diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 13:18:25 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 13:18:25 +0000 |
commit | 109be507377fe7f6e8819ac94041d3fdcdf6fd2f (patch) | |
tree | 2806a689f8fab4a2ec9fc949830ef270a91d667d /test/codegen/arithmetic.go | |
parent | Initial commit. (diff) | |
download | golang-1.19-109be507377fe7f6e8819ac94041d3fdcdf6fd2f.tar.xz golang-1.19-109be507377fe7f6e8819ac94041d3fdcdf6fd2f.zip |
Adding upstream version 1.19.8.upstream/1.19.8upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'test/codegen/arithmetic.go')
-rw-r--r-- | test/codegen/arithmetic.go | 613 |
1 files changed, 613 insertions, 0 deletions
diff --git a/test/codegen/arithmetic.go b/test/codegen/arithmetic.go new file mode 100644 index 0000000..00841d5 --- /dev/null +++ b/test/codegen/arithmetic.go @@ -0,0 +1,613 @@ +// asmcheck + +// Copyright 2018 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package codegen + +// This file contains codegen tests related to arithmetic +// simplifications and optimizations on integer types. +// For codegen tests on float types, see floats.go. + +// ----------------- // +// Subtraction // +// ----------------- // + +var ef int + +func SubMem(arr []int, b, c, d int) int { + // 386:`SUBL\s[A-Z]+,\s8\([A-Z]+\)` + // amd64:`SUBQ\s[A-Z]+,\s16\([A-Z]+\)` + arr[2] -= b + // 386:`SUBL\s[A-Z]+,\s12\([A-Z]+\)` + // amd64:`SUBQ\s[A-Z]+,\s24\([A-Z]+\)` + arr[3] -= b + // 386:`DECL\s16\([A-Z]+\)` + arr[4]-- + // 386:`ADDL\s[$]-20,\s20\([A-Z]+\)` + arr[5] -= 20 + // 386:`SUBL\s\([A-Z]+\)\([A-Z]+\*4\),\s[A-Z]+` + ef -= arr[b] + // 386:`SUBL\s[A-Z]+,\s\([A-Z]+\)\([A-Z]+\*4\)` + arr[c] -= b + // 386:`ADDL\s[$]-15,\s\([A-Z]+\)\([A-Z]+\*4\)` + arr[d] -= 15 + // 386:`DECL\s\([A-Z]+\)\([A-Z]+\*4\)` + arr[b]-- + // amd64:`DECQ\s64\([A-Z]+\)` + arr[8]-- + // 386:"SUBL\t4" + // amd64:"SUBQ\t8" + return arr[0] - arr[1] +} + +func SubFromConst(a int) int { + // ppc64le: `SUBC\tR[0-9]+,\s[$]40,\sR` + // ppc64: `SUBC\tR[0-9]+,\s[$]40,\sR` + b := 40 - a + return b +} + +func SubFromConstNeg(a int) int { + // ppc64le: `ADD\t[$]40,\sR[0-9]+,\sR` + // ppc64: `ADD\t[$]40,\sR[0-9]+,\sR` + c := 40 - (-a) + return c +} + +func SubSubFromConst(a int) int { + // ppc64le: `ADD\t[$]20,\sR[0-9]+,\sR` + // ppc64: `ADD\t[$]20,\sR[0-9]+,\sR` + c := 40 - (20 - a) + return c +} + +func AddSubFromConst(a int) int { + // ppc64le: `SUBC\tR[0-9]+,\s[$]60,\sR` + // ppc64: `SUBC\tR[0-9]+,\s[$]60,\sR` + c := 40 + (20 - a) + return c +} + +func NegSubFromConst(a int) int { + // ppc64le: `ADD\t[$]-20,\sR[0-9]+,\sR` + // ppc64: `ADD\t[$]-20,\sR[0-9]+,\sR` + c := -(20 - a) + return c +} + +func NegAddFromConstNeg(a int) int { + // ppc64le: `SUBC\tR[0-9]+,\s[$]40,\sR` + // ppc64: `SUBC\tR[0-9]+,\s[$]40,\sR` + c := -(-40 + a) + return c +} + +func SubSubNegSimplify(a, b int) int { + // amd64:"NEGQ" + // ppc64:"NEG" + // ppc64le:"NEG" + r := (a - b) - a + return r +} + +func SubAddSimplify(a, b int) int { + // amd64:-"SUBQ",-"ADDQ" + // ppc64:-"SUB",-"ADD" + // ppc64le:-"SUB",-"ADD" + r := a + (b - a) + return r +} + +func SubAddNegSimplify(a, b int) int { + // amd64:"NEGQ",-"ADDQ",-"SUBQ" + // ppc64:"NEG",-"ADD",-"SUB" + // ppc64le:"NEG",-"ADD",-"SUB" + r := a - (b + a) + return r +} + +func AddAddSubSimplify(a, b, c int) int { + // amd64:-"SUBQ" + // ppc64:-"SUB" + // ppc64le:-"SUB" + r := a + (b + (c - a)) + return r +} + +// -------------------- // +// Multiplication // +// -------------------- // + +func Pow2Muls(n1, n2 int) (int, int) { + // amd64:"SHLQ\t[$]5",-"IMULQ" + // 386:"SHLL\t[$]5",-"IMULL" + // arm:"SLL\t[$]5",-"MUL" + // arm64:"LSL\t[$]5",-"MUL" + // ppc64:"SLD\t[$]5",-"MUL" + // ppc64le:"SLD\t[$]5",-"MUL" + a := n1 * 32 + + // amd64:"SHLQ\t[$]6",-"IMULQ" + // 386:"SHLL\t[$]6",-"IMULL" + // arm:"SLL\t[$]6",-"MUL" + // arm64:`NEG\sR[0-9]+<<6,\sR[0-9]+`,-`LSL`,-`MUL` + // ppc64:"SLD\t[$]6","NEG\\sR[0-9]+,\\sR[0-9]+",-"MUL" + // ppc64le:"SLD\t[$]6","NEG\\sR[0-9]+,\\sR[0-9]+",-"MUL" + b := -64 * n2 + + return a, b +} + +func Mul_96(n int) int { + // amd64:`SHLQ\t[$]5`,`LEAQ\t\(.*\)\(.*\*2\),`,-`IMULQ` + // 386:`SHLL\t[$]5`,`LEAL\t\(.*\)\(.*\*2\),`,-`IMULL` + // arm64:`LSL\t[$]5`,`ADD\sR[0-9]+<<1,\sR[0-9]+`,-`MUL` + // arm:`SLL\t[$]5`,`ADD\sR[0-9]+<<1,\sR[0-9]+`,-`MUL` + // s390x:`SLD\t[$]5`,`SLD\t[$]6`,-`MULLD` + return n * 96 +} + +func Mul_n120(n int) int { + // s390x:`SLD\t[$]3`,`SLD\t[$]7`,-`MULLD` + return n * -120 +} + +func MulMemSrc(a []uint32, b []float32) { + // 386:`IMULL\s4\([A-Z]+\),\s[A-Z]+` + a[0] *= a[1] + // 386/sse2:`MULSS\s4\([A-Z]+\),\sX[0-9]+` + // amd64:`MULSS\s4\([A-Z]+\),\sX[0-9]+` + b[0] *= b[1] +} + +// Multiplications merging tests + +func MergeMuls1(n int) int { + // amd64:"IMUL3Q\t[$]46" + // 386:"IMUL3L\t[$]46" + // ppc64le:"MULLD\t[$]46" + // ppc64:"MULLD\t[$]46" + return 15*n + 31*n // 46n +} + +func MergeMuls2(n int) int { + // amd64:"IMUL3Q\t[$]23","(ADDQ\t[$]29)|(LEAQ\t29)" + // 386:"IMUL3L\t[$]23","ADDL\t[$]29" + // ppc64le/power9:"MADDLD",-"MULLD\t[$]23",-"ADD\t[$]29" + // ppc64le/power8:"MULLD\t[$]23","ADD\t[$]29" + return 5*n + 7*(n+1) + 11*(n+2) // 23n + 29 +} + +func MergeMuls3(a, n int) int { + // amd64:"ADDQ\t[$]19",-"IMULQ\t[$]19" + // 386:"ADDL\t[$]19",-"IMULL\t[$]19" + // ppc64:"ADD\t[$]19",-"MULLD\t[$]19" + // ppc64le:"ADD\t[$]19",-"MULLD\t[$]19" + return a*n + 19*n // (a+19)n +} + +func MergeMuls4(n int) int { + // amd64:"IMUL3Q\t[$]14" + // 386:"IMUL3L\t[$]14" + // ppc64:"MULLD\t[$]14" + // ppc64le:"MULLD\t[$]14" + return 23*n - 9*n // 14n +} + +func MergeMuls5(a, n int) int { + // amd64:"ADDQ\t[$]-19",-"IMULQ\t[$]19" + // 386:"ADDL\t[$]-19",-"IMULL\t[$]19" + // ppc64:"ADD\t[$]-19",-"MULLD\t[$]19" + // ppc64le:"ADD\t[$]-19",-"MULLD\t[$]19" + return a*n - 19*n // (a-19)n +} + +// -------------- // +// Division // +// -------------- // + +func DivMemSrc(a []float64) { + // 386/sse2:`DIVSD\s8\([A-Z]+\),\sX[0-9]+` + // amd64:`DIVSD\s8\([A-Z]+\),\sX[0-9]+` + a[0] /= a[1] +} + +func Pow2Divs(n1 uint, n2 int) (uint, int) { + // 386:"SHRL\t[$]5",-"DIVL" + // amd64:"SHRQ\t[$]5",-"DIVQ" + // arm:"SRL\t[$]5",-".*udiv" + // arm64:"LSR\t[$]5",-"UDIV" + // ppc64:"SRD" + // ppc64le:"SRD" + a := n1 / 32 // unsigned + + // amd64:"SARQ\t[$]6",-"IDIVQ" + // 386:"SARL\t[$]6",-"IDIVL" + // arm:"SRA\t[$]6",-".*udiv" + // arm64:"ASR\t[$]6",-"SDIV" + // ppc64:"SRAD" + // ppc64le:"SRAD" + b := n2 / 64 // signed + + return a, b +} + +// Check that constant divisions get turned into MULs +func ConstDivs(n1 uint, n2 int) (uint, int) { + // amd64:"MOVQ\t[$]-1085102592571150095","MULQ",-"DIVQ" + // 386:"MOVL\t[$]-252645135","MULL",-"DIVL" + // arm64:`MOVD`,`UMULH`,-`DIV` + // arm:`MOVW`,`MUL`,-`.*udiv` + a := n1 / 17 // unsigned + + // amd64:"MOVQ\t[$]-1085102592571150095","IMULQ",-"IDIVQ" + // 386:"MOVL\t[$]-252645135","IMULL",-"IDIVL" + // arm64:`SMULH`,-`DIV` + // arm:`MOVW`,`MUL`,-`.*udiv` + b := n2 / 17 // signed + + return a, b +} + +func FloatDivs(a []float32) float32 { + // amd64:`DIVSS\s8\([A-Z]+\),\sX[0-9]+` + // 386/sse2:`DIVSS\s8\([A-Z]+\),\sX[0-9]+` + return a[1] / a[2] +} + +func Pow2Mods(n1 uint, n2 int) (uint, int) { + // 386:"ANDL\t[$]31",-"DIVL" + // amd64:"ANDL\t[$]31",-"DIVQ" + // arm:"AND\t[$]31",-".*udiv" + // arm64:"AND\t[$]31",-"UDIV" + // ppc64:"ANDCC\t[$]31" + // ppc64le:"ANDCC\t[$]31" + a := n1 % 32 // unsigned + + // 386:"SHRL",-"IDIVL" + // amd64:"SHRQ",-"IDIVQ" + // arm:"SRA",-".*udiv" + // arm64:"ASR",-"REM" + // ppc64:"SRAD" + // ppc64le:"SRAD" + b := n2 % 64 // signed + + return a, b +} + +// Check that signed divisibility checks get converted to AND on low bits +func Pow2DivisibleSigned(n1, n2 int) (bool, bool) { + // 386:"TESTL\t[$]63",-"DIVL",-"SHRL" + // amd64:"TESTQ\t[$]63",-"DIVQ",-"SHRQ" + // arm:"AND\t[$]63",-".*udiv",-"SRA" + // arm64:"AND\t[$]63",-"UDIV",-"ASR" + // ppc64:"ANDCC\t[$]63",-"SRAD" + // ppc64le:"ANDCC\t[$]63",-"SRAD" + a := n1%64 == 0 // signed divisible + + // 386:"TESTL\t[$]63",-"DIVL",-"SHRL" + // amd64:"TESTQ\t[$]63",-"DIVQ",-"SHRQ" + // arm:"AND\t[$]63",-".*udiv",-"SRA" + // arm64:"AND\t[$]63",-"UDIV",-"ASR" + // ppc64:"ANDCC\t[$]63",-"SRAD" + // ppc64le:"ANDCC\t[$]63",-"SRAD" + b := n2%64 != 0 // signed indivisible + + return a, b +} + +// Check that constant modulo divs get turned into MULs +func ConstMods(n1 uint, n2 int) (uint, int) { + // amd64:"MOVQ\t[$]-1085102592571150095","MULQ",-"DIVQ" + // 386:"MOVL\t[$]-252645135","MULL",-"DIVL" + // arm64:`MOVD`,`UMULH`,-`DIV` + // arm:`MOVW`,`MUL`,-`.*udiv` + a := n1 % 17 // unsigned + + // amd64:"MOVQ\t[$]-1085102592571150095","IMULQ",-"IDIVQ" + // 386:"MOVL\t[$]-252645135","IMULL",-"IDIVL" + // arm64:`SMULH`,-`DIV` + // arm:`MOVW`,`MUL`,-`.*udiv` + b := n2 % 17 // signed + + return a, b +} + +// Check that divisibility checks x%c==0 are converted to MULs and rotates +func Divisible(n1 uint, n2 int) (bool, bool, bool, bool) { + // amd64:"MOVQ\t[$]-6148914691236517205","IMULQ","ROLQ\t[$]63",-"DIVQ" + // 386:"IMUL3L\t[$]-1431655765","ROLL\t[$]31",-"DIVQ" + // arm64:"MOVD\t[$]-6148914691236517205","MUL","ROR",-"DIV" + // arm:"MUL","CMP\t[$]715827882",-".*udiv" + // ppc64:"MULLD","ROTL\t[$]63" + // ppc64le:"MULLD","ROTL\t[$]63" + evenU := n1%6 == 0 + + // amd64:"MOVQ\t[$]-8737931403336103397","IMULQ",-"ROLQ",-"DIVQ" + // 386:"IMUL3L\t[$]678152731",-"ROLL",-"DIVQ" + // arm64:"MOVD\t[$]-8737931403336103397","MUL",-"ROR",-"DIV" + // arm:"MUL","CMP\t[$]226050910",-".*udiv" + // ppc64:"MULLD",-"ROTL" + // ppc64le:"MULLD",-"ROTL" + oddU := n1%19 == 0 + + // amd64:"IMULQ","ADD","ROLQ\t[$]63",-"DIVQ" + // 386:"IMUL3L\t[$]-1431655765","ADDL\t[$]715827882","ROLL\t[$]31",-"DIVQ" + // arm64:"MUL","ADD\t[$]3074457345618258602","ROR",-"DIV" + // arm:"MUL","ADD\t[$]715827882",-".*udiv" + // ppc64/power8:"MULLD","ADD","ROTL\t[$]63" + // ppc64le/power8:"MULLD","ADD","ROTL\t[$]63" + // ppc64/power9:"MADDLD","ROTL\t[$]63" + // ppc64le/power9:"MADDLD","ROTL\t[$]63" + evenS := n2%6 == 0 + + // amd64:"IMULQ","ADD",-"ROLQ",-"DIVQ" + // 386:"IMUL3L\t[$]678152731","ADDL\t[$]113025455",-"ROLL",-"DIVQ" + // arm64:"MUL","ADD\t[$]485440633518672410",-"ROR",-"DIV" + // arm:"MUL","ADD\t[$]113025455",-".*udiv" + // ppc64/power8:"MULLD","ADD",-"ROTL" + // ppc64/power9:"MADDLD",-"ROTL" + // ppc64le/power8:"MULLD","ADD",-"ROTL" + // ppc64le/power9:"MADDLD",-"ROTL" + oddS := n2%19 == 0 + + return evenU, oddU, evenS, oddS +} + +// Check that fix-up code is not generated for divisions where it has been proven that +// that the divisor is not -1 or that the dividend is > MinIntNN. +func NoFix64A(divr int64) (int64, int64) { + var d int64 = 42 + var e int64 = 84 + if divr > 5 { + d /= divr // amd64:-"JMP" + e %= divr // amd64:-"JMP" + // The following statement is to avoid conflict between the above check + // and the normal JMP generated at the end of the block. + d += e + } + return d, e +} + +func NoFix64B(divd int64) (int64, int64) { + var d int64 + var e int64 + var divr int64 = -1 + if divd > -9223372036854775808 { + d = divd / divr // amd64:-"JMP" + e = divd % divr // amd64:-"JMP" + d += e + } + return d, e +} + +func NoFix32A(divr int32) (int32, int32) { + var d int32 = 42 + var e int32 = 84 + if divr > 5 { + // amd64:-"JMP" + // 386:-"JMP" + d /= divr + // amd64:-"JMP" + // 386:-"JMP" + e %= divr + d += e + } + return d, e +} + +func NoFix32B(divd int32) (int32, int32) { + var d int32 + var e int32 + var divr int32 = -1 + if divd > -2147483648 { + // amd64:-"JMP" + // 386:-"JMP" + d = divd / divr + // amd64:-"JMP" + // 386:-"JMP" + e = divd % divr + d += e + } + return d, e +} + +func NoFix16A(divr int16) (int16, int16) { + var d int16 = 42 + var e int16 = 84 + if divr > 5 { + // amd64:-"JMP" + // 386:-"JMP" + d /= divr + // amd64:-"JMP" + // 386:-"JMP" + e %= divr + d += e + } + return d, e +} + +func NoFix16B(divd int16) (int16, int16) { + var d int16 + var e int16 + var divr int16 = -1 + if divd > -32768 { + // amd64:-"JMP" + // 386:-"JMP" + d = divd / divr + // amd64:-"JMP" + // 386:-"JMP" + e = divd % divr + d += e + } + return d, e +} + +// Check that len() and cap() calls divided by powers of two are +// optimized into shifts and ands + +func LenDiv1(a []int) int { + // 386:"SHRL\t[$]10" + // amd64:"SHRQ\t[$]10" + // arm64:"LSR\t[$]10",-"SDIV" + // arm:"SRL\t[$]10",-".*udiv" + // ppc64:"SRD"\t[$]10" + // ppc64le:"SRD"\t[$]10" + return len(a) / 1024 +} + +func LenDiv2(s string) int { + // 386:"SHRL\t[$]11" + // amd64:"SHRQ\t[$]11" + // arm64:"LSR\t[$]11",-"SDIV" + // arm:"SRL\t[$]11",-".*udiv" + // ppc64:"SRD\t[$]11" + // ppc64le:"SRD\t[$]11" + return len(s) / (4097 >> 1) +} + +func LenMod1(a []int) int { + // 386:"ANDL\t[$]1023" + // amd64:"ANDL\t[$]1023" + // arm64:"AND\t[$]1023",-"SDIV" + // arm/6:"AND",-".*udiv" + // arm/7:"BFC",-".*udiv",-"AND" + // ppc64:"ANDCC\t[$]1023" + // ppc64le:"ANDCC\t[$]1023" + return len(a) % 1024 +} + +func LenMod2(s string) int { + // 386:"ANDL\t[$]2047" + // amd64:"ANDL\t[$]2047" + // arm64:"AND\t[$]2047",-"SDIV" + // arm/6:"AND",-".*udiv" + // arm/7:"BFC",-".*udiv",-"AND" + // ppc64:"ANDCC\t[$]2047" + // ppc64le:"ANDCC\t[$]2047" + return len(s) % (4097 >> 1) +} + +func CapDiv(a []int) int { + // 386:"SHRL\t[$]12" + // amd64:"SHRQ\t[$]12" + // arm64:"LSR\t[$]12",-"SDIV" + // arm:"SRL\t[$]12",-".*udiv" + // ppc64:"SRD\t[$]12" + // ppc64le:"SRD\t[$]12" + return cap(a) / ((1 << 11) + 2048) +} + +func CapMod(a []int) int { + // 386:"ANDL\t[$]4095" + // amd64:"ANDL\t[$]4095" + // arm64:"AND\t[$]4095",-"SDIV" + // arm/6:"AND",-".*udiv" + // arm/7:"BFC",-".*udiv",-"AND" + // ppc64:"ANDCC\t[$]4095" + // ppc64le:"ANDCC\t[$]4095" + return cap(a) % ((1 << 11) + 2048) +} + +func AddMul(x int) int { + // amd64:"LEAQ\t1" + return 2*x + 1 +} + +func MULA(a, b, c uint32) (uint32, uint32, uint32) { + // arm:`MULA`,-`MUL\s` + // arm64:`MADDW`,-`MULW` + r0 := a*b + c + // arm:`MULA`,-`MUL\s` + // arm64:`MADDW`,-`MULW` + r1 := c*79 + a + // arm:`ADD`,-`MULA`,-`MUL\s` + // arm64:`ADD`,-`MADD`,-`MULW` + // ppc64:`ADD`,-`MULLD` + // ppc64le:`ADD`,-`MULLD` + r2 := b*64 + c + return r0, r1, r2 +} + +func MULS(a, b, c uint32) (uint32, uint32, uint32) { + // arm/7:`MULS`,-`MUL\s` + // arm/6:`SUB`,`MUL\s`,-`MULS` + // arm64:`MSUBW`,-`MULW` + r0 := c - a*b + // arm/7:`MULS`,-`MUL\s` + // arm/6:`SUB`,`MUL\s`,-`MULS` + // arm64:`MSUBW`,-`MULW` + r1 := a - c*79 + // arm/7:`SUB`,-`MULS`,-`MUL\s` + // arm64:`SUB`,-`MSUBW`,-`MULW` + // ppc64:`SUB`,-`MULLD` + // ppc64le:`SUB`,-`MULLD` + r2 := c - b*64 + return r0, r1, r2 +} + +func addSpecial(a, b, c uint32) (uint32, uint32, uint32) { + // amd64:`INCL` + a++ + // amd64:`DECL` + b-- + // amd64:`SUBL.*-128` + c += 128 + return a, b, c +} + +// Divide -> shift rules usually require fixup for negative inputs. +// If the input is non-negative, make sure the fixup is eliminated. +func divInt(v int64) int64 { + if v < 0 { + return 0 + } + // amd64:-`.*SARQ.*63,`, -".*SHRQ", ".*SARQ.*[$]9," + return v / 512 +} + +// The reassociate rules "x - (z + C) -> (x - z) - C" and +// "(z + C) -x -> C + (z - x)" can optimize the following cases. +func constantFold1(i0, j0, i1, j1, i2, j2, i3, j3 int) (int, int, int, int) { + // arm64:"SUB","ADD\t[$]2" + // ppc64:"SUB","ADD\t[$]2" + // ppc64le:"SUB","ADD\t[$]2" + r0 := (i0 + 3) - (j0 + 1) + // arm64:"SUB","SUB\t[$]4" + // ppc64:"SUB","ADD\t[$]-4" + // ppc64le:"SUB","ADD\t[$]-4" + r1 := (i1 - 3) - (j1 + 1) + // arm64:"SUB","ADD\t[$]4" + // ppc64:"SUB","ADD\t[$]4" + // ppc64le:"SUB","ADD\t[$]4" + r2 := (i2 + 3) - (j2 - 1) + // arm64:"SUB","SUB\t[$]2" + // ppc64:"SUB","ADD\t[$]-2" + // ppc64le:"SUB","ADD\t[$]-2" + r3 := (i3 - 3) - (j3 - 1) + return r0, r1, r2, r3 +} + +// The reassociate rules "x - (z + C) -> (x - z) - C" and +// "(C - z) - x -> C - (z + x)" can optimize the following cases. +func constantFold2(i0, j0, i1, j1 int) (int, int) { + // arm64:"ADD","MOVD\t[$]2","SUB" + // ppc64le: `SUBC\tR[0-9]+,\s[$]2,\sR` + // ppc64: `SUBC\tR[0-9]+,\s[$]2,\sR` + r0 := (3 - i0) - (j0 + 1) + // arm64:"ADD","MOVD\t[$]4","SUB" + // ppc64le: `SUBC\tR[0-9]+,\s[$]4,\sR` + // ppc64: `SUBC\tR[0-9]+,\s[$]4,\sR` + r1 := (3 - i1) - (j1 - 1) + return r0, r1 +} + +func constantFold3(i, j int) int { + // arm64: "MOVD\t[$]30","MUL",-"ADD",-"LSL" + // ppc64:"MULLD\t[$]30","MULLD" + // ppc64le:"MULLD\t[$]30","MULLD" + r := (5 * i) * (6 * j) + return r +} |