// checkGCCBaseCmd returns the start of the compiler command line. +// It uses $CC if set, or else $GCC, or else the compiler recorded +// during the initial build as defaultCC. +// defaultCC is defined in zdefaultcc.go, written by cmd/dist. +// +// The compiler command line is split into arguments on whitespace. Quotes +// are understood, so arguments may contain whitespace. +// +// checkGCCBaseCmd confirms that the compiler exists in PATH, returning +// an error if it does not. +func checkGCCBaseCmd() ([]string, error) { + // Use $CC if set, since that's what the build uses. + value := os.Getenv("CC") + if value == "" { + // Try $GCC if set, since that's what we used to use. + value = os.Getenv("GCC") + } + if value == "" { + value = defaultCC(goos, goarch) + } + args, err := quoted.Split(value) + if err != nil { + return nil, err + } + if len(args) == 0 { + return nil, errors.New("CC not set and no default found") + } + if _, err := exec.LookPath(args[0]); err != nil { + return nil, fmt.Errorf("C compiler %q not found: %v", args[0], err) + } + return args[:len(args):len(args)], nil +} + +// gccMachine returns the gcc -m flag to use, either "-m32", "-m64" or "-marm". +func (p *Package) gccMachine() []string { + switch goarch { + case "amd64": + if goos == "darwin" { + return []string{"-arch", "x86_64", "-m64"} + } + return []string{"-m64"} + case "arm64": + if goos == "darwin" { + return []string{"-arch", "arm64"} + } + case "386": + return []string{"-m32"} + case "arm": + return []string{"-marm"} // not thumb + case "s390": + return []string{"-m31"} + case "s390x": + return []string{"-m64"} + case "mips64", "mips64le": + if gomips64 == "hardfloat" { + return []string{"-mabi=64", "-mhard-float"} + } else if gomips64 == "softfloat" { + return []string{"-mabi=64", "-msoft-float"} + } + case "mips", "mipsle": + if gomips == "hardfloat" { + return []string{"-mabi=32", "-mfp32", "-mhard-float", "-mno-odd-spreg"} + } else if gomips == "softfloat" { + return []string{"-mabi=32", "-msoft-float"} + } + case "loong64": + return []string{"-mabi=lp64d"} + } + return nil +} + +func gccTmp() string { + return *objDir + "_cgo_.o" +} + +// gccCmd returns the gcc command line to use for compiling +// the input. +func (p *Package) gccCmd() []string { + c := append(gccBaseCmd, + "-w", // no warnings + "-Wno-error", // warnings are not errors + "-o"+gccTmp(), // write object to tmp + "-gdwarf-2", // generate DWARF v2 debugging symbols + "-c", // do not link + "-xc", // input language is C + ) + if p.GccIsClang { + c = append(c, + "-ferror-limit=0", + // Apple clang version 1.7 (tags/Apple/clang-77) (based on LLVM 2.9svn) + // doesn't have -Wno-unneeded-internal-declaration, so we need yet another + // flag to disable the warning. Yes, really good diagnostics, clang. + "-Wno-unknown-warning-option", + "-Wno-unneeded-internal-declaration", + "-Wno-unused-function", + "-Qunused-arguments", + // Clang embeds prototypes for some builtin functions, + // like malloc and calloc, but all size_t parameters are + // incorrectly typed unsigned long. We work around that + // by disabling the builtin functions (this is safe as + // it won't affect the actual compilation of the C code). + // See: https://golang.org/issue/6506. + "-fno-builtin", + ) + } + + c = append(c, p.GccOptions...) + c = append(c, p.gccMachine()...) + if goos == "aix" { + c = append(c, "-maix64") + c = append(c, "-mcmodel=large") + } + // disable LTO so we get an object whose symbols we can read + c = append(c, "-fno-lto") + c = append(c, "-") //read input from standard input + return c +} + +// gccDebug runs gcc -gdwarf-2 over the C program stdin and +// returns the corresponding DWARF data and, if present, debug data block. +func (p *Package) gccDebug(stdin []byte, nnames int) (d *dwarf.Data, ints []int64, floats []float64, strs []string) { + runGcc(stdin, p.gccCmd()) + + isDebugInts := func(s string) bool { + // Some systems use leading _ to denote non-assembly symbols. + return s == "__cgodebug_ints" || s == "___cgodebug_ints" + } + isDebugFloats := func(s string) bool { + // Some systems use leading _ to denote non-assembly symbols. + return s == "__cgodebug_floats" || s == "___cgodebug_floats" + } + indexOfDebugStr := func(s string) int { + // Some systems use leading _ to denote non-assembly symbols. + if strings.HasPrefix(s, "___") { + s = s[1:] + } + if strings.HasPrefix(s, "__cgodebug_str__") { + if n, err := strconv.Atoi(s[len("__cgodebug_str__"):]); err == nil { + return n + } + } + return -1 + } + indexOfDebugStrlen := func(s string) int { + // Some systems use leading _ to denote non-assembly symbols. + if strings.HasPrefix(s, "___") { + s = s[1:] + } + if strings.HasPrefix(s, "__cgodebug_strlen__") { + if n, err := strconv.Atoi(s[len("__cgodebug_strlen__"):]); err == nil { + return n + } + } + return -1 + } + + strs = make([]string, nnames) + + strdata := make(map[int]string, nnames) + strlens := make(map[int]int, nnames) + + buildStrings := func() { + for n, strlen := range strlens { + data := strdata[n] + if len(data) <= strlen { + fatalf("invalid string literal") + } + strs[n] = data[:strlen] + } + } + + if f, err := macho.Open(gccTmp()); err == nil { + defer f.Close() + d, err := f.DWARF() + if err != nil { + fatalf("cannot load DWARF output from %s: %v", gccTmp(), err) + } + bo := f.ByteOrder + if f.Symtab != nil { + for i := range f.Symtab.Syms { + s := &f.Symtab.Syms[i] + switch { + case isDebugInts(s.Name): + // Found it. Now find data section. + if i := int(s.Sect) - 1; 0 <= i && i < len(f.Sections) { + sect := f.Sections[i] + if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size { + if sdat, err := sect.Data(); err == nil { + data := sdat[s.Value-sect.Addr:] + ints = make([]int64, len(data)/8) + for i := range ints { + ints[i] = int64(bo.Uint64(data[i*8:])) + } + } + } + } + case isDebugFloats(s.Name): + // Found it. Now find data section. + if i := int(s.Sect) - 1; 0 <= i && i < len(f.Sections) { + sect := f.Sections[i] + if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size { + if sdat, err := sect.Data(); err == nil { + data := sdat[s.Value-sect.Addr:] + floats = make([]float64, len(data)/8) + for i := range floats { + floats[i] = math.Float64frombits(bo.Uint64(data[i*8:])) + } + } + } + } + default: + if n := indexOfDebugStr(s.Name); n != -1 { + // Found it. Now find data section. + if i := int(s.Sect) - 1; 0 <= i && i < len(f.Sections) { + sect := f.Sections[i] + if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size { + if sdat, err := sect.Data(); err == nil { + data := sdat[s.Value-sect.Addr:] + strdata[n] = string(data) + } + } + } + break + } + if n := indexOfDebugStrlen(s.Name); n != -1 { + // Found it. Now find data section. + if i := int(s.Sect) - 1; 0 <= i && i < len(f.Sections) { + sect := f.Sections[i] + if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size { + if sdat, err := sect.Data(); err == nil { + data := sdat[s.Value-sect.Addr:] + strlen := bo.Uint64(data[:8]) + if strlen > (1<<(uint(p.IntSize*8)-1) - 1) { // greater than MaxInt? + fatalf("string literal too big") + } + strlens[n] = int(strlen) + } + } + } + break + } + } + } + + buildStrings() + } + return d, ints, floats, strs + } + + if f, err := elf.Open(gccTmp()); err == nil { + defer f.Close() + d, err := f.DWARF() + if err != nil { + fatalf("cannot load DWARF output from %s: %v", gccTmp(), err) + } + bo := f.ByteOrder + symtab, err := f.Symbols() + if err == nil { + // Check for use of -fsanitize=hwaddress (issue 53285). + removeTag := func(v uint64) uint64 { return v } + if goarch == "arm64" { + for i := range symtab { + if symtab[i].Name == "__hwasan_init" { + // -fsanitize=hwaddress on ARM + // uses the upper byte of a + // memory address as a hardware + // tag. Remove it so that + // we can find the associated + // data. + removeTag = func(v uint64) uint64 { return v &^ (0xff << (64 - 8)) } + break + } + } + } + + for i := range symtab { + s := &symtab[i] + switch { + case isDebugInts(s.Name): + // Found it. Now find data section. + if i := int(s.Section); 0 <= i && i < len(f.Sections) { + sect := f.Sections[i] + val := removeTag(s.Value) + if sect.Addr <= val && val < sect.Addr+sect.Size { + if sdat, err := sect.Data(); err == nil { + data := sdat[val-sect.Addr:] + ints = make([]int64, len(data)/8) + for i := range ints { + ints[i] = int64(bo.Uint64(data[i*8:])) + } + } + } + } + case isDebugFloats(s.Name): + // Found it. Now find data section. + if i := int(s.Section); 0 <= i && i < len(f.Sections) { + sect := f.Sections[i] + val := removeTag(s.Value) + if sect.Addr <= val && val < sect.Addr+sect.Size { + if sdat, err := sect.Data(); err == nil { + data := sdat[val-sect.Addr:] + floats = make([]float64, len(data)/8) + for i := range floats { + floats[i] = math.Float64frombits(bo.Uint64(data[i*8:])) + } + } + } + } + default: + if n := indexOfDebugStr(s.Name); n != -1 { + // Found it. Now find data section. + if i := int(s.Section); 0 <= i && i < len(f.Sections) { + sect := f.Sections[i] + val := removeTag(s.Value) + if sect.Addr <= val && val < sect.Addr+sect.Size { + if sdat, err := sect.Data(); err == nil { + data := sdat[val-sect.Addr:] + strdata[n] = string(data) + } + } + } + break + } + if n := indexOfDebugStrlen(s.Name); n != -1 { + // Found it. Now find data section. + if i := int(s.Section); 0 <= i && i < len(f.Sections) { + sect := f.Sections[i] + val := removeTag(s.Value) + if sect.Addr <= val && val < sect.Addr+sect.Size { + if sdat, err := sect.Data(); err == nil { + data := sdat[val-sect.Addr:] + strlen := bo.Uint64(data[:8]) + if strlen > (1<<(uint(p.IntSize*8)-1) - 1) { // greater than MaxInt? + fatalf("string literal too big") + } + strlens[n] = int(strlen) + } + } + } + break + } + } + } + + buildStrings() + } + return d, ints, floats, strs + } + + if f, err := pe.Open(gccTmp()); err == nil { + defer f.Close() + d, err := f.DWARF() + if err != nil { + fatalf("cannot load DWARF output from %s: %v", gccTmp(), err) + } + bo := binary.LittleEndian + for _, s := range f.Symbols { + switch { + case isDebugInts(s.Name): + if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) { + sect := f.Sections[i] + if s.Value < sect.Size { + if sdat, err := sect.Data(); err == nil { + data := sdat[s.Value:] + ints = make([]int64, len(data)/8) + for i := range ints { + ints[i] = int64(bo.Uint64(data[i*8:])) + } + } + } + } + case isDebugFloats(s.Name): + if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) { + sect := f.Sections[i] + if s.Value < sect.Size { + if sdat, err := sect.Data(); err == nil { + data := sdat[s.Value:] + floats = make([]float64, len(data)/8) + for i := range floats { + floats[i] = math.Float64frombits(bo.Uint64(data[i*8:])) + } + } + } + } + default: + if n := indexOfDebugStr(s.Name); n != -1 { + if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) { + sect := f.Sections[i] + if s.Value < sect.Size { + if sdat, err := sect.Data(); err == nil { + data := sdat[s.Value:] + strdata[n] = string(data) + } + } + } + break + } + if n := indexOfDebugStrlen(s.Name); n != -1 { + if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) { + sect := f.Sections[i] + if s.Value < sect.Size { + if sdat, err := sect.Data(); err == nil { + data := sdat[s.Value:] + strlen := bo.Uint64(data[:8]) + if strlen > (1<<(uint(p.IntSize*8)-1) - 1) { // greater than MaxInt? + fatalf("string literal too big") + } + strlens[n] = int(strlen) + } + } + } + break + } + } + } + + buildStrings() + + return d, ints, floats, strs + } + + if f, err := xcoff.Open(gccTmp()); err == nil { + defer f.Close() + d, err := f.DWARF() + if err != nil { + fatalf("cannot load DWARF output from %s: %v", gccTmp(), err) + } + bo := binary.BigEndian + for _, s := range f.Symbols { + switch { + case isDebugInts(s.Name): + if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) { + sect := f.Sections[i] + if s.Value < sect.Size { + if sdat, err := sect.Data(); err == nil { + data := sdat[s.Value:] + ints = make([]int64, len(data)/8) + for i := range ints { + ints[i] = int64(bo.Uint64(data[i*8:])) + } + } + } + } + case isDebugFloats(s.Name): + if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) { + sect := f.Sections[i] + if s.Value < sect.Size { + if sdat, err := sect.Data(); err == nil { + data := sdat[s.Value:] + floats = make([]float64, len(data)/8) + for i := range floats { + floats[i] = math.Float64frombits(bo.Uint64(data[i*8:])) + } + } + } + } + default: + if n := indexOfDebugStr(s.Name); n != -1 { + if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) { + sect := f.Sections[i] + if s.Value < sect.Size { + if sdat, err := sect.Data(); err == nil { + data := sdat[s.Value:] + strdata[n] = string(data) + } + } + } + break + } + if n := indexOfDebugStrlen(s.Name); n != -1 { + if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) { + sect := f.Sections[i] + if s.Value < sect.Size { + if sdat, err := sect.Data(); err == nil { + data := sdat[s.Value:] + strlen := bo.Uint64(data[:8]) + if strlen > (1<<(uint(p.IntSize*8)-1) - 1) { // greater than MaxInt? + fatalf("string literal too big") + } + strlens[n] = int(strlen) + } + } + } + break + } + } + } + + buildStrings() + return d, ints, floats, strs + } + fatalf("cannot parse gcc output %s as ELF, Mach-O, PE, XCOFF object", gccTmp()) + panic("not reached") +} + +// gccDefines runs gcc -E -dM -xc - over the C program stdin +// and returns the corresponding standard output, which is the +// #defines that gcc encountered while processing the input +// and its included files. +func (p *Package) gccDefines(stdin []byte) string { + base := append(gccBaseCmd, "-E", "-dM", "-xc") + base = append(base, p.gccMachine()...) + stdout, _ := runGcc(stdin, append(append(base, p.GccOptions...), "-")) + return stdout +} + +// gccErrors runs gcc over the C program stdin and returns +// the errors that gcc prints. That is, this function expects +// gcc to fail. +func (p *Package) gccErrors(stdin []byte, extraArgs ...string) string { + // TODO(rsc): require failure + args := p.gccCmd() + + // Optimization options can confuse the error messages; remove them. + nargs := make([]string, 0, len(args)+len(extraArgs)) + for _, arg := range args { + if !strings.HasPrefix(arg, "-O") { + nargs = append(nargs, arg) + } + } + + // Force -O0 optimization and append extra arguments, but keep the + // trailing "-" at the end. + li := len(nargs) - 1 + last := nargs[li] + nargs[li] = "-O0" + nargs = append(nargs, extraArgs...) + nargs = append(nargs, last) + + if *debugGcc { + fmt.Fprintf(os.Stderr, "$ %s <<EOF\n", strings.Join(nargs, " ")) + os.Stderr.Write(stdin) + fmt.Fprint(os.Stderr, "EOF\n") + } + stdout, stderr, _ := run(stdin, nargs) + if *debugGcc { + os.Stderr.Write(stdout) + os.Stderr.Write(stderr) + } + return string(stderr) +} + +// runGcc runs the gcc command line args with stdin on standard input. +// If the command exits with a non-zero exit status, runGcc prints +// details about what was run and exits. +// Otherwise runGcc returns the data written to standard output and standard error. +// Note that for some of the uses we expect useful data back +// on standard error, but for those uses gcc must still exit 0. +func runGcc(stdin []byte, args []string) (string, string) { + if *debugGcc { + fmt.Fprintf(os.Stderr, "$ %s <<EOF\n", strings.Join(args, " ")) + os.Stderr.Write(stdin) + fmt.Fprint(os.Stderr, "EOF\n") + } + stdout, stderr, ok := run(stdin, args) + if *debugGcc { + os.Stderr.Write(stdout) + os.Stderr.Write(stderr) + } + if !ok { + os.Stderr.Write(stderr) + os.Exit(2) + } + return string(stdout), string(stderr) +} + +// A typeConv is a translator from dwarf types to Go types +// with equivalent memory layout. +type typeConv struct { + // Cache of already-translated or in-progress types. + m map[string]*Type + + // Map from types to incomplete pointers to those types. + ptrs map[string][]*Type + // Keys of ptrs in insertion order (deterministic worklist) + // ptrKeys contains exactly the keys in ptrs. + ptrKeys []dwarf.Type + + // Type names X for which there exists an XGetTypeID function with type func() CFTypeID. + getTypeIDs map[string]bool + + // badStructs contains C structs that should be marked NotInHeap. + notInHeapStructs map[string]bool + + // Predeclared types. + bool ast.Expr + byte ast.Expr // denotes padding + int8, int16, int32, int64 ast.Expr + uint8, uint16, uint32, uint64, uintptr ast.Expr + float32, float64 ast.Expr + complex64, complex128 ast.Expr + void ast.Expr + string ast.Expr + goVoid ast.Expr // _Ctype_void, denotes C's void + goVoidPtr ast.Expr // unsafe.Pointer or *byte + goVoidPtrNoHeap ast.Expr // *_Ctype_void_notinheap, like goVoidPtr but marked NotInHeap + + ptrSize int64 + intSize int64 +} + +var tagGen int +var typedef = make(map[string]*Type) +var goIdent = make(map[string]*ast.Ident) + +// unionWithPointer is true for a Go type that represents a C union (or class) +// that may contain a pointer. This is used for cgo pointer checking. +var unionWithPointer = make(map[ast.Expr]bool) + +// anonymousStructTag provides a consistent tag for an anonymous struct. +// The same dwarf.StructType pointer will always get the same tag. +var anonymousStructTag = make(map[*dwarf.StructType]string) + +func (c *typeConv) Init(ptrSize, intSize int64) { + c.ptrSize = ptrSize + c.intSize = intSize + c.m = make(map[string]*Type) + c.ptrs = make(map[string][]*Type) + c.getTypeIDs = make(map[string]bool) + c.notInHeapStructs = make(map[string]bool) + c.bool = c.Ident("bool") + c.byte = c.Ident("byte") + c.int8 = c.Ident("int8") + c.int16 = c.Ident("int16") + c.int32 = c.Ident("int32") + c.int64 = c.Ident("int64") + c.uint8 = c.Ident("uint8") + c.uint16 = c.Ident("uint16") + c.uint32 = c.Ident("uint32") + c.uint64 = c.Ident("uint64") + c.uintptr = c.Ident("uintptr") + c.float32 = c.Ident("float32") + c.float64 = c.Ident("float64") + c.complex64 = c.Ident("complex64") + c.complex128 = c.Ident("complex128") + c.void = c.Ident("void") + c.string = c.Ident("string") + c.goVoid = c.Ident("_Ctype_void") + c.goVoidPtrNoHeap = c.Ident("*_Ctype_void_notinheap") + + // Normally cgo translates void* to unsafe.Pointer, + // but for historical reasons -godefs uses *byte instead. + if *godefs { + c.goVoidPtr = &ast.StarExpr{X: c.byte} + } else { + c.goVoidPtr = c.Ident("unsafe.Pointer") + } +} + +// base strips away qualifiers and typedefs to get the underlying type +func base(dt dwarf.Type) dwarf.Type { + for { + if d, ok := dt.(*dwarf.QualType); ok { + dt = d.Type + continue + } + if d, ok := dt.(*dwarf.TypedefType); ok { + dt = d.Type + continue + } + break + } + return dt +} + +// unqual strips away qualifiers from a DWARF type. +// In general we don't care about top-level qualifiers. +func unqual(dt dwarf.Type) dwarf.Type { + for { + if d, ok := dt.(*dwarf.QualType); ok { + dt = d.Type + } else { + break + } + } + return dt +} + +// Map from dwarf text names to aliases we use in package "C". +var dwarfToName = map[string]string{ + "long int": "long", + "long unsigned int": "ulong", + "unsigned int": "uint", + "short unsigned int": "ushort", + "unsigned short": "ushort", // Used by Clang; issue 13129. + "short int": "short", + "long long int": "longlong", + "long long unsigned int": "ulonglong", + "signed char": "schar", + "unsigned char": "uchar", + "unsigned long": "ulong", // Used by Clang 14; issue 53013. + "unsigned long long": "ulonglong", // Used by Clang 14; issue 53013. +} + +const signedDelta = 64 + +// String returns the current type representation. Format arguments +// are assembled within this method so that any changes in mutable +// values are taken into account. +func (tr *TypeRepr) String() string { + if len(tr.Repr) == 0 { + return "" + } + if len(tr.FormatArgs) == 0 { + return tr.Repr + } + return fmt.Sprintf(tr.Repr, tr.FormatArgs...) +} + +// Empty reports whether the result of String would be "". +func (tr *TypeRepr) Empty() bool { + return len(tr.Repr) == 0 +} + +// Set modifies the type representation. +// If fargs are provided, repr is used as a format for fmt.Sprintf. +// Otherwise, repr is used unprocessed as the type representation. +func (tr *TypeRepr) Set(repr string, fargs ...interface{}) { + tr.Repr = repr + tr.FormatArgs = fargs +} + +// FinishType completes any outstanding type mapping work. +// In particular, it resolves incomplete pointer types. +func (c *typeConv) FinishType(pos token.Pos) { + // Completing one pointer type might produce more to complete. + // Keep looping until they're all done. + for len(c.ptrKeys) > 0 { + dtype := c.ptrKeys[0] + dtypeKey := dtype.String() + c.ptrKeys = c.ptrKeys[1:] + ptrs := c.ptrs[dtypeKey] + delete(c.ptrs, dtypeKey) + + // Note Type might invalidate c.ptrs[dtypeKey]. + t := c.Type(dtype, pos) + for _, ptr := range ptrs { + ptr.Go.(*ast.StarExpr).X = t.Go + ptr.C.Set("%s*", t.C) + } + } +} + +// Type returns a *Type with the same memory layout as +// dtype when used as the type of a variable or a struct field. +func (c *typeConv) Type(dtype dwarf.Type, pos token.Pos) *Type { + return c.loadType(dtype, pos, "") +} + +// loadType recursively loads the requested dtype and its dependency graph. +func (c *typeConv) loadType(dtype dwarf.Type, pos token.Pos, parent string) *Type { + // Always recompute bad pointer typedefs, as the set of such + // typedefs changes as we see more types. + checkCache := true + if dtt, ok := dtype.(*dwarf.TypedefType); ok && c.badPointerTypedef(dtt) { + checkCache = false + } + + // The cache key should be relative to its parent. + // See issue https://golang.org/issue/31891 + key := parent + " > " + dtype.String() + + if checkCache { + if t, ok := c.m[key]; ok { + if t.Go == nil { + fatalf("%s: type conversion loop at %s", lineno(pos), dtype) + } + return t + } + } + + t := new(Type) + t.Size = dtype.Size() // note: wrong for array of pointers, corrected below + t.Align = -1 + t.C = &TypeRepr{Repr: dtype.Common().Name} + c.m[key] = t + + switch dt := dtype.(type) { + default: + fatalf("%s: unexpected type: %s", lineno(pos), dtype) + + case *dwarf.AddrType: + if t.Size != c.ptrSize { + fatalf("%s: unexpected: %d-byte address type - %s", lineno(pos), t.Size, dtype) + } + t.Go = c.uintptr + t.Align = t.Size + + case *dwarf.ArrayType: + if dt.StrideBitSize > 0 { + // Cannot represent bit-sized elements in Go. + t.Go = c.Opaque(t.Size) + break + } + count := dt.Count + if count == -1 { + // Indicates flexible array member, which Go doesn't support. + // Translate to zero-length array instead. + count = 0 + } + sub := c.Type(dt.Type, pos) + t.Align = sub.Align + t.Go = &ast.ArrayType{ + Len: c.intExpr(count), + Elt: sub.Go, + } + // Recalculate t.Size now that we know sub.Size. + t.Size = count * sub.Size + t.C.Set("__typeof__(%s[%d])", sub.C, dt.Count) + + case *dwarf.BoolType: + t.Go = c.bool + t.Align = 1 + + case *dwarf.CharType: + if t.Size != 1 { + fatalf("%s: unexpected: %d-byte char type - %s", lineno(pos), t.Size, dtype) + } + t.Go = c.int8 + t.Align = 1 + + case *dwarf.EnumType: + if t.Align = t.Size; t.Align >= c.ptrSize { + t.Align = c.ptrSize + } + t.C.Set("enum " + dt.EnumName) + signed := 0 + t.EnumValues = make(map[string]int64) + for _, ev := range dt.Val { + t.EnumValues[ev.Name] = ev.Val + if ev.Val < 0 { + signed = signedDelta + } + } + switch t.Size + int64(signed) { + default: + fatalf("%s: unexpected: %d-byte enum type - %s", lineno(pos), t.Size, dtype) + case 1: + t.Go = c.uint8 + case 2: + t.Go = c.uint16 + case 4: + t.Go = c.uint32 + case 8: + t.Go = c.uint64 + case 1 + signedDelta: + t.Go = c.int8 + case 2 + signedDelta: + t.Go = c.int16 + case 4 + signedDelta: + t.Go = c.int32 + case 8 + signedDelta: + t.Go = c.int64 + } + + case *dwarf.FloatType: + switch t.Size { + default: + fatalf("%s: unexpected: %d-byte float type - %s", lineno(pos), t.Size, dtype) + case 4: + t.Go = c.float32 + case 8: + t.Go = c.float64 + } + if t.Align = t.Size; t.Align >= c.ptrSize { + t.Align = c.ptrSize + } + + case *dwarf.ComplexType: + switch t.Size { + default: + fatalf("%s: unexpected: %d-byte complex type - %s", lineno(pos), t.Size, dtype) + case 8: + t.Go = c.complex64 + case 16: + t.Go = c.complex128 + } + if t.Align = t.Size / 2; t.Align >= c.ptrSize { + t.Align = c.ptrSize + } + + case *dwarf.FuncType: + // No attempt at translation: would enable calls + // directly between worlds, but we need to moderate those. + t.Go = c.uintptr + t.Align = c.ptrSize + + case *dwarf.IntType: + if dt.BitSize > 0 { + fatalf("%s: unexpected: %d-bit int type - %s", lineno(pos), dt.BitSize, dtype) + } + switch t.Size { + default: + fatalf("%s: unexpected: %d-byte int type - %s", lineno(pos), t.Size, dtype) + case 1: + t.Go = c.int8 + case 2: + t.Go = c.int16 + case 4: + t.Go = c.int32 + case 8: + t.Go = c.int64 + case 16: + t.Go = &ast.ArrayType{ + Len: c.intExpr(t.Size), + Elt: c.uint8, + } + } + if t.Align = t.Size; t.Align >= c.ptrSize { + t.Align = c.ptrSize + } + + case *dwarf.PtrType: + // Clang doesn't emit DW_AT_byte_size for pointer types. + if t.Size != c.ptrSize && t.Size != -1 { + fatalf("%s: unexpected: %d-byte pointer type - %s", lineno(pos), t.Size, dtype) + } + t.Size = c.ptrSize + t.Align = c.ptrSize + + if _, ok := base(dt.Type).(*dwarf.VoidType); ok { + t.Go = c.goVoidPtr + t.C.Set("void*") + dq := dt.Type + for { + if d, ok := dq.(*dwarf.QualType); ok { + t.C.Set(d.Qual + " " + t.C.String()) + dq = d.Type + } else { + break + } + } + break + } + + // Placeholder initialization; completed in FinishType. + t.Go = &ast.StarExpr{} + t.C.Set("<incomplete>*") + key := dt.Type.String() + if _, ok := c.ptrs[key]; !ok { + c.ptrKeys = append(c.ptrKeys, dt.Type) + } + c.ptrs[key] = append(c.ptrs[key], t) + + case *dwarf.QualType: + t1 := c.Type(dt.Type, pos) + t.Size = t1.Size + t.Align = t1.Align + t.Go = t1.Go + if unionWithPointer[t1.Go] { + unionWithPointer[t.Go] = true + } + t.EnumValues = nil + t.Typedef = "" + t.C.Set("%s "+dt.Qual, t1.C) + return t + + case *dwarf.StructType: + // Convert to Go struct, being careful about alignment. + // Have to give it a name to simulate C "struct foo" references. + tag := dt.StructName + if dt.ByteSize < 0 && tag == "" { // opaque unnamed struct - should not be possible + break + } + if tag == "" { + tag = anonymousStructTag[dt] + if tag == "" { + tag = "__" + strconv.Itoa(tagGen) + tagGen++ + anonymousStructTag[dt] = tag + } + } else if t.C.Empty() { + t.C.Set(dt.Kind + " " + tag) + } + name := c.Ident("_Ctype_" + dt.Kind + "_" + tag) + t.Go = name // publish before recursive calls + goIdent[name.Name] = name + if dt.ByteSize < 0 { + // Don't override old type + if _, ok := typedef[name.Name]; ok { + break + } + + // Size calculation in c.Struct/c.Opaque will die with size=-1 (unknown), + // so execute the basic things that the struct case would do + // other than try to determine a Go representation. + tt := *t + tt.C = &TypeRepr{"%s %s", []interface{}{dt.Kind, tag}} + tt.Go = c.Ident("struct{}") + if dt.Kind == "struct" { + // We don't know what the representation of this struct is, so don't let + // anyone allocate one on the Go side. As a side effect of this annotation, + // pointers to this type will not be considered pointers in Go. They won't + // get writebarrier-ed or adjusted during a stack copy. This should handle + // all the cases badPointerTypedef used to handle, but hopefully will + // continue to work going forward without any more need for cgo changes. + tt.NotInHeap = true + // TODO: we should probably do the same for unions. Unions can't live + // on the Go heap, right? It currently doesn't work for unions because + // they are defined as a type alias for struct{}, not a defined type. + } + typedef[name.Name] = &tt + break + } + switch dt.Kind { + case "class", "union": + t.Go = c.Opaque(t.Size) + if c.dwarfHasPointer(dt, pos) { + unionWithPointer[t.Go] = true + } + if t.C.Empty() { + t.C.Set("__typeof__(unsigned char[%d])", t.Size) + } + t.Align = 1 // TODO: should probably base this on field alignment. + typedef[name.Name] = t + case "struct": + g, csyntax, align := c.Struct(dt, pos) + if t.C.Empty() { + t.C.Set(csyntax) + } + t.Align = align + tt := *t + if tag != "" { + tt.C = &TypeRepr{"struct %s", []interface{}{tag}} + } + tt.Go = g + tt.NotInHeap = c.notInHeapStructs[tag] + typedef[name.Name] = &tt + } + + case *dwarf.TypedefType: + // Record typedef for printing. + if dt.Name == "_GoString_" { + // Special C name for Go string type. + // Knows string layout used by compilers: pointer plus length, + // which rounds up to 2 pointers after alignment. + t.Go = c.string + t.Size = c.ptrSize * 2 + t.Align = c.ptrSize + break + } + if dt.Name == "_GoBytes_" { + // Special C name for Go []byte type. + // Knows slice layout used by compilers: pointer, length, cap. + t.Go = c.Ident("[]byte") + t.Size = c.ptrSize + 4 + 4 + t.Align = c.ptrSize + break + } + name := c.Ident("_Ctype_" + dt.Name) + goIdent[name.Name] = name + akey := "" + if c.anonymousStructTypedef(dt) { + // only load type recursively for typedefs of anonymous + // structs, see issues 37479 and 37621. + akey = key + } + sub := c.loadType(dt.Type, pos, akey) + if c.badPointerTypedef(dt) { + // Treat this typedef as a uintptr. + s := *sub + s.Go = c.uintptr + s.BadPointer = true + sub = &s + // Make sure we update any previously computed type. + if oldType := typedef[name.Name]; oldType != nil { + oldType.Go = sub.Go + oldType.BadPointer = true + } + } + if c.badVoidPointerTypedef(dt) { + // Treat this typedef as a pointer to a NotInHeap void. + s := *sub + s.Go = c.goVoidPtrNoHeap + sub = &s + // Make sure we update any previously computed type. + if oldType := typedef[name.Name]; oldType != nil { + oldType.Go = sub.Go + } + } + // Check for non-pointer "struct <tag>{...}; typedef struct <tag> *<name>" + // typedefs that should be marked NotInHeap. + if ptr, ok := dt.Type.(*dwarf.PtrType); ok { + if strct, ok := ptr.Type.(*dwarf.StructType); ok { + if c.badStructPointerTypedef(dt.Name, strct) { + c.notInHeapStructs[strct.StructName] = true + // Make sure we update any previously computed type. + name := "_Ctype_struct_" + strct.StructName + if oldType := typedef[name]; oldType != nil { + oldType.NotInHeap = true + } + } + } + } + t.Go = name + t.BadPointer = sub.BadPointer + t.NotInHeap = sub.NotInHeap + if unionWithPointer[sub.Go] { + unionWithPointer[t.Go] = true + } + t.Size = sub.Size + t.Align = sub.Align + oldType := typedef[name.Name] + if oldType == nil { + tt := *t + tt.Go = sub.Go + tt.BadPointer = sub.BadPointer + tt.NotInHeap = sub.NotInHeap + typedef[name.Name] = &tt + } + + // If sub.Go.Name is "_Ctype_struct_foo" or "_Ctype_union_foo" or "_Ctype_class_foo", + // use that as the Go form for this typedef too, so that the typedef will be interchangeable + // with the base type. + // In -godefs mode, do this for all typedefs. + if isStructUnionClass(sub.Go) || *godefs { + t.Go = sub.Go + + if isStructUnionClass(sub.Go) { + // Use the typedef name for C code. + typedef[sub.Go.(*ast.Ident).Name].C = t.C + } + + // If we've seen this typedef before, and it + // was an anonymous struct/union/class before + // too, use the old definition. + // TODO: it would be safer to only do this if + // we verify that the types are the same. + if oldType != nil && isStructUnionClass(oldType.Go) { + t.Go = oldType.Go + } + } + + case *dwarf.UcharType: + if t.Size != 1 { + fatalf("%s: unexpected: %d-byte uchar type - %s", lineno(pos), t.Size, dtype) + } + t.Go = c.uint8 + t.Align = 1 + + case *dwarf.UintType: + if dt.BitSize > 0 { + fatalf("%s: unexpected: %d-bit uint type - %s", lineno(pos), dt.BitSize, dtype) + } + switch t.Size { + default: + fatalf("%s: unexpected: %d-byte uint type - %s", lineno(pos), t.Size, dtype) + case 1: + t.Go = c.uint8 + case 2: + t.Go = c.uint16 + case 4: + t.Go = c.uint32 + case 8: + t.Go = c.uint64 + case 16: + t.Go = &ast.ArrayType{ + Len: c.intExpr(t.Size), + Elt: c.uint8, + } + } + if t.Align = t.Size; t.Align >= c.ptrSize { + t.Align = c.ptrSize + } + + case *dwarf.VoidType: + t.Go = c.goVoid + t.C.Set("void") + t.Align = 1 + } + + switch dtype.(type) { + case *dwarf.AddrType, *dwarf.BoolType, *dwarf.CharType, *dwarf.ComplexType, *dwarf.IntType, *dwarf.FloatType, *dwarf.UcharType, *dwarf.UintType: + s := dtype.Common().Name + if s != "" { + if ss, ok := dwarfToName[s]; ok { + s = ss + } + s = strings.Replace(s, " ", "", -1) + name := c.Ident("_Ctype_" + s) + tt := *t + typedef[name.Name] = &tt + if !*godefs { + t.Go = name + } + } + } + + if t.Size < 0 { + // Unsized types are [0]byte, unless they're typedefs of other types + // or structs with tags. + // if so, use the name we've already defined. + t.Size = 0 + switch dt := dtype.(type) { + case *dwarf.TypedefType: + // ok + case *dwarf.StructType: + if dt.StructName != "" { + break + } + t.Go = c.Opaque(0) + default: + t.Go = c.Opaque(0) + } + if t.C.Empty() { + t.C.Set("void") + } + } + + if t.C.Empty() { + fatalf("%s: internal error: did not create C name for %s", lineno(pos), dtype) + } + + return t +} + +// isStructUnionClass reports whether the type described by the Go syntax x +// is a struct, union, or class with a tag. +func isStructUnionClass(x ast.Expr) bool { + id, ok := x.(*ast.Ident) + if !ok { + return false + } + name := id.Name + return strings.HasPrefix(name, "_Ctype_struct_") || + strings.HasPrefix(name, "_Ctype_union_") || + strings.HasPrefix(name, "_Ctype_class_") +} + +// FuncArg returns a Go type with the same memory layout as +// dtype when used as the type of a C function argument. +func (c *typeConv) FuncArg(dtype dwarf.Type, pos token.Pos) *Type { + t := c.Type(unqual(dtype), pos) + switch dt := dtype.(type) { + case *dwarf.ArrayType: + // Arrays are passed implicitly as pointers in C. + // In Go, we must be explicit. + tr := &TypeRepr{} + tr.Set("%s*", t.C) + return &Type{ + Size: c.ptrSize, + Align: c.ptrSize, + Go: &ast.StarExpr{X: t.Go}, + C: tr, + } + case *dwarf.TypedefType: + // C has much more relaxed rules than Go for + // implicit type conversions. When the parameter + // is type T defined as *X, simulate a little of the + // laxness of C by making the argument *X instead of T. + if ptr, ok := base(dt.Type).(*dwarf.PtrType); ok { + // Unless the typedef happens to point to void* since + // Go has special rules around using unsafe.Pointer. + if _, void := base(ptr.Type).(*dwarf.VoidType); void { + break + } + // ...or the typedef is one in which we expect bad pointers. + // It will be a uintptr instead of *X. + if c.baseBadPointerTypedef(dt) { + break + } + + t = c.Type(ptr, pos) + if t == nil { + return nil + } + + // For a struct/union/class, remember the C spelling, + // in case it has __attribute__((unavailable)). + // See issue 2888. + if isStructUnionClass(t.Go) { + t.Typedef = dt.Name + } + } + } + return t +} + +// FuncType returns the Go type analogous to dtype. +// There is no guarantee about matching memory layout. +func (c *typeConv) FuncType(dtype *dwarf.FuncType, pos token.Pos) *FuncType { + p := make([]*Type, len(dtype.ParamType)) + gp := make([]*ast.Field, len(dtype.ParamType)) + for i, f := range dtype.ParamType { + // gcc's DWARF generator outputs a single DotDotDotType parameter for + // function pointers that specify no parameters (e.g. void + // (*__cgo_0)()). Treat this special case as void. This case is + // invalid according to ISO C anyway (i.e. void (*__cgo_1)(...) is not + // legal). + if _, ok := f.(*dwarf.DotDotDotType); ok && i == 0 { + p, gp = nil, nil + break + } + p[i] = c.FuncArg(f, pos) + gp[i] = &ast.Field{Type: p[i].Go} + } + var r *Type + var gr []*ast.Field + if _, ok := base(dtype.ReturnType).(*dwarf.VoidType); ok { + gr = []*ast.Field{{Type: c.goVoid}} + } else if dtype.ReturnType != nil { + r = c.Type(unqual(dtype.ReturnType), pos) + gr = []*ast.Field{{Type: r.Go}} + } + return &FuncType{ + Params: p, + Result: r, + Go: &ast.FuncType{ + Params: &ast.FieldList{List: gp}, + Results: &ast.FieldList{List: gr}, + }, + } +} + +// Identifier +func (c *typeConv) Ident(s string) *ast.Ident { + return ast.NewIdent(s) +} + +// Opaque type of n bytes. +func (c *typeConv) Opaque(n int64) ast.Expr { + return &ast.ArrayType{ + Len: c.intExpr(n), + Elt: c.byte, + } +} + +// Expr for integer n. +func (c *typeConv) intExpr(n int64) ast.Expr { + return &ast.BasicLit{ + Kind: token.INT, + Value: strconv.FormatInt(n, 10), + } +} + +// Add padding of given size to fld. +func (c *typeConv) pad(fld []*ast.Field, sizes []int64, size int64) ([]*ast.Field, []int64) { + n := len(fld) + fld = fld[0 : n+1] + fld[n] = &ast.Field{Names: []*ast.Ident{c.Ident("_")}, Type: c.Opaque(size)} + sizes = sizes[0 : n+1] + sizes[n] = size + return fld, sizes +} + +// Struct conversion: return Go and (gc) C syntax for type. +func (c *typeConv) Struct(dt *dwarf.StructType, pos token.Pos) (expr *ast.StructType, csyntax string, align int64) { + // Minimum alignment for a struct is 1 byte. + align = 1 + + var buf bytes.Buffer + buf.WriteString("struct {") + fld := make([]*ast.Field, 0, 2*len(dt.Field)+1) // enough for padding around every field + sizes := make([]int64, 0, 2*len(dt.Field)+1) + off := int64(0) + + // Rename struct fields that happen to be named Go keywords into + // _{keyword}. Create a map from C ident -> Go ident. The Go ident will + // be mangled. Any existing identifier that already has the same name on + // the C-side will cause the Go-mangled version to be prefixed with _. + // (e.g. in a struct with fields '_type' and 'type', the latter would be + // rendered as '__type' in Go). + ident := make(map[string]string) + used := make(map[string]bool) + for _, f := range dt.Field { + ident[f.Name] = f.Name + used[f.Name] = true + } + + if !*godefs { + for cid, goid := range ident { + if token.Lookup(goid).IsKeyword() { + // Avoid keyword + goid = "_" + goid + + // Also avoid existing fields + for _, exist := used[goid]; exist; _, exist = used[goid] { + goid = "_" + goid + } + + used[goid] = true + ident[cid] = goid + } + } + } + + anon := 0 + for _, f := range dt.Field { + name := f.Name + ft := f.Type + + // In godefs mode, if this field is a C11 + // anonymous union then treat the first field in the + // union as the field in the struct. This handles + // cases like the glibc <sys/resource.h> file; see + // issue 6677. + if *godefs { + if st, ok := f.Type.(*dwarf.StructType); ok && name == "" && st.Kind == "union" && len(st.Field) > 0 && !used[st.Field[0].Name] { + name = st.Field[0].Name + ident[name] = name + ft = st.Field[0].Type + } + } + + // TODO: Handle fields that are anonymous structs by + // promoting the fields of the inner struct. + + t := c.Type(ft, pos) + tgo := t.Go + size := t.Size + talign := t.Align + if f.BitOffset > 0 || f.BitSize > 0 { + // The layout of bitfields is implementation defined, + // so we don't know how they correspond to Go fields + // even if they are aligned at byte boundaries. + continue + } + + if talign > 0 && f.ByteOffset%talign != 0 { + // Drop misaligned fields, the same way we drop integer bit fields. + // The goal is to make available what can be made available. + // Otherwise one bad and unneeded field in an otherwise okay struct + // makes the whole program not compile. Much of the time these + // structs are in system headers that cannot be corrected. + continue + } + + // Round off up to talign, assumed to be a power of 2. + off = (off + talign - 1) &^ (talign - 1) + + if f.ByteOffset > off { + fld, sizes = c.pad(fld, sizes, f.ByteOffset-off) + off = f.ByteOffset + } + if f.ByteOffset < off { + // Drop a packed field that we can't represent. + continue + } + + n := len(fld) + fld = fld[0 : n+1] + if name == "" { + name = fmt.Sprintf("anon%d", anon) + anon++ + ident[name] = name + } + fld[n] = &ast.Field{Names: []*ast.Ident{c.Ident(ident[name])}, Type: tgo} + sizes = sizes[0 : n+1] + sizes[n] = size + off += size + buf.WriteString(t.C.String()) + buf.WriteString(" ") + buf.WriteString(name) + buf.WriteString("; ") + if talign > align { + align = talign + } + } + if off < dt.ByteSize { + fld, sizes = c.pad(fld, sizes, dt.ByteSize-off) + off = dt.ByteSize + } + + // If the last field in a non-zero-sized struct is zero-sized + // the compiler is going to pad it by one (see issue 9401). + // We can't permit that, because then the size of the Go + // struct will not be the same as the size of the C struct. + // Our only option in such a case is to remove the field, + // which means that it cannot be referenced from Go. + for off > 0 && sizes[len(sizes)-1] == 0 { + n := len(sizes) + fld = fld[0 : n-1] + sizes = sizes[0 : n-1] + } + + if off != dt.ByteSize { + fatalf("%s: struct size calculation error off=%d bytesize=%d", lineno(pos), off, dt.ByteSize) + } + buf.WriteString("}") + csyntax = buf.String() + + if *godefs { + godefsFields(fld) + } + expr = &ast.StructType{Fields: &ast.FieldList{List: fld}} + return +} + +// dwarfHasPointer reports whether the DWARF type dt contains a pointer. +func (c *typeConv) dwarfHasPointer(dt dwarf.Type, pos token.Pos) bool { + switch dt := dt.(type) { + default: + fatalf("%s: unexpected type: %s", lineno(pos), dt) + return false + + case *dwarf.AddrType, *dwarf.BoolType, *dwarf.CharType, *dwarf.EnumType, + *dwarf.FloatType, *dwarf.ComplexType, *dwarf.FuncType, + *dwarf.IntType, *dwarf.UcharType, *dwarf.UintType, *dwarf.VoidType: + + return false + + case *dwarf.ArrayType: + return c.dwarfHasPointer(dt.Type, pos) + + case *dwarf.PtrType: + return true + + case *dwarf.QualType: + return c.dwarfHasPointer(dt.Type, pos) + + case *dwarf.StructType: + for _, f := range dt.Field { + if c.dwarfHasPointer(f.Type, pos) { + return true + } + } + return false + + case *dwarf.TypedefType: + if dt.Name == "_GoString_" || dt.Name == "_GoBytes_" { + return true + } + return c.dwarfHasPointer(dt.Type, pos) + } +} + +func upper(s string) string { + if s == "" { + return "" + } + r, size := utf8.DecodeRuneInString(s) + if r == '_' { + return "X" + s + } + return string(unicode.ToUpper(r)) + s[size:] +} + +// godefsFields rewrites field names for use in Go or C definitions. +// It strips leading common prefixes (like tv_ in tv_sec, tv_usec) +// converts names to upper case, and rewrites _ into Pad_godefs_n, +// so that all fields are exported. +func godefsFields(fld []*ast.Field) { + prefix := fieldPrefix(fld) + + // Issue 48396: check for duplicate field names. + if prefix != "" { + names := make(map[string]bool) + fldLoop: + for _, f := range fld { + for _, n := range f.Names { + name := n.Name + if name == "_" { + continue + } + if name != prefix { + name = strings.TrimPrefix(n.Name, prefix) + } + name = upper(name) + if names[name] { + // Field name conflict: don't remove prefix. + prefix = "" + break fldLoop + } + names[name] = true + } + } + } + + npad := 0 + for _, f := range fld { + for _, n := range f.Names { + if n.Name != prefix { + n.Name = strings.TrimPrefix(n.Name, prefix) + } + if n.Name == "_" { + // Use exported name instead. + n.Name = "Pad_cgo_" + strconv.Itoa(npad) + npad++ + } + n.Name = upper(n.Name) + } + } +} + +// fieldPrefix returns the prefix that should be removed from all the +// field names when generating the C or Go code. For generated +// C, we leave the names as is (tv_sec, tv_usec), since that's what +// people are used to seeing in C. For generated Go code, such as +// package syscall's data structures, we drop a common prefix +// (so sec, usec, which will get turned into Sec, Usec for exporting). +func fieldPrefix(fld []*ast.Field) string { + prefix := "" + for _, f := range fld { + for _, n := range f.Names { + // Ignore field names that don't have the prefix we're + // looking for. It is common in C headers to have fields + // named, say, _pad in an otherwise prefixed header. + // If the struct has 3 fields tv_sec, tv_usec, _pad1, then we + // still want to remove the tv_ prefix. + // The check for "orig_" here handles orig_eax in the + // x86 ptrace register sets, which otherwise have all fields + // with reg_ prefixes. + if strings.HasPrefix(n.Name, "orig_") || strings.HasPrefix(n.Name, "_") { + continue + } + i := strings.Index(n.Name, "_") + if i < 0 { + continue + } + if prefix == "" { + prefix = n.Name[:i+1] + } else if prefix != n.Name[:i+1] { + return "" + } + } + } + return prefix +} + +// anonymousStructTypedef reports whether dt is a C typedef for an anonymous +// struct. +func (c *typeConv) anonymousStructTypedef(dt *dwarf.TypedefType) bool { + st, ok := dt.Type.(*dwarf.StructType) + return ok && st.StructName == "" +} + +// badPointerTypedef reports whether dt is a C typedef that should not be +// considered a pointer in Go. A typedef is bad if C code sometimes stores +// non-pointers in this type. +// TODO: Currently our best solution is to find these manually and list them as +// they come up. A better solution is desired. +// Note: DEPRECATED. There is now a better solution. Search for NotInHeap in this file. +func (c *typeConv) badPointerTypedef(dt *dwarf.TypedefType) bool { + if c.badCFType(dt) { + return true + } + if c.badJNI(dt) { + return true + } + if c.badEGLType(dt) { + return true + } + return false +} + +// badVoidPointerTypedef is like badPointerTypeDef, but for "void *" typedefs that should be NotInHeap. +func (c *typeConv) badVoidPointerTypedef(dt *dwarf.TypedefType) bool { + // Match the Windows HANDLE type (#42018). + if goos != "windows" || dt.Name != "HANDLE" { + return false + } + // Check that the typedef is "typedef void *<name>". + if ptr, ok := dt.Type.(*dwarf.PtrType); ok { + if _, ok := ptr.Type.(*dwarf.VoidType); ok { + return true + } + } + return false +} + +// badStructPointerTypedef is like badVoidPointerTypedefs but for structs. +func (c *typeConv) badStructPointerTypedef(name string, dt *dwarf.StructType) bool { + // Windows handle types can all potentially contain non-pointers. + // badVoidPointerTypedef handles the "void *" HANDLE type, but other + // handles are defined as + // + // struct <name>__{int unused;}; typedef struct <name>__ *name; + // + // by the DECLARE_HANDLE macro in STRICT mode. The macro is declared in + // the Windows ntdef.h header, + // + // https://github.com/tpn/winsdk-10/blob/master/Include/10.0.16299.0/shared/ntdef.h#L779 + if goos != "windows" { + return false + } + if len(dt.Field) != 1 { + return false + } + if dt.StructName != name+"__" { + return false + } + if f := dt.Field[0]; f.Name != "unused" || f.Type.Common().Name != "int" { + return false + } + return true +} + +// baseBadPointerTypedef reports whether the base of a chain of typedefs is a bad typedef +// as badPointerTypedef reports. +func (c *typeConv) baseBadPointerTypedef(dt *dwarf.TypedefType) bool { + for { + if t, ok := dt.Type.(*dwarf.TypedefType); ok { + dt = t + continue + } + break + } + return c.badPointerTypedef(dt) +} + +func (c *typeConv) badCFType(dt *dwarf.TypedefType) bool { + // The real bad types are CFNumberRef and CFDateRef. + // Sometimes non-pointers are stored in these types. + // CFTypeRef is a supertype of those, so it can have bad pointers in it as well. + // We return true for the other *Ref types just so casting between them is easier. + // We identify the correct set of types as those ending in Ref and for which + // there exists a corresponding GetTypeID function. + // See comment below for details about the bad pointers. + if goos != "darwin" && goos != "ios" { + return false + } + s := dt.Name + if !strings.HasSuffix(s, "Ref") { + return false + } + s = s[:len(s)-3] + if s == "CFType" { + return true + } + if c.getTypeIDs[s] { + return true + } + if i := strings.Index(s, "Mutable"); i >= 0 && c.getTypeIDs[s[:i]+s[i+7:]] { + // Mutable and immutable variants share a type ID. + return true + } + return false +} + +// Comment from Darwin's CFInternal.h +/* +// Tagged pointer support +// Low-bit set means tagged object, next 3 bits (currently) +// define the tagged object class, next 4 bits are for type +// information for the specific tagged object class. Thus, +// the low byte is for type info, and the rest of a pointer +// (32 or 64-bit) is for payload, whatever the tagged class. +// +// Note that the specific integers used to identify the +// specific tagged classes can and will change from release +// to release (that's why this stuff is in CF*Internal*.h), +// as can the definition of type info vs payload above. +// +#if __LP64__ +#define CF_IS_TAGGED_OBJ(PTR) ((uintptr_t)(PTR) & 0x1) +#define CF_TAGGED_OBJ_TYPE(PTR) ((uintptr_t)(PTR) & 0xF) +#else +#define CF_IS_TAGGED_OBJ(PTR) 0 +#define CF_TAGGED_OBJ_TYPE(PTR) 0 +#endif + +enum { + kCFTaggedObjectID_Invalid = 0, + kCFTaggedObjectID_Atom = (0 << 1) + 1, + kCFTaggedObjectID_Undefined3 = (1 << 1) + 1, + kCFTaggedObjectID_Undefined2 = (2 << 1) + 1, + kCFTaggedObjectID_Integer = (3 << 1) + 1, + kCFTaggedObjectID_DateTS = (4 << 1) + 1, + kCFTaggedObjectID_ManagedObjectID = (5 << 1) + 1, // Core Data + kCFTaggedObjectID_Date = (6 << 1) + 1, + kCFTaggedObjectID_Undefined7 = (7 << 1) + 1, +}; +*/ + +func (c *typeConv) badJNI(dt *dwarf.TypedefType) bool { + // In Dalvik and ART, the jobject type in the JNI interface of the JVM has the + // property that it is sometimes (always?) a small integer instead of a real pointer. + // Note: although only the android JVMs are bad in this respect, we declare the JNI types + // bad regardless of platform, so the same Go code compiles on both android and non-android. + if parent, ok := jniTypes[dt.Name]; ok { + // Try to make sure we're talking about a JNI type, not just some random user's + // type that happens to use the same name. + // C doesn't have the notion of a package, so it's hard to be certain. + + // Walk up to jobject, checking each typedef on the way. + w := dt + for parent != "" { + t, ok := w.Type.(*dwarf.TypedefType) + if !ok || t.Name != parent { + return false + } + w = t + parent, ok = jniTypes[w.Name] + if !ok { + return false + } + } + + // Check that the typedef is either: + // 1: + // struct _jobject; + // typedef struct _jobject *jobject; + // 2: (in NDK16 in C++) + // class _jobject {}; + // typedef _jobject* jobject; + // 3: (in NDK16 in C) + // typedef void* jobject; + if ptr, ok := w.Type.(*dwarf.PtrType); ok { + switch v := ptr.Type.(type) { + case *dwarf.VoidType: + return true + case *dwarf.StructType: + if v.StructName == "_jobject" && len(v.Field) == 0 { + switch v.Kind { + case "struct": + if v.Incomplete { + return true + } + case "class": + if !v.Incomplete { + return true + } + } + } + } + } + } + return false +} + +func (c *typeConv) badEGLType(dt *dwarf.TypedefType) bool { + if dt.Name != "EGLDisplay" && dt.Name != "EGLConfig" { + return false + } + // Check that the typedef is "typedef void *<name>". + if ptr, ok := dt.Type.(*dwarf.PtrType); ok { + if _, ok := ptr.Type.(*dwarf.VoidType); ok { + return true + } + } + return false +} + +// jniTypes maps from JNI types that we want to be uintptrs, to the underlying type to which +// they are mapped. The base "jobject" maps to the empty string. +var jniTypes = map[string]string{ + "jobject": "", + "jclass": "jobject", + "jthrowable": "jobject", + "jstring": "jobject", + "jarray": "jobject", + "jbooleanArray": "jarray", + "jbyteArray": "jarray", + "jcharArray": "jarray", + "jshortArray": "jarray", + "jintArray": "jarray", + "jlongArray": "jarray", + "jfloatArray": "jarray", + "jdoubleArray": "jarray", + "jobjectArray": "jarray", + "jweak": "jobject", +} diff --git a/src/cmd/cgo/godefs.go b/src/cmd/cgo/godefs.go new file mode 100644 index 0000000..3a27b31 --- /dev/null +++ b/src/cmd/cgo/godefs.go @@ -0,0 +1,171 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package main + +import ( + "bytes" + "fmt" + "go/ast" + "go/printer" + "go/token" + "os" + "path/filepath" + "strings" +) + +// godefs returns the output for -godefs mode. +func (p *Package) godefs(f *File, args []string) string { + var buf bytes.Buffer + + fmt.Fprintf(&buf, "// Code generated by cmd/cgo -godefs; DO NOT EDIT.\n") + fmt.Fprintf(&buf, "// %s %s\n", filepath.Base(args[0]), strings.Join(args[1:], " ")) + fmt.Fprintf(&buf, "\n") + + override := make(map[string]string) + + // Allow source file to specify override mappings. + // For example, the socket data structures refer + // to in_addr and in_addr6 structs but we want to be + // able to treat them as byte arrays, so the godefs + // inputs in package syscall say + // + // // +godefs map struct_in_addr [4]byte + // // +godefs map struct_in_addr6 [16]byte + // + for _, g := range f.Comments { + for _, c := range g.List { + i := strings.Index(c.Text, "+godefs map") + if i < 0 { + continue + } + s := strings.TrimSpace(c.Text[i+len("+godefs map"):]) + i = strings.Index(s, " ") + if i < 0 { + fmt.Fprintf(os.Stderr, "invalid +godefs map comment: %s\n", c.Text) + continue + } + override["_Ctype_"+strings.TrimSpace(s[:i])] = strings.TrimSpace(s[i:]) + } + } + for _, n := range f.Name { + if s := override[n.Go]; s != "" { + override[n.Mangle] = s + } + } + + // Otherwise, if the source file says type T C.whatever, + // use "T" as the mangling of C.whatever, + // except in the definition (handled at end of function). + refName := make(map[*ast.Expr]*Name) + for _, r := range f.Ref { + refName[r.Expr] = r.Name + } + for _, d := range f.AST.Decls { + d, ok := d.(*ast.GenDecl) + if !ok || d.Tok != token.TYPE { + continue + } + for _, s := range d.Specs { + s := s.(*ast.TypeSpec) + n := refName[&s.Type] + if n != nil && n.Mangle != "" { + override[n.Mangle] = s.Name.Name + } + } + } + + // Extend overrides using typedefs: + // If we know that C.xxx should format as T + // and xxx is a typedef for yyy, make C.yyy format as T. + for typ, def := range typedef { + if new := override[typ]; new != "" { + if id, ok := def.Go.(*ast.Ident); ok { + override[id.Name] = new + } + } + } + + // Apply overrides. + for old, new := range override { + if id := goIdent[old]; id != nil { + id.Name = new + } + } + + // Any names still using the _C syntax are not going to compile, + // although in general we don't know whether they all made it + // into the file, so we can't warn here. + // + // The most common case is union types, which begin with + // _Ctype_union and for which typedef[name] is a Go byte + // array of the appropriate size (such as [4]byte). + // Substitute those union types with byte arrays. + for name, id := range goIdent { + if id.Name == name && strings.Contains(name, "_Ctype_union") { + if def := typedef[name]; def != nil { + id.Name = gofmt(def) + } + } + } + + conf.Fprint(&buf, fset, f.AST) + + return buf.String() +} + +var gofmtBuf bytes.Buffer + +// gofmt returns the gofmt-formatted string for an AST node. +func gofmt(n interface{}) string { + gofmtBuf.Reset() + err := printer.Fprint(&gofmtBuf, fset, n) + if err != nil { + return "<" + err.Error() + ">" + } + return gofmtBuf.String() +} + +// gofmtLineReplacer is used to put a gofmt-formatted string for an +// AST expression onto a single line. The lexer normally inserts a +// semicolon at each newline, so we can replace newline with semicolon. +// However, we can't do that in cases where the lexer would not insert +// a semicolon. We only have to worry about cases that can occur in an +// expression passed through gofmt, which means composite literals and +// (due to the printer possibly inserting newlines because of position +// information) operators. +var gofmtLineReplacer = strings.NewReplacer( + // Want to replace \n without ; after everything from + // https://golang.org/ref/spec#Operators_and_punctuation + // EXCEPT ++ -- ) ] } + "++\n", "++;", + "--\n", "--;", + + "+\n", "+ ", + "-\n", "- ", + "*\n", "* ", + "/\n", "/ ", + "%\n", "% ", + "&\n", "& ", + "|\n", "| ", + "^\n", "^ ", + "<\n", "< ", + ">\n", "> ", + "=\n", "= ", + "!\n", "! ", // not possible in gofmt today + "(\n", "(", + "[\n", "[", // not possible in gofmt today + "{\n", "{", + ",\n", ",", + ".\n", ". ", + ":\n", ": ", // not possible in gofmt today + + "\n", ";", +) + +// gofmtLine returns the gofmt-formatted string for an AST node, +// ensuring that it is on a single line. +func gofmtLine(n interface{}) string { + return gofmtLineReplacer.Replace(gofmt(n)) +} diff --git a/src/cmd/cgo/main.go b/src/cmd/cgo/main.go new file mode 100644 index 0000000..e343459 --- /dev/null +++ b/src/cmd/cgo/main.go @@ -0,0 +1,489 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Cgo; see doc.go for an overview. + +// TODO(rsc): +// Emit correct line number annotations. +// Make gc understand the annotations. + +package main + +import ( + "flag" + "fmt" + "go/ast" + "go/printer" + "go/token" + "internal/buildcfg" + "io" + "io/ioutil" + "os" + "path/filepath" + "reflect" + "runtime" + "sort" + "strings" + + "cmd/internal/edit" + "cmd/internal/notsha256" + "cmd/internal/objabi" +) + +// A Package collects information about the package we're going to write. +type Package struct { + PackageName string // name of package + PackagePath string + PtrSize int64 + IntSize int64 + GccOptions []string + GccIsClang bool + CgoFlags map[string][]string // #cgo flags (CFLAGS, LDFLAGS) + Written map[string]bool + Name map[string]*Name // accumulated Name from Files + ExpFunc []*ExpFunc // accumulated ExpFunc from Files + Decl []ast.Decl + GoFiles []string // list of Go files + GccFiles []string // list of gcc output files + Preamble string // collected preamble for _cgo_export.h + typedefs map[string]bool // type names that appear in the types of the objects we're interested in + typedefList []typedefInfo +} + +// A typedefInfo is an element on Package.typedefList: a typedef name +// and the position where it was required. +type typedefInfo struct { + typedef string + pos token.Pos +} + +// A File collects information about a single Go input file. +type File struct { + AST *ast.File // parsed AST + Comments []*ast.CommentGroup // comments from file + Package string // Package name + Preamble string // C preamble (doc comment on import "C") + Ref []*Ref // all references to C.xxx in AST + Calls []*Call // all calls to C.xxx in AST + ExpFunc []*ExpFunc // exported functions for this file + Name map[string]*Name // map from Go name to Name + NamePos map[*Name]token.Pos // map from Name to position of the first reference + Edit *edit.Buffer +} + +func (f *File) offset(p token.Pos) int { + return fset.Position(p).Offset +} + +func nameKeys(m map[string]*Name) []string { + var ks []string + for k := range m { + ks = append(ks, k) + } + sort.Strings(ks) + return ks +} + +// A Call refers to a call of a C.xxx function in the AST. +type Call struct { + Call *ast.CallExpr + Deferred bool + Done bool +} + +// A Ref refers to an expression of the form C.xxx in the AST. +type Ref struct { + Name *Name + Expr *ast.Expr + Context astContext + Done bool +} + +func (r *Ref) Pos() token.Pos { + return (*r.Expr).Pos() +} + +var nameKinds = []string{"iconst", "fconst", "sconst", "type", "var", "fpvar", "func", "macro", "not-type"} + +// A Name collects information about C.xxx. +type Name struct { + Go string // name used in Go referring to package C + Mangle string // name used in generated Go + C string // name used in C + Define string // #define expansion + Kind string // one of the nameKinds + Type *Type // the type of xxx + FuncType *FuncType + AddError bool + Const string // constant definition +} + +// IsVar reports whether Kind is either "var" or "fpvar" +func (n *Name) IsVar() bool { + return n.Kind == "var" || n.Kind == "fpvar" +} + +// IsConst reports whether Kind is either "iconst", "fconst" or "sconst" +func (n *Name) IsConst() bool { + return strings.HasSuffix(n.Kind, "const") +} + +// An ExpFunc is an exported function, callable from C. +// Such functions are identified in the Go input file +// by doc comments containing the line //export ExpName +type ExpFunc struct { + Func *ast.FuncDecl + ExpName string // name to use from C + Doc string +} + +// A TypeRepr contains the string representation of a type. +type TypeRepr struct { + Repr string + FormatArgs []interface{} +} + +// A Type collects information about a type in both the C and Go worlds. +type Type struct { + Size int64 + Align int64 + C *TypeRepr + Go ast.Expr + EnumValues map[string]int64 + Typedef string + BadPointer bool // this pointer type should be represented as a uintptr (deprecated) + NotInHeap bool // this type should have a go:notinheap annotation +} + +// A FuncType collects information about a function type in both the C and Go worlds. +type FuncType struct { + Params []*Type + Result *Type + Go *ast.FuncType +} + +func usage() { + fmt.Fprint(os.Stderr, "usage: cgo -- [compiler options] file.go ...\n") + flag.PrintDefaults() + os.Exit(2) +} + +var ptrSizeMap = map[string]int64{ + "386": 4, + "alpha": 8, + "amd64": 8, + "arm": 4, + "arm64": 8, + "loong64": 8, + "m68k": 4, + "mips": 4, + "mipsle": 4, + "mips64": 8, + "mips64le": 8, + "nios2": 4, + "ppc": 4, + "ppc64": 8, + "ppc64le": 8, + "riscv": 4, + "riscv64": 8, + "s390": 4, + "s390x": 8, + "sh": 4, + "shbe": 4, + "sparc": 4, + "sparc64": 8, +} + +var intSizeMap = map[string]int64{ + "386": 4, + "alpha": 8, + "amd64": 8, + "arm": 4, + "arm64": 8, + "loong64": 8, + "m68k": 4, + "mips": 4, + "mipsle": 4, + "mips64": 8, + "mips64le": 8, + "nios2": 4, + "ppc": 4, + "ppc64": 8, + "ppc64le": 8, + "riscv": 4, + "riscv64": 8, + "s390": 4, + "s390x": 8, + "sh": 4, + "shbe": 4, + "sparc": 4, + "sparc64": 8, +} + +var cPrefix string + +var fset = token.NewFileSet() + +var dynobj = flag.String("dynimport", "", "if non-empty, print dynamic import data for that file") +var dynout = flag.String("dynout", "", "write -dynimport output to this file") +var dynpackage = flag.String("dynpackage", "main", "set Go package for -dynimport output") +var dynlinker = flag.Bool("dynlinker", false, "record dynamic linker information in -dynimport mode") + +// This flag is for bootstrapping a new Go implementation, +// to generate Go types that match the data layout and +// constant values used in the host's C libraries and system calls. +var godefs = flag.Bool("godefs", false, "for bootstrap: write Go definitions for C file to standard output") + +var srcDir = flag.String("srcdir", "", "source directory") +var objDir = flag.String("objdir", "", "object directory") +var importPath = flag.String("importpath", "", "import path of package being built (for comments in generated files)") +var exportHeader = flag.String("exportheader", "", "where to write export header if any exported functions") + +var gccgo = flag.Bool("gccgo", false, "generate files for use with gccgo") +var gccgoprefix = flag.String("gccgoprefix", "", "-fgo-prefix option used with gccgo") +var gccgopkgpath = flag.String("gccgopkgpath", "", "-fgo-pkgpath option used with gccgo") +var gccgoMangler func(string) string +var importRuntimeCgo = flag.Bool("import_runtime_cgo", true, "import runtime/cgo in generated code") +var importSyscall = flag.Bool("import_syscall", true, "import syscall in generated code") +var trimpath = flag.String("trimpath", "", "applies supplied rewrites or trims prefixes to recorded source file paths") + +var goarch, goos, gomips, gomips64 string +var gccBaseCmd []string + +func main() { + objabi.AddVersionFlag() // -V + flag.Usage = usage + flag.Parse() + + if *dynobj != "" { + // cgo -dynimport is essentially a separate helper command + // built into the cgo binary. It scans a gcc-produced executable + // and dumps information about the imported symbols and the + // imported libraries. The 'go build' rules for cgo prepare an + // appropriate executable and then use its import information + // instead of needing to make the linkers duplicate all the + // specialized knowledge gcc has about where to look for imported + // symbols and which ones to use. + dynimport(*dynobj) + return + } + + if *godefs { + // Generating definitions pulled from header files, + // to be checked into Go repositories. + // Line numbers are just noise. + conf.Mode &^= printer.SourcePos + } + + args := flag.Args() + if len(args) < 1 { + usage() + } + + // Find first arg that looks like a go file and assume everything before + // that are options to pass to gcc. + var i int + for i = len(args); i > 0; i-- { + if !strings.HasSuffix(args[i-1], ".go") { + break + } + } + if i == len(args) { + usage() + } + + // Save original command line arguments for the godefs generated comment. Relative file + // paths in os.Args will be rewritten to absolute file paths in the loop below. + osArgs := make([]string, len(os.Args)) + copy(osArgs, os.Args[:]) + goFiles := args[i:] + + for _, arg := range args[:i] { + if arg == "-fsanitize=thread" { + tsanProlog = yesTsanProlog + } + if arg == "-fsanitize=memory" { + msanProlog = yesMsanProlog + } + } + + p := newPackage(args[:i]) + + // We need a C compiler to be available. Check this. + var err error + gccBaseCmd, err = checkGCCBaseCmd() + if err != nil { + fatalf("%v", err) + os.Exit(2) + } + + // Record CGO_LDFLAGS from the environment for external linking. + if ldflags := os.Getenv("CGO_LDFLAGS"); ldflags != "" { + args, err := splitQuoted(ldflags) + if err != nil { + fatalf("bad CGO_LDFLAGS: %q (%s)", ldflags, err) + } + p.addToFlag("LDFLAGS", args) + } + + // Need a unique prefix for the global C symbols that + // we use to coordinate between gcc and ourselves. + // We already put _cgo_ at the beginning, so the main + // concern is other cgo wrappers for the same functions. + // Use the beginning of the notsha256 of the input to disambiguate. + h := notsha256.New() + io.WriteString(h, *importPath) + fs := make([]*File, len(goFiles)) + for i, input := range goFiles { + if *srcDir != "" { + input = filepath.Join(*srcDir, input) + } + + // Create absolute path for file, so that it will be used in error + // messages and recorded in debug line number information. + // This matches the rest of the toolchain. See golang.org/issue/5122. + if aname, err := filepath.Abs(input); err == nil { + input = aname + } + + b, err := ioutil.ReadFile(input) + if err != nil { + fatalf("%s", err) + } + if _, err = h.Write(b); err != nil { + fatalf("%s", err) + } + + // Apply trimpath to the file path. The path won't be read from after this point. + input, _ = objabi.ApplyRewrites(input, *trimpath) + goFiles[i] = input + + f := new(File) + f.Edit = edit.NewBuffer(b) + f.ParseGo(input, b) + f.DiscardCgoDirectives() + fs[i] = f + } + + cPrefix = fmt.Sprintf("_%x", h.Sum(nil)[0:6]) + + if *objDir == "" { + // make sure that _obj directory exists, so that we can write + // all the output files there. + os.Mkdir("_obj", 0777) + *objDir = "_obj" + } + *objDir += string(filepath.Separator) + + for i, input := range goFiles { + f := fs[i] + p.Translate(f) + for _, cref := range f.Ref { + switch cref.Context { + case ctxCall, ctxCall2: + if cref.Name.Kind != "type" { + break + } + old := *cref.Expr + *cref.Expr = cref.Name.Type.Go + f.Edit.Replace(f.offset(old.Pos()), f.offset(old.End()), gofmt(cref.Name.Type.Go)) + } + } + if nerrors > 0 { + os.Exit(2) + } + p.PackagePath = f.Package + p.Record(f) + if *godefs { + os.Stdout.WriteString(p.godefs(f, osArgs)) + } else { + p.writeOutput(f, input) + } + } + + if !*godefs { + p.writeDefs() + } + if nerrors > 0 { + os.Exit(2) + } +} + +// newPackage returns a new Package that will invoke +// gcc with the additional arguments specified in args. +func newPackage(args []string) *Package { + goarch = runtime.GOARCH + if s := os.Getenv("GOARCH"); s != "" { + goarch = s + } + goos = runtime.GOOS + if s := os.Getenv("GOOS"); s != "" { + goos = s + } + buildcfg.Check() + gomips = buildcfg.GOMIPS + gomips64 = buildcfg.GOMIPS64 + ptrSize := ptrSizeMap[goarch] + if ptrSize == 0 { + fatalf("unknown ptrSize for $GOARCH %q", goarch) + } + intSize := intSizeMap[goarch] + if intSize == 0 { + fatalf("unknown intSize for $GOARCH %q", goarch) + } + + // Reset locale variables so gcc emits English errors [sic]. + os.Setenv("LANG", "en_US.UTF-8") + os.Setenv("LC_ALL", "C") + + p := &Package{ + PtrSize: ptrSize, + IntSize: intSize, + CgoFlags: make(map[string][]string), + Written: make(map[string]bool), + } + p.addToFlag("CFLAGS", args) + return p +} + +// Record what needs to be recorded about f. +func (p *Package) Record(f *File) { + if p.PackageName == "" { + p.PackageName = f.Package + } else if p.PackageName != f.Package { + error_(token.NoPos, "inconsistent package names: %s, %s", p.PackageName, f.Package) + } + + if p.Name == nil { + p.Name = f.Name + } else { + for k, v := range f.Name { + if p.Name[k] == nil { + p.Name[k] = v + } else if p.incompleteTypedef(p.Name[k].Type) { + p.Name[k] = v + } else if p.incompleteTypedef(v.Type) { + // Nothing to do. + } else if _, ok := nameToC[k]; ok { + // Names we predefine may appear inconsistent + // if some files typedef them and some don't. + // Issue 26743. + } else if !reflect.DeepEqual(p.Name[k], v) { + error_(token.NoPos, "inconsistent definitions for C.%s", fixGo(k)) + } + } + } + + if f.ExpFunc != nil { + p.ExpFunc = append(p.ExpFunc, f.ExpFunc...) + p.Preamble += "\n" + f.Preamble + } + p.Decl = append(p.Decl, f.AST.Decls...) +} + +// incompleteTypedef reports whether t appears to be an incomplete +// typedef definition. +func (p *Package) incompleteTypedef(t *Type) bool { + return t == nil || (t.Size == 0 && t.Align == -1) +} diff --git a/src/cmd/cgo/out.go b/src/cmd/cgo/out.go new file mode 100644 index 0000000..119eca2 --- /dev/null +++ b/src/cmd/cgo/out.go @@ -0,0 +1,1979 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package main + +import ( + "bytes" + "cmd/internal/pkgpath" + "debug/elf" + "debug/macho" + "debug/pe" + "fmt" + "go/ast" + "go/printer" + "go/token" + "internal/xcoff" + "io" + "os" + "os/exec" + "path/filepath" + "regexp" + "sort" + "strings" + "unicode" +) + +var ( + conf = printer.Config{Mode: printer.SourcePos, Tabwidth: 8} + noSourceConf = printer.Config{Tabwidth: 8} +) + +// writeDefs creates output files to be compiled by gc and gcc. +func (p *Package) writeDefs() { + var fgo2, fc io.Writer + f := creat(*objDir + "_cgo_gotypes.go") + defer f.Close() + fgo2 = f + if *gccgo { + f := creat(*objDir + "_cgo_defun.c") + defer f.Close() + fc = f + } + fm := creat(*objDir + "_cgo_main.c") + + var gccgoInit bytes.Buffer + + fflg := creat(*objDir + "_cgo_flags") + for k, v := range p.CgoFlags { + fmt.Fprintf(fflg, "_CGO_%s=%s\n", k, strings.Join(v, " ")) + if k == "LDFLAGS" && !*gccgo { + for _, arg := range v { + fmt.Fprintf(fgo2, "//go:cgo_ldflag %q\n", arg) + } + } + } + fflg.Close() + + // Write C main file for using gcc to resolve imports. + fmt.Fprintf(fm, "#include <stddef.h>\n") // For size_t below. + fmt.Fprintf(fm, "int main() { return 0; }\n") + if *importRuntimeCgo { + fmt.Fprintf(fm, "void crosscall2(void(*fn)(void*) __attribute__((unused)), void *a __attribute__((unused)), int c __attribute__((unused)), size_t ctxt __attribute__((unused))) { }\n") + fmt.Fprintf(fm, "size_t _cgo_wait_runtime_init_done(void) { return 0; }\n") + fmt.Fprintf(fm, "void _cgo_release_context(size_t ctxt __attribute__((unused))) { }\n") + fmt.Fprintf(fm, "char* _cgo_topofstack(void) { return (char*)0; }\n") + } else { + // If we're not importing runtime/cgo, we *are* runtime/cgo, + // which provides these functions. We just need a prototype. + fmt.Fprintf(fm, "void crosscall2(void(*fn)(void*), void *a, int c, size_t ctxt);\n") + fmt.Fprintf(fm, "size_t _cgo_wait_runtime_init_done(void);\n") + fmt.Fprintf(fm, "void _cgo_release_context(size_t);\n") + } + fmt.Fprintf(fm, "void _cgo_allocate(void *a __attribute__((unused)), int c __attribute__((unused))) { }\n") + fmt.Fprintf(fm, "void _cgo_panic(void *a __attribute__((unused)), int c __attribute__((unused))) { }\n") + fmt.Fprintf(fm, "void _cgo_reginit(void) { }\n") + + // Write second Go output: definitions of _C_xxx. + // In a separate file so that the import of "unsafe" does not + // pollute the original file. + fmt.Fprintf(fgo2, "// Code generated by cmd/cgo; DO NOT EDIT.\n\n") + fmt.Fprintf(fgo2, "package %s\n\n", p.PackageName) + fmt.Fprintf(fgo2, "import \"unsafe\"\n\n") + if !*gccgo && *importRuntimeCgo { + fmt.Fprintf(fgo2, "import _ \"runtime/cgo\"\n\n") + } + if *importSyscall { + fmt.Fprintf(fgo2, "import \"syscall\"\n\n") + fmt.Fprintf(fgo2, "var _ syscall.Errno\n") + } + fmt.Fprintf(fgo2, "func _Cgo_ptr(ptr unsafe.Pointer) unsafe.Pointer { return ptr }\n\n") + + if !*gccgo { + fmt.Fprintf(fgo2, "//go:linkname _Cgo_always_false runtime.cgoAlwaysFalse\n") + fmt.Fprintf(fgo2, "var _Cgo_always_false bool\n") + fmt.Fprintf(fgo2, "//go:linkname _Cgo_use runtime.cgoUse\n") + fmt.Fprintf(fgo2, "func _Cgo_use(interface{})\n") + } + + typedefNames := make([]string, 0, len(typedef)) + for name := range typedef { + if name == "_Ctype_void" { + // We provide an appropriate declaration for + // _Ctype_void below (#39877). + continue + } + typedefNames = append(typedefNames, name) + } + sort.Strings(typedefNames) + for _, name := range typedefNames { + def := typedef[name] + if def.NotInHeap { + fmt.Fprintf(fgo2, "//go:notinheap\n") + } + fmt.Fprintf(fgo2, "type %s ", name) + // We don't have source info for these types, so write them out without source info. + // Otherwise types would look like: + // + // type _Ctype_struct_cb struct { + // //line :1 + // on_test *[0]byte + // //line :1 + // } + // + // Which is not useful. Moreover we never override source info, + // so subsequent source code uses the same source info. + // Moreover, empty file name makes compile emit no source debug info at all. + var buf bytes.Buffer + noSourceConf.Fprint(&buf, fset, def.Go) + if bytes.HasPrefix(buf.Bytes(), []byte("_Ctype_")) || + strings.HasPrefix(name, "_Ctype_enum_") || + strings.HasPrefix(name, "_Ctype_union_") { + // This typedef is of the form `typedef a b` and should be an alias. + fmt.Fprintf(fgo2, "= ") + } + fmt.Fprintf(fgo2, "%s", buf.Bytes()) + fmt.Fprintf(fgo2, "\n\n") + } + fmt.Fprintf(fgo2, "//go:notinheap\ntype _Ctype_void_notinheap struct{}\n\n") + if *gccgo { + fmt.Fprintf(fgo2, "type _Ctype_void byte\n") + } else { + fmt.Fprintf(fgo2, "type _Ctype_void [0]byte\n") + } + + if *gccgo { + fmt.Fprint(fgo2, gccgoGoProlog) + fmt.Fprint(fc, p.cPrologGccgo()) + } else { + fmt.Fprint(fgo2, goProlog) + } + + if fc != nil { + fmt.Fprintf(fc, "#line 1 \"cgo-generated-wrappers\"\n") + } + if fm != nil { + fmt.Fprintf(fm, "#line 1 \"cgo-generated-wrappers\"\n") + } + + gccgoSymbolPrefix := p.gccgoSymbolPrefix() + + cVars := make(map[string]bool) + for _, key := range nameKeys(p.Name) { + n := p.Name[key] + if !n.IsVar() { + continue + } + + if !cVars[n.C] { + if *gccgo { + fmt.Fprintf(fc, "extern byte *%s;\n", n.C) + } else { + // Force a reference to all symbols so that + // the external linker will add DT_NEEDED + // entries as needed on ELF systems. + // Treat function variables differently + // to avoid type conflict errors from LTO + // (Link Time Optimization). + if n.Kind == "fpvar" { + fmt.Fprintf(fm, "extern void %s();\n", n.C) + } else { + fmt.Fprintf(fm, "extern char %s[];\n", n.C) + fmt.Fprintf(fm, "void *_cgohack_%s = %s;\n\n", n.C, n.C) + } + fmt.Fprintf(fgo2, "//go:linkname __cgo_%s %s\n", n.C, n.C) + fmt.Fprintf(fgo2, "//go:cgo_import_static %s\n", n.C) + fmt.Fprintf(fgo2, "var __cgo_%s byte\n", n.C) + } + cVars[n.C] = true + } + + var node ast.Node + if n.Kind == "var" { + node = &ast.StarExpr{X: n.Type.Go} + } else if n.Kind == "fpvar" { + node = n.Type.Go + } else { + panic(fmt.Errorf("invalid var kind %q", n.Kind)) + } + if *gccgo { + fmt.Fprintf(fc, `extern void *%s __asm__("%s.%s");`, n.Mangle, gccgoSymbolPrefix, gccgoToSymbol(n.Mangle)) + fmt.Fprintf(&gccgoInit, "\t%s = &%s;\n", n.Mangle, n.C) + fmt.Fprintf(fc, "\n") + } + + fmt.Fprintf(fgo2, "var %s ", n.Mangle) + conf.Fprint(fgo2, fset, node) + if !*gccgo { + fmt.Fprintf(fgo2, " = (") + conf.Fprint(fgo2, fset, node) + fmt.Fprintf(fgo2, ")(unsafe.Pointer(&__cgo_%s))", n.C) + } + fmt.Fprintf(fgo2, "\n") + } + if *gccgo { + fmt.Fprintf(fc, "\n") + } + + for _, key := range nameKeys(p.Name) { + n := p.Name[key] + if n.Const != "" { + fmt.Fprintf(fgo2, "const %s = %s\n", n.Mangle, n.Const) + } + } + fmt.Fprintf(fgo2, "\n") + + callsMalloc := false + for _, key := range nameKeys(p.Name) { + n := p.Name[key] + if n.FuncType != nil { + p.writeDefsFunc(fgo2, n, &callsMalloc) + } + } + + fgcc := creat(*objDir + "_cgo_export.c") + fgcch := creat(*objDir + "_cgo_export.h") + if *gccgo { + p.writeGccgoExports(fgo2, fm, fgcc, fgcch) + } else { + p.writeExports(fgo2, fm, fgcc, fgcch) + } + + if callsMalloc && !*gccgo { + fmt.Fprint(fgo2, strings.Replace(cMallocDefGo, "PREFIX", cPrefix, -1)) + fmt.Fprint(fgcc, strings.Replace(strings.Replace(cMallocDefC, "PREFIX", cPrefix, -1), "PACKED", p.packedAttribute(), -1)) + } + + if err := fgcc.Close(); err != nil { + fatalf("%s", err) + } + if err := fgcch.Close(); err != nil { + fatalf("%s", err) + } + + if *exportHeader != "" && len(p.ExpFunc) > 0 { + fexp := creat(*exportHeader) + fgcch, err := os.Open(*objDir + "_cgo_export.h") + if err != nil { + fatalf("%s", err) + } + defer fgcch.Close() + _, err = io.Copy(fexp, fgcch) + if err != nil { + fatalf("%s", err) + } + if err = fexp.Close(); err != nil { + fatalf("%s", err) + } + } + + init := gccgoInit.String() + if init != "" { + // The init function does nothing but simple + // assignments, so it won't use much stack space, so + // it's OK to not split the stack. Splitting the stack + // can run into a bug in clang (as of 2018-11-09): + // this is a leaf function, and when clang sees a leaf + // function it won't emit the split stack prologue for + // the function. However, if this function refers to a + // non-split-stack function, which will happen if the + // cgo code refers to a C function not compiled with + // -fsplit-stack, then the linker will think that it + // needs to adjust the split stack prologue, but there + // won't be one. Marking the function explicitly + // no_split_stack works around this problem by telling + // the linker that it's OK if there is no split stack + // prologue. + fmt.Fprintln(fc, "static void init(void) __attribute__ ((constructor, no_split_stack));") + fmt.Fprintln(fc, "static void init(void) {") + fmt.Fprint(fc, init) + fmt.Fprintln(fc, "}") + } +} + +// elfImportedSymbols is like elf.File.ImportedSymbols, but it +// includes weak symbols. +// +// A bug in some versions of LLD (at least LLD 8) cause it to emit +// several pthreads symbols as weak, but we need to import those. See +// issue #31912 or https://bugs.llvm.org/show_bug.cgi?id=42442. +// +// When doing external linking, we hand everything off to the external +// linker, which will create its own dynamic symbol tables. For +// internal linking, this may turn weak imports into strong imports, +// which could cause dynamic linking to fail if a symbol really isn't +// defined. However, the standard library depends on everything it +// imports, and this is the primary use of dynamic symbol tables with +// internal linking. +func elfImportedSymbols(f *elf.File) []elf.ImportedSymbol { + syms, _ := f.DynamicSymbols() + var imports []elf.ImportedSymbol + for _, s := range syms { + if (elf.ST_BIND(s.Info) == elf.STB_GLOBAL || elf.ST_BIND(s.Info) == elf.STB_WEAK) && s.Section == elf.SHN_UNDEF { + imports = append(imports, elf.ImportedSymbol{ + Name: s.Name, + Library: s.Library, + Version: s.Version, + }) + } + } + return imports +} + +func dynimport(obj string) { + stdout := os.Stdout + if *dynout != "" { + f, err := os.Create(*dynout) + if err != nil { + fatalf("%s", err) + } + stdout = f + } + + fmt.Fprintf(stdout, "package %s\n", *dynpackage) + + if f, err := elf.Open(obj); err == nil { + if *dynlinker { + // Emit the cgo_dynamic_linker line. + if sec := f.Section(".interp"); sec != nil { + if data, err := sec.Data(); err == nil && len(data) > 1 { + // skip trailing \0 in data + fmt.Fprintf(stdout, "//go:cgo_dynamic_linker %q\n", string(data[:len(data)-1])) + } + } + } + sym := elfImportedSymbols(f) + for _, s := range sym { + targ := s.Name + if s.Version != "" { + targ += "#" + s.Version + } + checkImportSymName(s.Name) + checkImportSymName(targ) + fmt.Fprintf(stdout, "//go:cgo_import_dynamic %s %s %q\n", s.Name, targ, s.Library) + } + lib, _ := f.ImportedLibraries() + for _, l := range lib { + fmt.Fprintf(stdout, "//go:cgo_import_dynamic _ _ %q\n", l) + } + return + } + + if f, err := macho.Open(obj); err == nil { + sym, _ := f.ImportedSymbols() + for _, s := range sym { + if len(s) > 0 && s[0] == '_' { + s = s[1:] + } + checkImportSymName(s) + fmt.Fprintf(stdout, "//go:cgo_import_dynamic %s %s %q\n", s, s, "") + } + lib, _ := f.ImportedLibraries() + for _, l := range lib { + fmt.Fprintf(stdout, "//go:cgo_import_dynamic _ _ %q\n", l) + } + return + } + + if f, err := pe.Open(obj); err == nil { + sym, _ := f.ImportedSymbols() + for _, s := range sym { + ss := strings.Split(s, ":") + name := strings.Split(ss[0], "@")[0] + checkImportSymName(name) + checkImportSymName(ss[0]) + fmt.Fprintf(stdout, "//go:cgo_import_dynamic %s %s %q\n", name, ss[0], strings.ToLower(ss[1])) + } + return + } + + if f, err := xcoff.Open(obj); err == nil { + sym, err := f.ImportedSymbols() + if err != nil { + fatalf("cannot load imported symbols from XCOFF file %s: %v", obj, err) + } + for _, s := range sym { + if s.Name == "runtime_rt0_go" || s.Name == "_rt0_ppc64_aix_lib" { + // These symbols are imported by runtime/cgo but + // must not be added to _cgo_import.go as there are + // Go symbols. + continue + } + checkImportSymName(s.Name) + fmt.Fprintf(stdout, "//go:cgo_import_dynamic %s %s %q\n", s.Name, s.Name, s.Library) + } + lib, err := f.ImportedLibraries() + if err != nil { + fatalf("cannot load imported libraries from XCOFF file %s: %v", obj, err) + } + for _, l := range lib { + fmt.Fprintf(stdout, "//go:cgo_import_dynamic _ _ %q\n", l) + } + return + } + + fatalf("cannot parse %s as ELF, Mach-O, PE or XCOFF", obj) +} + +// checkImportSymName checks a symbol name we are going to emit as part +// of a //go:cgo_import_dynamic pragma. These names come from object +// files, so they may be corrupt. We are going to emit them unquoted, +// so while they don't need to be valid symbol names (and in some cases, +// involving symbol versions, they won't be) they must contain only +// graphic characters and must not contain Go comments. +func checkImportSymName(s string) { + for _, c := range s { + if !unicode.IsGraphic(c) || unicode.IsSpace(c) { + fatalf("dynamic symbol %q contains unsupported character", s) + } + } + if strings.Index(s, "//") >= 0 || strings.Index(s, "/*") >= 0 { + fatalf("dynamic symbol %q contains Go comment") + } +} + +// Construct a gcc struct matching the gc argument frame. +// Assumes that in gcc, char is 1 byte, short 2 bytes, int 4 bytes, long long 8 bytes. +// These assumptions are checked by the gccProlog. +// Also assumes that gc convention is to word-align the +// input and output parameters. +func (p *Package) structType(n *Name) (string, int64) { + var buf bytes.Buffer + fmt.Fprint(&buf, "struct {\n") + off := int64(0) + for i, t := range n.FuncType.Params { + if off%t.Align != 0 { + pad := t.Align - off%t.Align + fmt.Fprintf(&buf, "\t\tchar __pad%d[%d];\n", off, pad) + off += pad + } + c := t.Typedef + if c == "" { + c = t.C.String() + } + fmt.Fprintf(&buf, "\t\t%s p%d;\n", c, i) + off += t.Size + } + if off%p.PtrSize != 0 { + pad := p.PtrSize - off%p.PtrSize + fmt.Fprintf(&buf, "\t\tchar __pad%d[%d];\n", off, pad) + off += pad + } + if t := n.FuncType.Result; t != nil { + if off%t.Align != 0 { + pad := t.Align - off%t.Align + fmt.Fprintf(&buf, "\t\tchar __pad%d[%d];\n", off, pad) + off += pad + } + fmt.Fprintf(&buf, "\t\t%s r;\n", t.C) + off += t.Size + } + if off%p.PtrSize != 0 { + pad := p.PtrSize - off%p.PtrSize + fmt.Fprintf(&buf, "\t\tchar __pad%d[%d];\n", off, pad) + off += pad + } + if off == 0 { + fmt.Fprintf(&buf, "\t\tchar unused;\n") // avoid empty struct + } + fmt.Fprintf(&buf, "\t}") + return buf.String(), off +} + +func (p *Package) writeDefsFunc(fgo2 io.Writer, n *Name, callsMalloc *bool) { + name := n.Go + gtype := n.FuncType.Go + void := gtype.Results == nil || len(gtype.Results.List) == 0 + if n.AddError { + // Add "error" to return type list. + // Type list is known to be 0 or 1 element - it's a C function. + err := &ast.Field{Type: ast.NewIdent("error")} + l := gtype.Results.List + if len(l) == 0 { + l = []*ast.Field{err} + } else { + l = []*ast.Field{l[0], err} + } + t := new(ast.FuncType) + *t = *gtype + t.Results = &ast.FieldList{List: l} + gtype = t + } + + // Go func declaration. + d := &ast.FuncDecl{ + Name: ast.NewIdent(n.Mangle), + Type: gtype, + } + + // Builtins defined in the C prolog. + inProlog := builtinDefs[name] != "" + cname := fmt.Sprintf("_cgo%s%s", cPrefix, n.Mangle) + paramnames := []string(nil) + if d.Type.Params != nil { + for i, param := range d.Type.Params.List { + paramName := fmt.Sprintf("p%d", i) + param.Names = []*ast.Ident{ast.NewIdent(paramName)} + paramnames = append(paramnames, paramName) + } + } + + if *gccgo { + // Gccgo style hooks. + fmt.Fprint(fgo2, "\n") + conf.Fprint(fgo2, fset, d) + fmt.Fprint(fgo2, " {\n") + if !inProlog { + fmt.Fprint(fgo2, "\tdefer syscall.CgocallDone()\n") + fmt.Fprint(fgo2, "\tsyscall.Cgocall()\n") + } + if n.AddError { + fmt.Fprint(fgo2, "\tsyscall.SetErrno(0)\n") + } + fmt.Fprint(fgo2, "\t") + if !void { + fmt.Fprint(fgo2, "r := ") + } + fmt.Fprintf(fgo2, "%s(%s)\n", cname, strings.Join(paramnames, ", ")) + + if n.AddError { + fmt.Fprint(fgo2, "\te := syscall.GetErrno()\n") + fmt.Fprint(fgo2, "\tif e != 0 {\n") + fmt.Fprint(fgo2, "\t\treturn ") + if !void { + fmt.Fprint(fgo2, "r, ") + } + fmt.Fprint(fgo2, "e\n") + fmt.Fprint(fgo2, "\t}\n") + fmt.Fprint(fgo2, "\treturn ") + if !void { + fmt.Fprint(fgo2, "r, ") + } + fmt.Fprint(fgo2, "nil\n") + } else if !void { + fmt.Fprint(fgo2, "\treturn r\n") + } + + fmt.Fprint(fgo2, "}\n") + + // declare the C function. + fmt.Fprintf(fgo2, "//extern %s\n", cname) + d.Name = ast.NewIdent(cname) + if n.AddError { + l := d.Type.Results.List + d.Type.Results.List = l[:len(l)-1] + } + conf.Fprint(fgo2, fset, d) + fmt.Fprint(fgo2, "\n") + + return + } + + if inProlog { + fmt.Fprint(fgo2, builtinDefs[name]) + if strings.Contains(builtinDefs[name], "_cgo_cmalloc") { + *callsMalloc = true + } + return + } + + // Wrapper calls into gcc, passing a pointer to the argument frame. + fmt.Fprintf(fgo2, "//go:cgo_import_static %s\n", cname) + fmt.Fprintf(fgo2, "//go:linkname __cgofn_%s %s\n", cname, cname) + fmt.Fprintf(fgo2, "var __cgofn_%s byte\n", cname) + fmt.Fprintf(fgo2, "var %s = unsafe.Pointer(&__cgofn_%s)\n", cname, cname) + + nret := 0 + if !void { + d.Type.Results.List[0].Names = []*ast.Ident{ast.NewIdent("r1")} + nret = 1 + } + if n.AddError { + d.Type.Results.List[nret].Names = []*ast.Ident{ast.NewIdent("r2")} + } + + fmt.Fprint(fgo2, "\n") + fmt.Fprint(fgo2, "//go:cgo_unsafe_args\n") + conf.Fprint(fgo2, fset, d) + fmt.Fprint(fgo2, " {\n") + + // NOTE: Using uintptr to hide from escape analysis. + arg := "0" + if len(paramnames) > 0 { + arg = "uintptr(unsafe.Pointer(&p0))" + } else if !void { + arg = "uintptr(unsafe.Pointer(&r1))" + } + + prefix := "" + if n.AddError { + prefix = "errno := " + } + fmt.Fprintf(fgo2, "\t%s_cgo_runtime_cgocall(%s, %s)\n", prefix, cname, arg) + if n.AddError { + fmt.Fprintf(fgo2, "\tif errno != 0 { r2 = syscall.Errno(errno) }\n") + } + fmt.Fprintf(fgo2, "\tif _Cgo_always_false {\n") + if d.Type.Params != nil { + for i := range d.Type.Params.List { + fmt.Fprintf(fgo2, "\t\t_Cgo_use(p%d)\n", i) + } + } + fmt.Fprintf(fgo2, "\t}\n") + fmt.Fprintf(fgo2, "\treturn\n") + fmt.Fprintf(fgo2, "}\n") +} + +// writeOutput creates stubs for a specific source file to be compiled by gc +func (p *Package) writeOutput(f *File, srcfile string) { + base := srcfile + if strings.HasSuffix(base, ".go") { + base = base[0 : len(base)-3] + } + base = filepath.Base(base) + fgo1 := creat(*objDir + base + ".cgo1.go") + fgcc := creat(*objDir + base + ".cgo2.c") + + p.GoFiles = append(p.GoFiles, base+".cgo1.go") + p.GccFiles = append(p.GccFiles, base+".cgo2.c") + + // Write Go output: Go input with rewrites of C.xxx to _C_xxx. + fmt.Fprintf(fgo1, "// Code generated by cmd/cgo; DO NOT EDIT.\n\n") + fmt.Fprintf(fgo1, "//line %s:1:1\n", srcfile) + fgo1.Write(f.Edit.Bytes()) + + // While we process the vars and funcs, also write gcc output. + // Gcc output starts with the preamble. + fmt.Fprintf(fgcc, "%s\n", builtinProlog) + fmt.Fprintf(fgcc, "%s\n", f.Preamble) + fmt.Fprintf(fgcc, "%s\n", gccProlog) + fmt.Fprintf(fgcc, "%s\n", tsanProlog) + fmt.Fprintf(fgcc, "%s\n", msanProlog) + + for _, key := range nameKeys(f.Name) { + n := f.Name[key] + if n.FuncType != nil { + p.writeOutputFunc(fgcc, n) + } + } + + fgo1.Close() + fgcc.Close() +} + +// fixGo converts the internal Name.Go field into the name we should show +// to users in error messages. There's only one for now: on input we rewrite +// C.malloc into C._CMalloc, so change it back here. +func fixGo(name string) string { + if name == "_CMalloc" { + return "malloc" + } + return name +} + +var isBuiltin = map[string]bool{ + "_Cfunc_CString": true, + "_Cfunc_CBytes": true, + "_Cfunc_GoString": true, + "_Cfunc_GoStringN": true, + "_Cfunc_GoBytes": true, + "_Cfunc__CMalloc": true, +} + +func (p *Package) writeOutputFunc(fgcc *os.File, n *Name) { + name := n.Mangle + if isBuiltin[name] || p.Written[name] { + // The builtins are already defined in the C prolog, and we don't + // want to duplicate function definitions we've already done. + return + } + p.Written[name] = true + + if *gccgo { + p.writeGccgoOutputFunc(fgcc, n) + return + } + + ctype, _ := p.structType(n) + + // Gcc wrapper unpacks the C argument struct + // and calls the actual C function. + fmt.Fprintf(fgcc, "CGO_NO_SANITIZE_THREAD\n") + if n.AddError { + fmt.Fprintf(fgcc, "int\n") + } else { + fmt.Fprintf(fgcc, "void\n") + } + fmt.Fprintf(fgcc, "_cgo%s%s(void *v)\n", cPrefix, n.Mangle) + fmt.Fprintf(fgcc, "{\n") + if n.AddError { + fmt.Fprintf(fgcc, "\tint _cgo_errno;\n") + } + // We're trying to write a gcc struct that matches gc's layout. + // Use packed attribute to force no padding in this struct in case + // gcc has different packing requirements. + fmt.Fprintf(fgcc, "\t%s %v *_cgo_a = v;\n", ctype, p.packedAttribute()) + if n.FuncType.Result != nil { + // Save the stack top for use below. + fmt.Fprintf(fgcc, "\tchar *_cgo_stktop = _cgo_topofstack();\n") + } + tr := n.FuncType.Result + if tr != nil { + fmt.Fprintf(fgcc, "\t__typeof__(_cgo_a->r) _cgo_r;\n") + } + fmt.Fprintf(fgcc, "\t_cgo_tsan_acquire();\n") + if n.AddError { + fmt.Fprintf(fgcc, "\terrno = 0;\n") + } + fmt.Fprintf(fgcc, "\t") + if tr != nil { + fmt.Fprintf(fgcc, "_cgo_r = ") + if c := tr.C.String(); c[len(c)-1] == '*' { + fmt.Fprint(fgcc, "(__typeof__(_cgo_a->r)) ") + } + } + if n.Kind == "macro" { + fmt.Fprintf(fgcc, "%s;\n", n.C) + } else { + fmt.Fprintf(fgcc, "%s(", n.C) + for i := range n.FuncType.Params { + if i > 0 { + fmt.Fprintf(fgcc, ", ") + } + fmt.Fprintf(fgcc, "_cgo_a->p%d", i) + } + fmt.Fprintf(fgcc, ");\n") + } + if n.AddError { + fmt.Fprintf(fgcc, "\t_cgo_errno = errno;\n") + } + fmt.Fprintf(fgcc, "\t_cgo_tsan_release();\n") + if n.FuncType.Result != nil { + // The cgo call may have caused a stack copy (via a callback). + // Adjust the return value pointer appropriately. + fmt.Fprintf(fgcc, "\t_cgo_a = (void*)((char*)_cgo_a + (_cgo_topofstack() - _cgo_stktop));\n") + // Save the return value. + fmt.Fprintf(fgcc, "\t_cgo_a->r = _cgo_r;\n") + // The return value is on the Go stack. If we are using msan, + // and if the C value is partially or completely uninitialized, + // the assignment will mark the Go stack as uninitialized. + // The Go compiler does not update msan for changes to the + // stack. It is possible that the stack will remain + // uninitialized, and then later be used in a way that is + // visible to msan, possibly leading to a false positive. + // Mark the stack space as written, to avoid this problem. + // See issue 26209. + fmt.Fprintf(fgcc, "\t_cgo_msan_write(&_cgo_a->r, sizeof(_cgo_a->r));\n") + } + if n.AddError { + fmt.Fprintf(fgcc, "\treturn _cgo_errno;\n") + } + fmt.Fprintf(fgcc, "}\n") + fmt.Fprintf(fgcc, "\n") +} + +// Write out a wrapper for a function when using gccgo. This is a +// simple wrapper that just calls the real function. We only need a +// wrapper to support static functions in the prologue--without a +// wrapper, we can't refer to the function, since the reference is in +// a different file. +func (p *Package) writeGccgoOutputFunc(fgcc *os.File, n *Name) { + fmt.Fprintf(fgcc, "CGO_NO_SANITIZE_THREAD\n") + if t := n.FuncType.Result; t != nil { + fmt.Fprintf(fgcc, "%s\n", t.C.String()) + } else { + fmt.Fprintf(fgcc, "void\n") + } + fmt.Fprintf(fgcc, "_cgo%s%s(", cPrefix, n.Mangle) + for i, t := range n.FuncType.Params { + if i > 0 { + fmt.Fprintf(fgcc, ", ") + } + c := t.Typedef + if c == "" { + c = t.C.String() + } + fmt.Fprintf(fgcc, "%s p%d", c, i) + } + fmt.Fprintf(fgcc, ")\n") + fmt.Fprintf(fgcc, "{\n") + if t := n.FuncType.Result; t != nil { + fmt.Fprintf(fgcc, "\t%s _cgo_r;\n", t.C.String()) + } + fmt.Fprintf(fgcc, "\t_cgo_tsan_acquire();\n") + fmt.Fprintf(fgcc, "\t") + if t := n.FuncType.Result; t != nil { + fmt.Fprintf(fgcc, "_cgo_r = ") + // Cast to void* to avoid warnings due to omitted qualifiers. + if c := t.C.String(); c[len(c)-1] == '*' { + fmt.Fprintf(fgcc, "(void*)") + } + } + if n.Kind == "macro" { + fmt.Fprintf(fgcc, "%s;\n", n.C) + } else { + fmt.Fprintf(fgcc, "%s(", n.C) + for i := range n.FuncType.Params { + if i > 0 { + fmt.Fprintf(fgcc, ", ") + } + fmt.Fprintf(fgcc, "p%d", i) + } + fmt.Fprintf(fgcc, ");\n") + } + fmt.Fprintf(fgcc, "\t_cgo_tsan_release();\n") + if t := n.FuncType.Result; t != nil { + fmt.Fprintf(fgcc, "\treturn ") + // Cast to void* to avoid warnings due to omitted qualifiers + // and explicit incompatible struct types. + if c := t.C.String(); c[len(c)-1] == '*' { + fmt.Fprintf(fgcc, "(void*)") + } + fmt.Fprintf(fgcc, "_cgo_r;\n") + } + fmt.Fprintf(fgcc, "}\n") + fmt.Fprintf(fgcc, "\n") +} + +// packedAttribute returns host compiler struct attribute that will be +// used to match gc's struct layout. For example, on 386 Windows, +// gcc wants to 8-align int64s, but gc does not. +// Use __gcc_struct__ to work around https://gcc.gnu.org/PR52991 on x86, +// and https://golang.org/issue/5603. +func (p *Package) packedAttribute() string { + s := "__attribute__((__packed__" + if !p.GccIsClang && (goarch == "amd64" || goarch == "386") { + s += ", __gcc_struct__" + } + return s + "))" +} + +// exportParamName returns the value of param as it should be +// displayed in a c header file. If param contains any non-ASCII +// characters, this function will return the character p followed by +// the value of position; otherwise, this function will return the +// value of param. +func exportParamName(param string, position int) string { + if param == "" { + return fmt.Sprintf("p%d", position) + } + + pname := param + + for i := 0; i < len(param); i++ { + if param[i] > unicode.MaxASCII { + pname = fmt.Sprintf("p%d", position) + break + } + } + + return pname +} + +// Write out the various stubs we need to support functions exported +// from Go so that they are callable from C. +func (p *Package) writeExports(fgo2, fm, fgcc, fgcch io.Writer) { + p.writeExportHeader(fgcch) + + fmt.Fprintf(fgcc, "/* Code generated by cmd/cgo; DO NOT EDIT. */\n\n") + fmt.Fprintf(fgcc, "#include <stdlib.h>\n") + fmt.Fprintf(fgcc, "#include \"_cgo_export.h\"\n\n") + + // We use packed structs, but they are always aligned. + // The pragmas and address-of-packed-member are only recognized as + // warning groups in clang 4.0+, so ignore unknown pragmas first. + fmt.Fprintf(fgcc, "#pragma GCC diagnostic ignored \"-Wunknown-pragmas\"\n") + fmt.Fprintf(fgcc, "#pragma GCC diagnostic ignored \"-Wpragmas\"\n") + fmt.Fprintf(fgcc, "#pragma GCC diagnostic ignored \"-Waddress-of-packed-member\"\n") + + fmt.Fprintf(fgcc, "extern void crosscall2(void (*fn)(void *), void *, int, size_t);\n") + fmt.Fprintf(fgcc, "extern size_t _cgo_wait_runtime_init_done(void);\n") + fmt.Fprintf(fgcc, "extern void _cgo_release_context(size_t);\n\n") + fmt.Fprintf(fgcc, "extern char* _cgo_topofstack(void);") + fmt.Fprintf(fgcc, "%s\n", tsanProlog) + fmt.Fprintf(fgcc, "%s\n", msanProlog) + + for _, exp := range p.ExpFunc { + fn := exp.Func + + // Construct a struct that will be used to communicate + // arguments from C to Go. The C and Go definitions + // just have to agree. The gcc struct will be compiled + // with __attribute__((packed)) so all padding must be + // accounted for explicitly. + ctype := "struct {\n" + gotype := new(bytes.Buffer) + fmt.Fprintf(gotype, "struct {\n") + off := int64(0) + npad := 0 + argField := func(typ ast.Expr, namePat string, args ...interface{}) { + name := fmt.Sprintf(namePat, args...) + t := p.cgoType(typ) + if off%t.Align != 0 { + pad := t.Align - off%t.Align + ctype += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad) + off += pad + npad++ + } + ctype += fmt.Sprintf("\t\t%s %s;\n", t.C, name) + fmt.Fprintf(gotype, "\t\t%s ", name) + noSourceConf.Fprint(gotype, fset, typ) + fmt.Fprintf(gotype, "\n") + off += t.Size + } + if fn.Recv != nil { + argField(fn.Recv.List[0].Type, "recv") + } + fntype := fn.Type + forFieldList(fntype.Params, + func(i int, aname string, atype ast.Expr) { + argField(atype, "p%d", i) + }) + forFieldList(fntype.Results, + func(i int, aname string, atype ast.Expr) { + argField(atype, "r%d", i) + }) + if ctype == "struct {\n" { + ctype += "\t\tchar unused;\n" // avoid empty struct + } + ctype += "\t}" + fmt.Fprintf(gotype, "\t}") + + // Get the return type of the wrapper function + // compiled by gcc. + gccResult := "" + if fntype.Results == nil || len(fntype.Results.List) == 0 { + gccResult = "void" + } else if len(fntype.Results.List) == 1 && len(fntype.Results.List[0].Names) <= 1 { + gccResult = p.cgoType(fntype.Results.List[0].Type).C.String() + } else { + fmt.Fprintf(fgcch, "\n/* Return type for %s */\n", exp.ExpName) + fmt.Fprintf(fgcch, "struct %s_return {\n", exp.ExpName) + forFieldList(fntype.Results, + func(i int, aname string, atype ast.Expr) { + fmt.Fprintf(fgcch, "\t%s r%d;", p.cgoType(atype).C, i) + if len(aname) > 0 { + fmt.Fprintf(fgcch, " /* %s */", aname) + } + fmt.Fprint(fgcch, "\n") + }) + fmt.Fprintf(fgcch, "};\n") + gccResult = "struct " + exp.ExpName + "_return" + } + + // Build the wrapper function compiled by gcc. + gccExport := "" + if goos == "windows" { + gccExport = "__declspec(dllexport) " + } + s := fmt.Sprintf("%s%s %s(", gccExport, gccResult, exp.ExpName) + if fn.Recv != nil { + s += p.cgoType(fn.Recv.List[0].Type).C.String() + s += " recv" + } + forFieldList(fntype.Params, + func(i int, aname string, atype ast.Expr) { + if i > 0 || fn.Recv != nil { + s += ", " + } + s += fmt.Sprintf("%s %s", p.cgoType(atype).C, exportParamName(aname, i)) + }) + s += ")" + + if len(exp.Doc) > 0 { + fmt.Fprintf(fgcch, "\n%s", exp.Doc) + if !strings.HasSuffix(exp.Doc, "\n") { + fmt.Fprint(fgcch, "\n") + } + } + fmt.Fprintf(fgcch, "extern %s;\n", s) + + fmt.Fprintf(fgcc, "extern void _cgoexp%s_%s(void *);\n", cPrefix, exp.ExpName) + fmt.Fprintf(fgcc, "\nCGO_NO_SANITIZE_THREAD") + fmt.Fprintf(fgcc, "\n%s\n", s) + fmt.Fprintf(fgcc, "{\n") + fmt.Fprintf(fgcc, "\tsize_t _cgo_ctxt = _cgo_wait_runtime_init_done();\n") + // The results part of the argument structure must be + // initialized to 0 so the write barriers generated by + // the assignments to these fields in Go are safe. + // + // We use a local static variable to get the zeroed + // value of the argument type. This avoids including + // string.h for memset, and is also robust to C++ + // types with constructors. Both GCC and LLVM optimize + // this into just zeroing _cgo_a. + fmt.Fprintf(fgcc, "\ttypedef %s %v _cgo_argtype;\n", ctype, p.packedAttribute()) + fmt.Fprintf(fgcc, "\tstatic _cgo_argtype _cgo_zero;\n") + fmt.Fprintf(fgcc, "\t_cgo_argtype _cgo_a = _cgo_zero;\n") + if gccResult != "void" && (len(fntype.Results.List) > 1 || len(fntype.Results.List[0].Names) > 1) { + fmt.Fprintf(fgcc, "\t%s r;\n", gccResult) + } + if fn.Recv != nil { + fmt.Fprintf(fgcc, "\t_cgo_a.recv = recv;\n") + } + forFieldList(fntype.Params, + func(i int, aname string, atype ast.Expr) { + fmt.Fprintf(fgcc, "\t_cgo_a.p%d = %s;\n", i, exportParamName(aname, i)) + }) + fmt.Fprintf(fgcc, "\t_cgo_tsan_release();\n") + fmt.Fprintf(fgcc, "\tcrosscall2(_cgoexp%s_%s, &_cgo_a, %d, _cgo_ctxt);\n", cPrefix, exp.ExpName, off) + fmt.Fprintf(fgcc, "\t_cgo_tsan_acquire();\n") + fmt.Fprintf(fgcc, "\t_cgo_release_context(_cgo_ctxt);\n") + if gccResult != "void" { + if len(fntype.Results.List) == 1 && len(fntype.Results.List[0].Names) <= 1 { + fmt.Fprintf(fgcc, "\treturn _cgo_a.r0;\n") + } else { + forFieldList(fntype.Results, + func(i int, aname string, atype ast.Expr) { + fmt.Fprintf(fgcc, "\tr.r%d = _cgo_a.r%d;\n", i, i) + }) + fmt.Fprintf(fgcc, "\treturn r;\n") + } + } + fmt.Fprintf(fgcc, "}\n") + + // In internal linking mode, the Go linker sees both + // the C wrapper written above and the Go wrapper it + // references. Hence, export the C wrapper (e.g., for + // if we're building a shared object). The Go linker + // will resolve the C wrapper's reference to the Go + // wrapper without a separate export. + fmt.Fprintf(fgo2, "//go:cgo_export_dynamic %s\n", exp.ExpName) + // cgo_export_static refers to a symbol by its linker + // name, so set the linker name of the Go wrapper. + fmt.Fprintf(fgo2, "//go:linkname _cgoexp%s_%s _cgoexp%s_%s\n", cPrefix, exp.ExpName, cPrefix, exp.ExpName) + // In external linking mode, the Go linker sees the Go + // wrapper, but not the C wrapper. For this case, + // export the Go wrapper so the host linker can + // resolve the reference from the C wrapper to the Go + // wrapper. + fmt.Fprintf(fgo2, "//go:cgo_export_static _cgoexp%s_%s\n", cPrefix, exp.ExpName) + + // Build the wrapper function compiled by cmd/compile. + // This unpacks the argument struct above and calls the Go function. + fmt.Fprintf(fgo2, "func _cgoexp%s_%s(a *%s) {\n", cPrefix, exp.ExpName, gotype) + + fmt.Fprintf(fm, "void _cgoexp%s_%s(void* p){}\n", cPrefix, exp.ExpName) + + fmt.Fprintf(fgo2, "\t") + + if gccResult != "void" { + // Write results back to frame. + forFieldList(fntype.Results, + func(i int, aname string, atype ast.Expr) { + if i > 0 { + fmt.Fprintf(fgo2, ", ") + } + fmt.Fprintf(fgo2, "a.r%d", i) + }) + fmt.Fprintf(fgo2, " = ") + } + if fn.Recv != nil { + fmt.Fprintf(fgo2, "a.recv.") + } + fmt.Fprintf(fgo2, "%s(", exp.Func.Name) + forFieldList(fntype.Params, + func(i int, aname string, atype ast.Expr) { + if i > 0 { + fmt.Fprint(fgo2, ", ") + } + fmt.Fprintf(fgo2, "a.p%d", i) + }) + fmt.Fprint(fgo2, ")\n") + if gccResult != "void" { + // Verify that any results don't contain any + // Go pointers. + forFieldList(fntype.Results, + func(i int, aname string, atype ast.Expr) { + if !p.hasPointer(nil, atype, false) { + return + } + fmt.Fprintf(fgo2, "\t_cgoCheckResult(a.r%d)\n", i) + }) + } + fmt.Fprint(fgo2, "}\n") + } + + fmt.Fprintf(fgcch, "%s", gccExportHeaderEpilog) +} + +// Write out the C header allowing C code to call exported gccgo functions. +func (p *Package) writeGccgoExports(fgo2, fm, fgcc, fgcch io.Writer) { + gccgoSymbolPrefix := p.gccgoSymbolPrefix() + + p.writeExportHeader(fgcch) + + fmt.Fprintf(fgcc, "/* Code generated by cmd/cgo; DO NOT EDIT. */\n\n") + fmt.Fprintf(fgcc, "#include \"_cgo_export.h\"\n") + + fmt.Fprintf(fgcc, "%s\n", gccgoExportFileProlog) + fmt.Fprintf(fgcc, "%s\n", tsanProlog) + fmt.Fprintf(fgcc, "%s\n", msanProlog) + + for _, exp := range p.ExpFunc { + fn := exp.Func + fntype := fn.Type + + cdeclBuf := new(bytes.Buffer) + resultCount := 0 + forFieldList(fntype.Results, + func(i int, aname string, atype ast.Expr) { resultCount++ }) + switch resultCount { + case 0: + fmt.Fprintf(cdeclBuf, "void") + case 1: + forFieldList(fntype.Results, + func(i int, aname string, atype ast.Expr) { + t := p.cgoType(atype) + fmt.Fprintf(cdeclBuf, "%s", t.C) + }) + default: + // Declare a result struct. + fmt.Fprintf(fgcch, "\n/* Return type for %s */\n", exp.ExpName) + fmt.Fprintf(fgcch, "struct %s_return {\n", exp.ExpName) + forFieldList(fntype.Results, + func(i int, aname string, atype ast.Expr) { + t := p.cgoType(atype) + fmt.Fprintf(fgcch, "\t%s r%d;", t.C, i) + if len(aname) > 0 { + fmt.Fprintf(fgcch, " /* %s */", aname) + } + fmt.Fprint(fgcch, "\n") + }) + fmt.Fprintf(fgcch, "};\n") + fmt.Fprintf(cdeclBuf, "struct %s_return", exp.ExpName) + } + + cRet := cdeclBuf.String() + + cdeclBuf = new(bytes.Buffer) + fmt.Fprintf(cdeclBuf, "(") + if fn.Recv != nil { + fmt.Fprintf(cdeclBuf, "%s recv", p.cgoType(fn.Recv.List[0].Type).C.String()) + } + // Function parameters. + forFieldList(fntype.Params, + func(i int, aname string, atype ast.Expr) { + if i > 0 || fn.Recv != nil { + fmt.Fprintf(cdeclBuf, ", ") + } + t := p.cgoType(atype) + fmt.Fprintf(cdeclBuf, "%s p%d", t.C, i) + }) + fmt.Fprintf(cdeclBuf, ")") + cParams := cdeclBuf.String() + + if len(exp.Doc) > 0 { + fmt.Fprintf(fgcch, "\n%s", exp.Doc) + } + + fmt.Fprintf(fgcch, "extern %s %s%s;\n", cRet, exp.ExpName, cParams) + + // We need to use a name that will be exported by the + // Go code; otherwise gccgo will make it static and we + // will not be able to link against it from the C + // code. + goName := "Cgoexp_" + exp.ExpName + fmt.Fprintf(fgcc, `extern %s %s %s __asm__("%s.%s");`, cRet, goName, cParams, gccgoSymbolPrefix, gccgoToSymbol(goName)) + fmt.Fprint(fgcc, "\n") + + fmt.Fprint(fgcc, "\nCGO_NO_SANITIZE_THREAD\n") + fmt.Fprintf(fgcc, "%s %s %s {\n", cRet, exp.ExpName, cParams) + if resultCount > 0 { + fmt.Fprintf(fgcc, "\t%s r;\n", cRet) + } + fmt.Fprintf(fgcc, "\tif(_cgo_wait_runtime_init_done)\n") + fmt.Fprintf(fgcc, "\t\t_cgo_wait_runtime_init_done();\n") + fmt.Fprintf(fgcc, "\t_cgo_tsan_release();\n") + fmt.Fprint(fgcc, "\t") + if resultCount > 0 { + fmt.Fprint(fgcc, "r = ") + } + fmt.Fprintf(fgcc, "%s(", goName) + if fn.Recv != nil { + fmt.Fprint(fgcc, "recv") + } + forFieldList(fntype.Params, + func(i int, aname string, atype ast.Expr) { + if i > 0 || fn.Recv != nil { + fmt.Fprintf(fgcc, ", ") + } + fmt.Fprintf(fgcc, "p%d", i) + }) + fmt.Fprint(fgcc, ");\n") + fmt.Fprintf(fgcc, "\t_cgo_tsan_acquire();\n") + if resultCount > 0 { + fmt.Fprint(fgcc, "\treturn r;\n") + } + fmt.Fprint(fgcc, "}\n") + + // Dummy declaration for _cgo_main.c + fmt.Fprintf(fm, `char %s[1] __asm__("%s.%s");`, goName, gccgoSymbolPrefix, gccgoToSymbol(goName)) + fmt.Fprint(fm, "\n") + + // For gccgo we use a wrapper function in Go, in order + // to call CgocallBack and CgocallBackDone. + + // This code uses printer.Fprint, not conf.Fprint, + // because we don't want //line comments in the middle + // of the function types. + fmt.Fprint(fgo2, "\n") + fmt.Fprintf(fgo2, "func %s(", goName) + if fn.Recv != nil { + fmt.Fprint(fgo2, "recv ") + printer.Fprint(fgo2, fset, fn.Recv.List[0].Type) + } + forFieldList(fntype.Params, + func(i int, aname string, atype ast.Expr) { + if i > 0 || fn.Recv != nil { + fmt.Fprintf(fgo2, ", ") + } + fmt.Fprintf(fgo2, "p%d ", i) + printer.Fprint(fgo2, fset, atype) + }) + fmt.Fprintf(fgo2, ")") + if resultCount > 0 { + fmt.Fprintf(fgo2, " (") + forFieldList(fntype.Results, + func(i int, aname string, atype ast.Expr) { + if i > 0 { + fmt.Fprint(fgo2, ", ") + } + printer.Fprint(fgo2, fset, atype) + }) + fmt.Fprint(fgo2, ")") + } + fmt.Fprint(fgo2, " {\n") + fmt.Fprint(fgo2, "\tsyscall.CgocallBack()\n") + fmt.Fprint(fgo2, "\tdefer syscall.CgocallBackDone()\n") + fmt.Fprint(fgo2, "\t") + if resultCount > 0 { + fmt.Fprint(fgo2, "return ") + } + if fn.Recv != nil { + fmt.Fprint(fgo2, "recv.") + } + fmt.Fprintf(fgo2, "%s(", exp.Func.Name) + forFieldList(fntype.Params, + func(i int, aname string, atype ast.Expr) { + if i > 0 { + fmt.Fprint(fgo2, ", ") + } + fmt.Fprintf(fgo2, "p%d", i) + }) + fmt.Fprint(fgo2, ")\n") + fmt.Fprint(fgo2, "}\n") + } + + fmt.Fprintf(fgcch, "%s", gccExportHeaderEpilog) +} + +// writeExportHeader writes out the start of the _cgo_export.h file. +func (p *Package) writeExportHeader(fgcch io.Writer) { + fmt.Fprintf(fgcch, "/* Code generated by cmd/cgo; DO NOT EDIT. */\n\n") + pkg := *importPath + if pkg == "" { + pkg = p.PackagePath + } + fmt.Fprintf(fgcch, "/* package %s */\n\n", pkg) + fmt.Fprintf(fgcch, "%s\n", builtinExportProlog) + + // Remove absolute paths from #line comments in the preamble. + // They aren't useful for people using the header file, + // and they mean that the header files change based on the + // exact location of GOPATH. + re := regexp.MustCompile(`(?m)^(#line\s+[0-9]+\s+")[^"]*[/\\]([^"]*")`) + preamble := re.ReplaceAllString(p.Preamble, "$1$2") + + fmt.Fprintf(fgcch, "/* Start of preamble from import \"C\" comments. */\n\n") + fmt.Fprintf(fgcch, "%s\n", preamble) + fmt.Fprintf(fgcch, "\n/* End of preamble from import \"C\" comments. */\n\n") + + fmt.Fprintf(fgcch, "%s\n", p.gccExportHeaderProlog()) +} + +// gccgoToSymbol converts a name to a mangled symbol for gccgo. +func gccgoToSymbol(ppath string) string { + if gccgoMangler == nil { + var err error + cmd := os.Getenv("GCCGO") + if cmd == "" { + cmd, err = exec.LookPath("gccgo") + if err != nil { + fatalf("unable to locate gccgo: %v", err) + } + } + gccgoMangler, err = pkgpath.ToSymbolFunc(cmd, *objDir) + if err != nil { + fatalf("%v", err) + } + } + return gccgoMangler(ppath) +} + +// Return the package prefix when using gccgo. +func (p *Package) gccgoSymbolPrefix() string { + if !*gccgo { + return "" + } + + if *gccgopkgpath != "" { + return gccgoToSymbol(*gccgopkgpath) + } + if *gccgoprefix == "" && p.PackageName == "main" { + return "main" + } + prefix := gccgoToSymbol(*gccgoprefix) + if prefix == "" { + prefix = "go" + } + return prefix + "." + p.PackageName +} + +// Call a function for each entry in an ast.FieldList, passing the +// index into the list, the name if any, and the type. +func forFieldList(fl *ast.FieldList, fn func(int, string, ast.Expr)) { + if fl == nil { + return + } + i := 0 + for _, r := range fl.List { + if r.Names == nil { + fn(i, "", r.Type) + i++ + } else { + for _, n := range r.Names { + fn(i, n.Name, r.Type) + i++ + } + } + } +} + +func c(repr string, args ...interface{}) *TypeRepr { + return &TypeRepr{repr, args} +} + +// Map predeclared Go types to Type. +var goTypes = map[string]*Type{ + "bool": {Size: 1, Align: 1, C: c("GoUint8")}, + "byte": {Size: 1, Align: 1, C: c("GoUint8")}, + "int": {Size: 0, Align: 0, C: c("GoInt")}, + "uint": {Size: 0, Align: 0, C: c("GoUint")}, + "rune": {Size: 4, Align: 4, C: c("GoInt32")}, + "int8": {Size: 1, Align: 1, C: c("GoInt8")}, + "uint8": {Size: 1, Align: 1, C: c("GoUint8")}, + "int16": {Size: 2, Align: 2, C: c("GoInt16")}, + "uint16": {Size: 2, Align: 2, C: c("GoUint16")}, + "int32": {Size: 4, Align: 4, C: c("GoInt32")}, + "uint32": {Size: 4, Align: 4, C: c("GoUint32")}, + "int64": {Size: 8, Align: 8, C: c("GoInt64")}, + "uint64": {Size: 8, Align: 8, C: c("GoUint64")}, + "float32": {Size: 4, Align: 4, C: c("GoFloat32")}, + "float64": {Size: 8, Align: 8, C: c("GoFloat64")}, + "complex64": {Size: 8, Align: 4, C: c("GoComplex64")}, + "complex128": {Size: 16, Align: 8, C: c("GoComplex128")}, +} + +// Map an ast type to a Type. +func (p *Package) cgoType(e ast.Expr) *Type { + switch t := e.(type) { + case *ast.StarExpr: + x := p.cgoType(t.X) + return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("%s*", x.C)} + case *ast.ArrayType: + if t.Len == nil { + // Slice: pointer, len, cap. + return &Type{Size: p.PtrSize * 3, Align: p.PtrSize, C: c("GoSlice")} + } + // Non-slice array types are not supported. + case *ast.StructType: + // Not supported. + case *ast.FuncType: + return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("void*")} + case *ast.InterfaceType: + return &Type{Size: 2 * p.PtrSize, Align: p.PtrSize, C: c("GoInterface")} + case *ast.MapType: + return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("GoMap")} + case *ast.ChanType: + return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("GoChan")} + case *ast.Ident: + goTypesFixup := func(r *Type) *Type { + if r.Size == 0 { // int or uint + rr := new(Type) + *rr = *r + rr.Size = p.IntSize + rr.Align = p.IntSize + r = rr + } + if r.Align > p.PtrSize { + r.Align = p.PtrSize + } + return r + } + // Look up the type in the top level declarations. + // TODO: Handle types defined within a function. + for _, d := range p.Decl { + gd, ok := d.(*ast.GenDecl) + if !ok || gd.Tok != token.TYPE { + continue + } + for _, spec := range gd.Specs { + ts, ok := spec.(*ast.TypeSpec) + if !ok { + continue + } + if ts.Name.Name == t.Name { + return p.cgoType(ts.Type) + } + } + } + if def := typedef[t.Name]; def != nil { + if defgo, ok := def.Go.(*ast.Ident); ok { + switch defgo.Name { + case "complex64", "complex128": + // MSVC does not support the _Complex keyword + // nor the complex macro. + // Use GoComplex64 and GoComplex128 instead, + // which are typedef-ed to a compatible type. + // See go.dev/issues/36233. + return goTypesFixup(goTypes[defgo.Name]) + } + } + return def + } + if t.Name == "uintptr" { + return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("GoUintptr")} + } + if t.Name == "string" { + // The string data is 1 pointer + 1 (pointer-sized) int. + return &Type{Size: 2 * p.PtrSize, Align: p.PtrSize, C: c("GoString")} + } + if t.Name == "error" { + return &Type{Size: 2 * p.PtrSize, Align: p.PtrSize, C: c("GoInterface")} + } + if r, ok := goTypes[t.Name]; ok { + return goTypesFixup(r) + } + error_(e.Pos(), "unrecognized Go type %s", t.Name) + return &Type{Size: 4, Align: 4, C: c("int")} + case *ast.SelectorExpr: + id, ok := t.X.(*ast.Ident) + if ok && id.Name == "unsafe" && t.Sel.Name == "Pointer" { + return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("void*")} + } + } + error_(e.Pos(), "Go type not supported in export: %s", gofmt(e)) + return &Type{Size: 4, Align: 4, C: c("int")} +} + +const gccProlog = ` +#line 1 "cgo-gcc-prolog" +/* + If x and y are not equal, the type will be invalid + (have a negative array count) and an inscrutable error will come + out of the compiler and hopefully mention "name". +*/ +#define __cgo_compile_assert_eq(x, y, name) typedef char name[(x-y)*(x-y)*-2UL+1UL]; + +/* Check at compile time that the sizes we use match our expectations. */ +#define __cgo_size_assert(t, n) __cgo_compile_assert_eq(sizeof(t), (size_t)n, _cgo_sizeof_##t##_is_not_##n) + +__cgo_size_assert(char, 1) +__cgo_size_assert(short, 2) +__cgo_size_assert(int, 4) +typedef long long __cgo_long_long; +__cgo_size_assert(__cgo_long_long, 8) +__cgo_size_assert(float, 4) +__cgo_size_assert(double, 8) + +extern char* _cgo_topofstack(void); + +/* + We use packed structs, but they are always aligned. + The pragmas and address-of-packed-member are only recognized as warning + groups in clang 4.0+, so ignore unknown pragmas first. +*/ +#pragma GCC diagnostic ignored "-Wunknown-pragmas" +#pragma GCC diagnostic ignored "-Wpragmas" +#pragma GCC diagnostic ignored "-Waddress-of-packed-member" + +#include <errno.h> +#include <string.h> +` + +// Prologue defining TSAN functions in C. +const noTsanProlog = ` +#define CGO_NO_SANITIZE_THREAD +#define _cgo_tsan_acquire() +#define _cgo_tsan_release() +` + +// This must match the TSAN code in runtime/cgo/libcgo.h. +// This is used when the code is built with the C/C++ Thread SANitizer, +// which is not the same as the Go race detector. +// __tsan_acquire tells TSAN that we are acquiring a lock on a variable, +// in this case _cgo_sync. __tsan_release releases the lock. +// (There is no actual lock, we are just telling TSAN that there is.) +// +// When we call from Go to C we call _cgo_tsan_acquire. +// When the C function returns we call _cgo_tsan_release. +// Similarly, when C calls back into Go we call _cgo_tsan_release +// and then call _cgo_tsan_acquire when we return to C. +// These calls tell TSAN that there is a serialization point at the C call. +// +// This is necessary because TSAN, which is a C/C++ tool, can not see +// the synchronization in the Go code. Without these calls, when +// multiple goroutines call into C code, TSAN does not understand +// that the calls are properly synchronized on the Go side. +// +// To be clear, if the calls are not properly synchronized on the Go side, +// we will be hiding races. But when using TSAN on mixed Go C/C++ code +// it is more important to avoid false positives, which reduce confidence +// in the tool, than to avoid false negatives. +const yesTsanProlog = ` +#line 1 "cgo-tsan-prolog" +#define CGO_NO_SANITIZE_THREAD __attribute__ ((no_sanitize_thread)) + +long long _cgo_sync __attribute__ ((common)); + +extern void __tsan_acquire(void*); +extern void __tsan_release(void*); + +__attribute__ ((unused)) +static void _cgo_tsan_acquire() { + __tsan_acquire(&_cgo_sync); +} + +__attribute__ ((unused)) +static void _cgo_tsan_release() { + __tsan_release(&_cgo_sync); +} +` + +// Set to yesTsanProlog if we see -fsanitize=thread in the flags for gcc. +var tsanProlog = noTsanProlog + +// noMsanProlog is a prologue defining an MSAN function in C. +// This is used when not compiling with -fsanitize=memory. +const noMsanProlog = ` +#define _cgo_msan_write(addr, sz) +` + +// yesMsanProlog is a prologue defining an MSAN function in C. +// This is used when compiling with -fsanitize=memory. +// See the comment above where _cgo_msan_write is called. +const yesMsanProlog = ` +extern void __msan_unpoison(const volatile void *, size_t); + +#define _cgo_msan_write(addr, sz) __msan_unpoison((addr), (sz)) +` + +// msanProlog is set to yesMsanProlog if we see -fsanitize=memory in the flags +// for the C compiler. +var msanProlog = noMsanProlog + +const builtinProlog = ` +#line 1 "cgo-builtin-prolog" +#include <stddef.h> + +/* Define intgo when compiling with GCC. */ +typedef ptrdiff_t intgo; + +#define GO_CGO_GOSTRING_TYPEDEF +typedef struct { const char *p; intgo n; } _GoString_; +typedef struct { char *p; intgo n; intgo c; } _GoBytes_; +_GoString_ GoString(char *p); +_GoString_ GoStringN(char *p, int l); +_GoBytes_ GoBytes(void *p, int n); +char *CString(_GoString_); +void *CBytes(_GoBytes_); +void *_CMalloc(size_t); + +__attribute__ ((unused)) +static size_t _GoStringLen(_GoString_ s) { return (size_t)s.n; } + +__attribute__ ((unused)) +static const char *_GoStringPtr(_GoString_ s) { return s.p; } +` + +const goProlog = ` +//go:linkname _cgo_runtime_cgocall runtime.cgocall +func _cgo_runtime_cgocall(unsafe.Pointer, uintptr) int32 + +//go:linkname _cgoCheckPointer runtime.cgoCheckPointer +func _cgoCheckPointer(interface{}, interface{}) + +//go:linkname _cgoCheckResult runtime.cgoCheckResult +func _cgoCheckResult(interface{}) +` + +const gccgoGoProlog = ` +func _cgoCheckPointer(interface{}, interface{}) + +func _cgoCheckResult(interface{}) +` + +const goStringDef = ` +//go:linkname _cgo_runtime_gostring runtime.gostring +func _cgo_runtime_gostring(*_Ctype_char) string + +// GoString converts the C string p into a Go string. +func _Cfunc_GoString(p *_Ctype_char) string { + return _cgo_runtime_gostring(p) +} +` + +const goStringNDef = ` +//go:linkname _cgo_runtime_gostringn runtime.gostringn +func _cgo_runtime_gostringn(*_Ctype_char, int) string + +// GoStringN converts the C data p with explicit length l to a Go string. +func _Cfunc_GoStringN(p *_Ctype_char, l _Ctype_int) string { + return _cgo_runtime_gostringn(p, int(l)) +} +` + +const goBytesDef = ` +//go:linkname _cgo_runtime_gobytes runtime.gobytes +func _cgo_runtime_gobytes(unsafe.Pointer, int) []byte + +// GoBytes converts the C data p with explicit length l to a Go []byte. +func _Cfunc_GoBytes(p unsafe.Pointer, l _Ctype_int) []byte { + return _cgo_runtime_gobytes(p, int(l)) +} +` + +const cStringDef = ` +// CString converts the Go string s to a C string. +// +// The C string is allocated in the C heap using malloc. +// It is the caller's responsibility to arrange for it to be +// freed, such as by calling C.free (be sure to include stdlib.h +// if C.free is needed). +func _Cfunc_CString(s string) *_Ctype_char { + if len(s)+1 <= 0 { + panic("string too large") + } + p := _cgo_cmalloc(uint64(len(s)+1)) + sliceHeader := struct { + p unsafe.Pointer + len int + cap int + }{p, len(s)+1, len(s)+1} + b := *(*[]byte)(unsafe.Pointer(&sliceHeader)) + copy(b, s) + b[len(s)] = 0 + return (*_Ctype_char)(p) +} +` + +const cBytesDef = ` +// CBytes converts the Go []byte slice b to a C array. +// +// The C array is allocated in the C heap using malloc. +// It is the caller's responsibility to arrange for it to be +// freed, such as by calling C.free (be sure to include stdlib.h +// if C.free is needed). +func _Cfunc_CBytes(b []byte) unsafe.Pointer { + p := _cgo_cmalloc(uint64(len(b))) + sliceHeader := struct { + p unsafe.Pointer + len int + cap int + }{p, len(b), len(b)} + s := *(*[]byte)(unsafe.Pointer(&sliceHeader)) + copy(s, b) + return p +} +` + +const cMallocDef = ` +func _Cfunc__CMalloc(n _Ctype_size_t) unsafe.Pointer { + return _cgo_cmalloc(uint64(n)) +} +` + +var builtinDefs = map[string]string{ + "GoString": goStringDef, + "GoStringN": goStringNDef, + "GoBytes": goBytesDef, + "CString": cStringDef, + "CBytes": cBytesDef, + "_CMalloc": cMallocDef, +} + +// Definitions for C.malloc in Go and in C. We define it ourselves +// since we call it from functions we define, such as C.CString. +// Also, we have historically ensured that C.malloc does not return +// nil even for an allocation of 0. + +const cMallocDefGo = ` +//go:cgo_import_static _cgoPREFIX_Cfunc__Cmalloc +//go:linkname __cgofn__cgoPREFIX_Cfunc__Cmalloc _cgoPREFIX_Cfunc__Cmalloc +var __cgofn__cgoPREFIX_Cfunc__Cmalloc byte +var _cgoPREFIX_Cfunc__Cmalloc = unsafe.Pointer(&__cgofn__cgoPREFIX_Cfunc__Cmalloc) + +//go:linkname runtime_throw runtime.throw +func runtime_throw(string) + +//go:cgo_unsafe_args +func _cgo_cmalloc(p0 uint64) (r1 unsafe.Pointer) { + _cgo_runtime_cgocall(_cgoPREFIX_Cfunc__Cmalloc, uintptr(unsafe.Pointer(&p0))) + if r1 == nil { + runtime_throw("runtime: C malloc failed") + } + return +} +` + +// cMallocDefC defines the C version of C.malloc for the gc compiler. +// It is defined here because C.CString and friends need a definition. +// We define it by hand, rather than simply inventing a reference to +// C.malloc, because <stdlib.h> may not have been included. +// This is approximately what writeOutputFunc would generate, but +// skips the cgo_topofstack code (which is only needed if the C code +// calls back into Go). This also avoids returning nil for an +// allocation of 0 bytes. +const cMallocDefC = ` +CGO_NO_SANITIZE_THREAD +void _cgoPREFIX_Cfunc__Cmalloc(void *v) { + struct { + unsigned long long p0; + void *r1; + } PACKED *a = v; + void *ret; + _cgo_tsan_acquire(); + ret = malloc(a->p0); + if (ret == 0 && a->p0 == 0) { + ret = malloc(1); + } + a->r1 = ret; + _cgo_tsan_release(); +} +` + +func (p *Package) cPrologGccgo() string { + r := strings.NewReplacer( + "PREFIX", cPrefix, + "GCCGOSYMBOLPREF", p.gccgoSymbolPrefix(), + "_cgoCheckPointer", gccgoToSymbol("_cgoCheckPointer"), + "_cgoCheckResult", gccgoToSymbol("_cgoCheckResult")) + return r.Replace(cPrologGccgo) +} + +const cPrologGccgo = ` +#line 1 "cgo-c-prolog-gccgo" +#include <stdint.h> +#include <stdlib.h> +#include <string.h> + +typedef unsigned char byte; +typedef intptr_t intgo; + +struct __go_string { + const unsigned char *__data; + intgo __length; +}; + +typedef struct __go_open_array { + void* __values; + intgo __count; + intgo __capacity; +} Slice; + +struct __go_string __go_byte_array_to_string(const void* p, intgo len); +struct __go_open_array __go_string_to_byte_array (struct __go_string str); + +extern void runtime_throw(const char *); + +const char *_cgoPREFIX_Cfunc_CString(struct __go_string s) { + char *p = malloc(s.__length+1); + if(p == NULL) + runtime_throw("runtime: C malloc failed"); + memmove(p, s.__data, s.__length); + p[s.__length] = 0; + return p; +} + +void *_cgoPREFIX_Cfunc_CBytes(struct __go_open_array b) { + char *p = malloc(b.__count); + if(p == NULL) + runtime_throw("runtime: C malloc failed"); + memmove(p, b.__values, b.__count); + return p; +} + +struct __go_string _cgoPREFIX_Cfunc_GoString(char *p) { + intgo len = (p != NULL) ? strlen(p) : 0; + return __go_byte_array_to_string(p, len); +} + +struct __go_string _cgoPREFIX_Cfunc_GoStringN(char *p, int32_t n) { + return __go_byte_array_to_string(p, n); +} + +Slice _cgoPREFIX_Cfunc_GoBytes(char *p, int32_t n) { + struct __go_string s = { (const unsigned char *)p, n }; + return __go_string_to_byte_array(s); +} + +void *_cgoPREFIX_Cfunc__CMalloc(size_t n) { + void *p = malloc(n); + if(p == NULL && n == 0) + p = malloc(1); + if(p == NULL) + runtime_throw("runtime: C malloc failed"); + return p; +} + +struct __go_type_descriptor; +typedef struct __go_empty_interface { + const struct __go_type_descriptor *__type_descriptor; + void *__object; +} Eface; + +extern void runtimeCgoCheckPointer(Eface, Eface) + __asm__("runtime.cgoCheckPointer") + __attribute__((weak)); + +extern void localCgoCheckPointer(Eface, Eface) + __asm__("GCCGOSYMBOLPREF._cgoCheckPointer"); + +void localCgoCheckPointer(Eface ptr, Eface arg) { + if(runtimeCgoCheckPointer) { + runtimeCgoCheckPointer(ptr, arg); + } +} + +extern void runtimeCgoCheckResult(Eface) + __asm__("runtime.cgoCheckResult") + __attribute__((weak)); + +extern void localCgoCheckResult(Eface) + __asm__("GCCGOSYMBOLPREF._cgoCheckResult"); + +void localCgoCheckResult(Eface val) { + if(runtimeCgoCheckResult) { + runtimeCgoCheckResult(val); + } +} +` + +// builtinExportProlog is a shorter version of builtinProlog, +// to be put into the _cgo_export.h file. +// For historical reasons we can't use builtinProlog in _cgo_export.h, +// because _cgo_export.h defines GoString as a struct while builtinProlog +// defines it as a function. We don't change this to avoid unnecessarily +// breaking existing code. +// The test of GO_CGO_GOSTRING_TYPEDEF avoids a duplicate definition +// error if a Go file with a cgo comment #include's the export header +// generated by a different package. +const builtinExportProlog = ` +#line 1 "cgo-builtin-export-prolog" + +#include <stddef.h> + +#ifndef GO_CGO_EXPORT_PROLOGUE_H +#define GO_CGO_EXPORT_PROLOGUE_H + +#ifndef GO_CGO_GOSTRING_TYPEDEF +typedef struct { const char *p; ptrdiff_t n; } _GoString_; +#endif + +#endif +` + +func (p *Package) gccExportHeaderProlog() string { + return strings.Replace(gccExportHeaderProlog, "GOINTBITS", fmt.Sprint(8*p.IntSize), -1) +} + +// gccExportHeaderProlog is written to the exported header, after the +// import "C" comment preamble but before the generated declarations +// of exported functions. This permits the generated declarations to +// use the type names that appear in goTypes, above. +// +// The test of GO_CGO_GOSTRING_TYPEDEF avoids a duplicate definition +// error if a Go file with a cgo comment #include's the export header +// generated by a different package. Unfortunately GoString means two +// different things: in this prolog it means a C name for the Go type, +// while in the prolog written into the start of the C code generated +// from a cgo-using Go file it means the C.GoString function. There is +// no way to resolve this conflict, but it also doesn't make much +// difference, as Go code never wants to refer to the latter meaning. +const gccExportHeaderProlog = ` +/* Start of boilerplate cgo prologue. */ +#line 1 "cgo-gcc-export-header-prolog" + +#ifndef GO_CGO_PROLOGUE_H +#define GO_CGO_PROLOGUE_H + +typedef signed char GoInt8; +typedef unsigned char GoUint8; +typedef short GoInt16; +typedef unsigned short GoUint16; +typedef int GoInt32; +typedef unsigned int GoUint32; +typedef long long GoInt64; +typedef unsigned long long GoUint64; +typedef GoIntGOINTBITS GoInt; +typedef GoUintGOINTBITS GoUint; +typedef size_t GoUintptr; +typedef float GoFloat32; +typedef double GoFloat64; +#ifdef _MSC_VER +#include <complex.h> +typedef _Fcomplex GoComplex64; +typedef _Dcomplex GoComplex128; +#else +typedef float _Complex GoComplex64; +typedef double _Complex GoComplex128; +#endif + +/* + static assertion to make sure the file is being used on architecture + at least with matching size of GoInt. +*/ +typedef char _check_for_GOINTBITS_bit_pointer_matching_GoInt[sizeof(void*)==GOINTBITS/8 ? 1:-1]; + +#ifndef GO_CGO_GOSTRING_TYPEDEF +typedef _GoString_ GoString; +#endif +typedef void *GoMap; +typedef void *GoChan; +typedef struct { void *t; void *v; } GoInterface; +typedef struct { void *data; GoInt len; GoInt cap; } GoSlice; + +#endif + +/* End of boilerplate cgo prologue. */ + +#ifdef __cplusplus +extern "C" { +#endif +` + +// gccExportHeaderEpilog goes at the end of the generated header file. +const gccExportHeaderEpilog = ` +#ifdef __cplusplus +} +#endif +` + +// gccgoExportFileProlog is written to the _cgo_export.c file when +// using gccgo. +// We use weak declarations, and test the addresses, so that this code +// works with older versions of gccgo. +const gccgoExportFileProlog = ` +#line 1 "cgo-gccgo-export-file-prolog" +extern _Bool runtime_iscgo __attribute__ ((weak)); + +static void GoInit(void) __attribute__ ((constructor)); +static void GoInit(void) { + if(&runtime_iscgo) + runtime_iscgo = 1; +} + +extern size_t _cgo_wait_runtime_init_done(void) __attribute__ ((weak)); +` diff --git a/src/cmd/cgo/util.go b/src/cmd/cgo/util.go new file mode 100644 index 0000000..779f7be --- /dev/null +++ b/src/cmd/cgo/util.go @@ -0,0 +1,135 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package main + +import ( + "bytes" + "fmt" + "go/token" + "io/ioutil" + "os" + "os/exec" +) + +// run runs the command argv, feeding in stdin on standard input. +// It returns the output to standard output and standard error. +// ok indicates whether the command exited successfully. +func run(stdin []byte, argv []string) (stdout, stderr []byte, ok bool) { + if i := find(argv, "-xc"); i >= 0 && argv[len(argv)-1] == "-" { + // Some compilers have trouble with standard input. + // Others have trouble with -xc. + // Avoid both problems by writing a file with a .c extension. + f, err := ioutil.TempFile("", "cgo-gcc-input-") + if err != nil { + fatalf("%s", err) + } + name := f.Name() + f.Close() + if err := ioutil.WriteFile(name+".c", stdin, 0666); err != nil { + os.Remove(name) + fatalf("%s", err) + } + defer os.Remove(name) + defer os.Remove(name + ".c") + + // Build new argument list without -xc and trailing -. + new := append(argv[:i:i], argv[i+1:len(argv)-1]...) + + // Since we are going to write the file to a temporary directory, + // we will need to add -I . explicitly to the command line: + // any #include "foo" before would have looked in the current + // directory as the directory "holding" standard input, but now + // the temporary directory holds the input. + // We've also run into compilers that reject "-I." but allow "-I", ".", + // so be sure to use two arguments. + // This matters mainly for people invoking cgo -godefs by hand. + new = append(new, "-I", ".") + + // Finish argument list with path to C file. + new = append(new, name+".c") + + argv = new + stdin = nil + } + + p := exec.Command(argv[0], argv[1:]...) + p.Stdin = bytes.NewReader(stdin) + var bout, berr bytes.Buffer + p.Stdout = &bout + p.Stderr = &berr + // Disable escape codes in clang error messages. + p.Env = append(os.Environ(), "TERM=dumb") + err := p.Run() + if _, ok := err.(*exec.ExitError); err != nil && !ok { + fatalf("exec %s: %s", argv[0], err) + } + ok = p.ProcessState.Success() + stdout, stderr = bout.Bytes(), berr.Bytes() + return +} + +func find(argv []string, target string) int { + for i, arg := range argv { + if arg == target { + return i + } + } + return -1 +} + +func lineno(pos token.Pos) string { + return fset.Position(pos).String() +} + +// Die with an error message. +func fatalf(msg string, args ...interface{}) { + // If we've already printed other errors, they might have + // caused the fatal condition. Assume they're enough. + if nerrors == 0 { + fmt.Fprintf(os.Stderr, "cgo: "+msg+"\n", args...) + } + os.Exit(2) +} + +var nerrors int + +func error_(pos token.Pos, msg string, args ...interface{}) { + nerrors++ + if pos.IsValid() { + fmt.Fprintf(os.Stderr, "%s: ", fset.Position(pos).String()) + } else { + fmt.Fprintf(os.Stderr, "cgo: ") + } + fmt.Fprintf(os.Stderr, msg, args...) + fmt.Fprintf(os.Stderr, "\n") +} + +// isName reports whether s is a valid C identifier +func isName(s string) bool { + for i, v := range s { + if v != '_' && (v < 'A' || v > 'Z') && (v < 'a' || v > 'z') && (v < '0' || v > '9') { + return false + } + if i == 0 && '0' <= v && v <= '9' { + return false + } + } + return s != "" +} + +func creat(name string) *os.File { + f, err := os.Create(name) + if err != nil { + fatalf("%s", err) + } + return f +} + +func slashToUnderscore(c rune) rune { + if c == '/' || c == '\\' || c == ':' { + c = '_' + } + return c +} |