diff options
Diffstat (limited to 'src/crypto/rsa/pkcs1v15.go')
-rw-r--r-- | src/crypto/rsa/pkcs1v15.go | 387 |
1 files changed, 387 insertions, 0 deletions
diff --git a/src/crypto/rsa/pkcs1v15.go b/src/crypto/rsa/pkcs1v15.go new file mode 100644 index 0000000..ab19229 --- /dev/null +++ b/src/crypto/rsa/pkcs1v15.go @@ -0,0 +1,387 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package rsa + +import ( + "crypto" + "crypto/internal/boring" + "crypto/internal/randutil" + "crypto/subtle" + "errors" + "io" + "math/big" +) + +// This file implements encryption and decryption using PKCS #1 v1.5 padding. + +// PKCS1v15DecrypterOpts is for passing options to PKCS #1 v1.5 decryption using +// the crypto.Decrypter interface. +type PKCS1v15DecryptOptions struct { + // SessionKeyLen is the length of the session key that is being + // decrypted. If not zero, then a padding error during decryption will + // cause a random plaintext of this length to be returned rather than + // an error. These alternatives happen in constant time. + SessionKeyLen int +} + +// EncryptPKCS1v15 encrypts the given message with RSA and the padding +// scheme from PKCS #1 v1.5. The message must be no longer than the +// length of the public modulus minus 11 bytes. +// +// The random parameter is used as a source of entropy to ensure that +// encrypting the same message twice doesn't result in the same +// ciphertext. +// +// WARNING: use of this function to encrypt plaintexts other than +// session keys is dangerous. Use RSA OAEP in new protocols. +func EncryptPKCS1v15(random io.Reader, pub *PublicKey, msg []byte) ([]byte, error) { + randutil.MaybeReadByte(random) + + if err := checkPub(pub); err != nil { + return nil, err + } + k := pub.Size() + if len(msg) > k-11 { + return nil, ErrMessageTooLong + } + + if boring.Enabled && random == boring.RandReader { + bkey, err := boringPublicKey(pub) + if err != nil { + return nil, err + } + return boring.EncryptRSAPKCS1(bkey, msg) + } + boring.UnreachableExceptTests() + + // EM = 0x00 || 0x02 || PS || 0x00 || M + em := make([]byte, k) + em[1] = 2 + ps, mm := em[2:len(em)-len(msg)-1], em[len(em)-len(msg):] + err := nonZeroRandomBytes(ps, random) + if err != nil { + return nil, err + } + em[len(em)-len(msg)-1] = 0 + copy(mm, msg) + + if boring.Enabled { + var bkey *boring.PublicKeyRSA + bkey, err = boringPublicKey(pub) + if err != nil { + return nil, err + } + return boring.EncryptRSANoPadding(bkey, em) + } + + m := new(big.Int).SetBytes(em) + c := encrypt(new(big.Int), pub, m) + return c.FillBytes(em), nil +} + +// DecryptPKCS1v15 decrypts a plaintext using RSA and the padding scheme from PKCS #1 v1.5. +// If random != nil, it uses RSA blinding to avoid timing side-channel attacks. +// +// Note that whether this function returns an error or not discloses secret +// information. If an attacker can cause this function to run repeatedly and +// learn whether each instance returned an error then they can decrypt and +// forge signatures as if they had the private key. See +// DecryptPKCS1v15SessionKey for a way of solving this problem. +func DecryptPKCS1v15(random io.Reader, priv *PrivateKey, ciphertext []byte) ([]byte, error) { + if err := checkPub(&priv.PublicKey); err != nil { + return nil, err + } + + if boring.Enabled { + bkey, err := boringPrivateKey(priv) + if err != nil { + return nil, err + } + out, err := boring.DecryptRSAPKCS1(bkey, ciphertext) + if err != nil { + return nil, ErrDecryption + } + return out, nil + } + + valid, out, index, err := decryptPKCS1v15(random, priv, ciphertext) + if err != nil { + return nil, err + } + if valid == 0 { + return nil, ErrDecryption + } + return out[index:], nil +} + +// DecryptPKCS1v15SessionKey decrypts a session key using RSA and the padding scheme from PKCS #1 v1.5. +// If random != nil, it uses RSA blinding to avoid timing side-channel attacks. +// It returns an error if the ciphertext is the wrong length or if the +// ciphertext is greater than the public modulus. Otherwise, no error is +// returned. If the padding is valid, the resulting plaintext message is copied +// into key. Otherwise, key is unchanged. These alternatives occur in constant +// time. It is intended that the user of this function generate a random +// session key beforehand and continue the protocol with the resulting value. +// This will remove any possibility that an attacker can learn any information +// about the plaintext. +// See “Chosen Ciphertext Attacks Against Protocols Based on the RSA +// Encryption Standard PKCS #1”, Daniel Bleichenbacher, Advances in Cryptology +// (Crypto '98). +// +// Note that if the session key is too small then it may be possible for an +// attacker to brute-force it. If they can do that then they can learn whether +// a random value was used (because it'll be different for the same ciphertext) +// and thus whether the padding was correct. This defeats the point of this +// function. Using at least a 16-byte key will protect against this attack. +func DecryptPKCS1v15SessionKey(random io.Reader, priv *PrivateKey, ciphertext []byte, key []byte) error { + if err := checkPub(&priv.PublicKey); err != nil { + return err + } + k := priv.Size() + if k-(len(key)+3+8) < 0 { + return ErrDecryption + } + + valid, em, index, err := decryptPKCS1v15(random, priv, ciphertext) + if err != nil { + return err + } + + if len(em) != k { + // This should be impossible because decryptPKCS1v15 always + // returns the full slice. + return ErrDecryption + } + + valid &= subtle.ConstantTimeEq(int32(len(em)-index), int32(len(key))) + subtle.ConstantTimeCopy(valid, key, em[len(em)-len(key):]) + return nil +} + +// decryptPKCS1v15 decrypts ciphertext using priv and blinds the operation if +// random is not nil. It returns one or zero in valid that indicates whether the +// plaintext was correctly structured. In either case, the plaintext is +// returned in em so that it may be read independently of whether it was valid +// in order to maintain constant memory access patterns. If the plaintext was +// valid then index contains the index of the original message in em. +func decryptPKCS1v15(random io.Reader, priv *PrivateKey, ciphertext []byte) (valid int, em []byte, index int, err error) { + k := priv.Size() + if k < 11 { + err = ErrDecryption + return + } + + if boring.Enabled { + var bkey *boring.PrivateKeyRSA + bkey, err = boringPrivateKey(priv) + if err != nil { + return + } + em, err = boring.DecryptRSANoPadding(bkey, ciphertext) + if err != nil { + return + } + } else { + c := new(big.Int).SetBytes(ciphertext) + var m *big.Int + m, err = decrypt(random, priv, c) + if err != nil { + return + } + em = m.FillBytes(make([]byte, k)) + } + + firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0) + secondByteIsTwo := subtle.ConstantTimeByteEq(em[1], 2) + + // The remainder of the plaintext must be a string of non-zero random + // octets, followed by a 0, followed by the message. + // lookingForIndex: 1 iff we are still looking for the zero. + // index: the offset of the first zero byte. + lookingForIndex := 1 + + for i := 2; i < len(em); i++ { + equals0 := subtle.ConstantTimeByteEq(em[i], 0) + index = subtle.ConstantTimeSelect(lookingForIndex&equals0, i, index) + lookingForIndex = subtle.ConstantTimeSelect(equals0, 0, lookingForIndex) + } + + // The PS padding must be at least 8 bytes long, and it starts two + // bytes into em. + validPS := subtle.ConstantTimeLessOrEq(2+8, index) + + valid = firstByteIsZero & secondByteIsTwo & (^lookingForIndex & 1) & validPS + index = subtle.ConstantTimeSelect(valid, index+1, 0) + return valid, em, index, nil +} + +// nonZeroRandomBytes fills the given slice with non-zero random octets. +func nonZeroRandomBytes(s []byte, random io.Reader) (err error) { + _, err = io.ReadFull(random, s) + if err != nil { + return + } + + for i := 0; i < len(s); i++ { + for s[i] == 0 { + _, err = io.ReadFull(random, s[i:i+1]) + if err != nil { + return + } + // In tests, the PRNG may return all zeros so we do + // this to break the loop. + s[i] ^= 0x42 + } + } + + return +} + +// These are ASN1 DER structures: +// +// DigestInfo ::= SEQUENCE { +// digestAlgorithm AlgorithmIdentifier, +// digest OCTET STRING +// } +// +// For performance, we don't use the generic ASN1 encoder. Rather, we +// precompute a prefix of the digest value that makes a valid ASN1 DER string +// with the correct contents. +var hashPrefixes = map[crypto.Hash][]byte{ + crypto.MD5: {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10}, + crypto.SHA1: {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14}, + crypto.SHA224: {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c}, + crypto.SHA256: {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20}, + crypto.SHA384: {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30}, + crypto.SHA512: {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40}, + crypto.MD5SHA1: {}, // A special TLS case which doesn't use an ASN1 prefix. + crypto.RIPEMD160: {0x30, 0x20, 0x30, 0x08, 0x06, 0x06, 0x28, 0xcf, 0x06, 0x03, 0x00, 0x31, 0x04, 0x14}, +} + +// SignPKCS1v15 calculates the signature of hashed using +// RSASSA-PKCS1-V1_5-SIGN from RSA PKCS #1 v1.5. Note that hashed must +// be the result of hashing the input message using the given hash +// function. If hash is zero, hashed is signed directly. This isn't +// advisable except for interoperability. +// +// If random is not nil then RSA blinding will be used to avoid timing +// side-channel attacks. +// +// This function is deterministic. Thus, if the set of possible +// messages is small, an attacker may be able to build a map from +// messages to signatures and identify the signed messages. As ever, +// signatures provide authenticity, not confidentiality. +func SignPKCS1v15(random io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte) ([]byte, error) { + hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed)) + if err != nil { + return nil, err + } + + tLen := len(prefix) + hashLen + k := priv.Size() + if k < tLen+11 { + return nil, ErrMessageTooLong + } + + if boring.Enabled { + bkey, err := boringPrivateKey(priv) + if err != nil { + return nil, err + } + return boring.SignRSAPKCS1v15(bkey, hash, hashed) + } + + // EM = 0x00 || 0x01 || PS || 0x00 || T + em := make([]byte, k) + em[1] = 1 + for i := 2; i < k-tLen-1; i++ { + em[i] = 0xff + } + copy(em[k-tLen:k-hashLen], prefix) + copy(em[k-hashLen:k], hashed) + + m := new(big.Int).SetBytes(em) + c, err := decryptAndCheck(random, priv, m) + if err != nil { + return nil, err + } + + return c.FillBytes(em), nil +} + +// VerifyPKCS1v15 verifies an RSA PKCS #1 v1.5 signature. +// hashed is the result of hashing the input message using the given hash +// function and sig is the signature. A valid signature is indicated by +// returning a nil error. If hash is zero then hashed is used directly. This +// isn't advisable except for interoperability. +func VerifyPKCS1v15(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte) error { + if boring.Enabled { + bkey, err := boringPublicKey(pub) + if err != nil { + return err + } + if err := boring.VerifyRSAPKCS1v15(bkey, hash, hashed, sig); err != nil { + return ErrVerification + } + return nil + } + + hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed)) + if err != nil { + return err + } + + tLen := len(prefix) + hashLen + k := pub.Size() + if k < tLen+11 { + return ErrVerification + } + + // RFC 8017 Section 8.2.2: If the length of the signature S is not k + // octets (where k is the length in octets of the RSA modulus n), output + // "invalid signature" and stop. + if k != len(sig) { + return ErrVerification + } + + c := new(big.Int).SetBytes(sig) + m := encrypt(new(big.Int), pub, c) + em := m.FillBytes(make([]byte, k)) + // EM = 0x00 || 0x01 || PS || 0x00 || T + + ok := subtle.ConstantTimeByteEq(em[0], 0) + ok &= subtle.ConstantTimeByteEq(em[1], 1) + ok &= subtle.ConstantTimeCompare(em[k-hashLen:k], hashed) + ok &= subtle.ConstantTimeCompare(em[k-tLen:k-hashLen], prefix) + ok &= subtle.ConstantTimeByteEq(em[k-tLen-1], 0) + + for i := 2; i < k-tLen-1; i++ { + ok &= subtle.ConstantTimeByteEq(em[i], 0xff) + } + + if ok != 1 { + return ErrVerification + } + + return nil +} + +func pkcs1v15HashInfo(hash crypto.Hash, inLen int) (hashLen int, prefix []byte, err error) { + // Special case: crypto.Hash(0) is used to indicate that the data is + // signed directly. + if hash == 0 { + return inLen, nil, nil + } + + hashLen = hash.Size() + if inLen != hashLen { + return 0, nil, errors.New("crypto/rsa: input must be hashed message") + } + prefix, ok := hashPrefixes[hash] + if !ok { + return 0, nil, errors.New("crypto/rsa: unsupported hash function") + } + return +} |