summaryrefslogtreecommitdiffstats
path: root/src/crypto/rsa/pkcs1v15.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/crypto/rsa/pkcs1v15.go')
-rw-r--r--src/crypto/rsa/pkcs1v15.go387
1 files changed, 387 insertions, 0 deletions
diff --git a/src/crypto/rsa/pkcs1v15.go b/src/crypto/rsa/pkcs1v15.go
new file mode 100644
index 0000000..ab19229
--- /dev/null
+++ b/src/crypto/rsa/pkcs1v15.go
@@ -0,0 +1,387 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package rsa
+
+import (
+ "crypto"
+ "crypto/internal/boring"
+ "crypto/internal/randutil"
+ "crypto/subtle"
+ "errors"
+ "io"
+ "math/big"
+)
+
+// This file implements encryption and decryption using PKCS #1 v1.5 padding.
+
+// PKCS1v15DecrypterOpts is for passing options to PKCS #1 v1.5 decryption using
+// the crypto.Decrypter interface.
+type PKCS1v15DecryptOptions struct {
+ // SessionKeyLen is the length of the session key that is being
+ // decrypted. If not zero, then a padding error during decryption will
+ // cause a random plaintext of this length to be returned rather than
+ // an error. These alternatives happen in constant time.
+ SessionKeyLen int
+}
+
+// EncryptPKCS1v15 encrypts the given message with RSA and the padding
+// scheme from PKCS #1 v1.5. The message must be no longer than the
+// length of the public modulus minus 11 bytes.
+//
+// The random parameter is used as a source of entropy to ensure that
+// encrypting the same message twice doesn't result in the same
+// ciphertext.
+//
+// WARNING: use of this function to encrypt plaintexts other than
+// session keys is dangerous. Use RSA OAEP in new protocols.
+func EncryptPKCS1v15(random io.Reader, pub *PublicKey, msg []byte) ([]byte, error) {
+ randutil.MaybeReadByte(random)
+
+ if err := checkPub(pub); err != nil {
+ return nil, err
+ }
+ k := pub.Size()
+ if len(msg) > k-11 {
+ return nil, ErrMessageTooLong
+ }
+
+ if boring.Enabled && random == boring.RandReader {
+ bkey, err := boringPublicKey(pub)
+ if err != nil {
+ return nil, err
+ }
+ return boring.EncryptRSAPKCS1(bkey, msg)
+ }
+ boring.UnreachableExceptTests()
+
+ // EM = 0x00 || 0x02 || PS || 0x00 || M
+ em := make([]byte, k)
+ em[1] = 2
+ ps, mm := em[2:len(em)-len(msg)-1], em[len(em)-len(msg):]
+ err := nonZeroRandomBytes(ps, random)
+ if err != nil {
+ return nil, err
+ }
+ em[len(em)-len(msg)-1] = 0
+ copy(mm, msg)
+
+ if boring.Enabled {
+ var bkey *boring.PublicKeyRSA
+ bkey, err = boringPublicKey(pub)
+ if err != nil {
+ return nil, err
+ }
+ return boring.EncryptRSANoPadding(bkey, em)
+ }
+
+ m := new(big.Int).SetBytes(em)
+ c := encrypt(new(big.Int), pub, m)
+ return c.FillBytes(em), nil
+}
+
+// DecryptPKCS1v15 decrypts a plaintext using RSA and the padding scheme from PKCS #1 v1.5.
+// If random != nil, it uses RSA blinding to avoid timing side-channel attacks.
+//
+// Note that whether this function returns an error or not discloses secret
+// information. If an attacker can cause this function to run repeatedly and
+// learn whether each instance returned an error then they can decrypt and
+// forge signatures as if they had the private key. See
+// DecryptPKCS1v15SessionKey for a way of solving this problem.
+func DecryptPKCS1v15(random io.Reader, priv *PrivateKey, ciphertext []byte) ([]byte, error) {
+ if err := checkPub(&priv.PublicKey); err != nil {
+ return nil, err
+ }
+
+ if boring.Enabled {
+ bkey, err := boringPrivateKey(priv)
+ if err != nil {
+ return nil, err
+ }
+ out, err := boring.DecryptRSAPKCS1(bkey, ciphertext)
+ if err != nil {
+ return nil, ErrDecryption
+ }
+ return out, nil
+ }
+
+ valid, out, index, err := decryptPKCS1v15(random, priv, ciphertext)
+ if err != nil {
+ return nil, err
+ }
+ if valid == 0 {
+ return nil, ErrDecryption
+ }
+ return out[index:], nil
+}
+
+// DecryptPKCS1v15SessionKey decrypts a session key using RSA and the padding scheme from PKCS #1 v1.5.
+// If random != nil, it uses RSA blinding to avoid timing side-channel attacks.
+// It returns an error if the ciphertext is the wrong length or if the
+// ciphertext is greater than the public modulus. Otherwise, no error is
+// returned. If the padding is valid, the resulting plaintext message is copied
+// into key. Otherwise, key is unchanged. These alternatives occur in constant
+// time. It is intended that the user of this function generate a random
+// session key beforehand and continue the protocol with the resulting value.
+// This will remove any possibility that an attacker can learn any information
+// about the plaintext.
+// See “Chosen Ciphertext Attacks Against Protocols Based on the RSA
+// Encryption Standard PKCS #1”, Daniel Bleichenbacher, Advances in Cryptology
+// (Crypto '98).
+//
+// Note that if the session key is too small then it may be possible for an
+// attacker to brute-force it. If they can do that then they can learn whether
+// a random value was used (because it'll be different for the same ciphertext)
+// and thus whether the padding was correct. This defeats the point of this
+// function. Using at least a 16-byte key will protect against this attack.
+func DecryptPKCS1v15SessionKey(random io.Reader, priv *PrivateKey, ciphertext []byte, key []byte) error {
+ if err := checkPub(&priv.PublicKey); err != nil {
+ return err
+ }
+ k := priv.Size()
+ if k-(len(key)+3+8) < 0 {
+ return ErrDecryption
+ }
+
+ valid, em, index, err := decryptPKCS1v15(random, priv, ciphertext)
+ if err != nil {
+ return err
+ }
+
+ if len(em) != k {
+ // This should be impossible because decryptPKCS1v15 always
+ // returns the full slice.
+ return ErrDecryption
+ }
+
+ valid &= subtle.ConstantTimeEq(int32(len(em)-index), int32(len(key)))
+ subtle.ConstantTimeCopy(valid, key, em[len(em)-len(key):])
+ return nil
+}
+
+// decryptPKCS1v15 decrypts ciphertext using priv and blinds the operation if
+// random is not nil. It returns one or zero in valid that indicates whether the
+// plaintext was correctly structured. In either case, the plaintext is
+// returned in em so that it may be read independently of whether it was valid
+// in order to maintain constant memory access patterns. If the plaintext was
+// valid then index contains the index of the original message in em.
+func decryptPKCS1v15(random io.Reader, priv *PrivateKey, ciphertext []byte) (valid int, em []byte, index int, err error) {
+ k := priv.Size()
+ if k < 11 {
+ err = ErrDecryption
+ return
+ }
+
+ if boring.Enabled {
+ var bkey *boring.PrivateKeyRSA
+ bkey, err = boringPrivateKey(priv)
+ if err != nil {
+ return
+ }
+ em, err = boring.DecryptRSANoPadding(bkey, ciphertext)
+ if err != nil {
+ return
+ }
+ } else {
+ c := new(big.Int).SetBytes(ciphertext)
+ var m *big.Int
+ m, err = decrypt(random, priv, c)
+ if err != nil {
+ return
+ }
+ em = m.FillBytes(make([]byte, k))
+ }
+
+ firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
+ secondByteIsTwo := subtle.ConstantTimeByteEq(em[1], 2)
+
+ // The remainder of the plaintext must be a string of non-zero random
+ // octets, followed by a 0, followed by the message.
+ // lookingForIndex: 1 iff we are still looking for the zero.
+ // index: the offset of the first zero byte.
+ lookingForIndex := 1
+
+ for i := 2; i < len(em); i++ {
+ equals0 := subtle.ConstantTimeByteEq(em[i], 0)
+ index = subtle.ConstantTimeSelect(lookingForIndex&equals0, i, index)
+ lookingForIndex = subtle.ConstantTimeSelect(equals0, 0, lookingForIndex)
+ }
+
+ // The PS padding must be at least 8 bytes long, and it starts two
+ // bytes into em.
+ validPS := subtle.ConstantTimeLessOrEq(2+8, index)
+
+ valid = firstByteIsZero & secondByteIsTwo & (^lookingForIndex & 1) & validPS
+ index = subtle.ConstantTimeSelect(valid, index+1, 0)
+ return valid, em, index, nil
+}
+
+// nonZeroRandomBytes fills the given slice with non-zero random octets.
+func nonZeroRandomBytes(s []byte, random io.Reader) (err error) {
+ _, err = io.ReadFull(random, s)
+ if err != nil {
+ return
+ }
+
+ for i := 0; i < len(s); i++ {
+ for s[i] == 0 {
+ _, err = io.ReadFull(random, s[i:i+1])
+ if err != nil {
+ return
+ }
+ // In tests, the PRNG may return all zeros so we do
+ // this to break the loop.
+ s[i] ^= 0x42
+ }
+ }
+
+ return
+}
+
+// These are ASN1 DER structures:
+//
+// DigestInfo ::= SEQUENCE {
+// digestAlgorithm AlgorithmIdentifier,
+// digest OCTET STRING
+// }
+//
+// For performance, we don't use the generic ASN1 encoder. Rather, we
+// precompute a prefix of the digest value that makes a valid ASN1 DER string
+// with the correct contents.
+var hashPrefixes = map[crypto.Hash][]byte{
+ crypto.MD5: {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10},
+ crypto.SHA1: {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14},
+ crypto.SHA224: {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c},
+ crypto.SHA256: {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20},
+ crypto.SHA384: {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30},
+ crypto.SHA512: {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40},
+ crypto.MD5SHA1: {}, // A special TLS case which doesn't use an ASN1 prefix.
+ crypto.RIPEMD160: {0x30, 0x20, 0x30, 0x08, 0x06, 0x06, 0x28, 0xcf, 0x06, 0x03, 0x00, 0x31, 0x04, 0x14},
+}
+
+// SignPKCS1v15 calculates the signature of hashed using
+// RSASSA-PKCS1-V1_5-SIGN from RSA PKCS #1 v1.5. Note that hashed must
+// be the result of hashing the input message using the given hash
+// function. If hash is zero, hashed is signed directly. This isn't
+// advisable except for interoperability.
+//
+// If random is not nil then RSA blinding will be used to avoid timing
+// side-channel attacks.
+//
+// This function is deterministic. Thus, if the set of possible
+// messages is small, an attacker may be able to build a map from
+// messages to signatures and identify the signed messages. As ever,
+// signatures provide authenticity, not confidentiality.
+func SignPKCS1v15(random io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte) ([]byte, error) {
+ hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed))
+ if err != nil {
+ return nil, err
+ }
+
+ tLen := len(prefix) + hashLen
+ k := priv.Size()
+ if k < tLen+11 {
+ return nil, ErrMessageTooLong
+ }
+
+ if boring.Enabled {
+ bkey, err := boringPrivateKey(priv)
+ if err != nil {
+ return nil, err
+ }
+ return boring.SignRSAPKCS1v15(bkey, hash, hashed)
+ }
+
+ // EM = 0x00 || 0x01 || PS || 0x00 || T
+ em := make([]byte, k)
+ em[1] = 1
+ for i := 2; i < k-tLen-1; i++ {
+ em[i] = 0xff
+ }
+ copy(em[k-tLen:k-hashLen], prefix)
+ copy(em[k-hashLen:k], hashed)
+
+ m := new(big.Int).SetBytes(em)
+ c, err := decryptAndCheck(random, priv, m)
+ if err != nil {
+ return nil, err
+ }
+
+ return c.FillBytes(em), nil
+}
+
+// VerifyPKCS1v15 verifies an RSA PKCS #1 v1.5 signature.
+// hashed is the result of hashing the input message using the given hash
+// function and sig is the signature. A valid signature is indicated by
+// returning a nil error. If hash is zero then hashed is used directly. This
+// isn't advisable except for interoperability.
+func VerifyPKCS1v15(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte) error {
+ if boring.Enabled {
+ bkey, err := boringPublicKey(pub)
+ if err != nil {
+ return err
+ }
+ if err := boring.VerifyRSAPKCS1v15(bkey, hash, hashed, sig); err != nil {
+ return ErrVerification
+ }
+ return nil
+ }
+
+ hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed))
+ if err != nil {
+ return err
+ }
+
+ tLen := len(prefix) + hashLen
+ k := pub.Size()
+ if k < tLen+11 {
+ return ErrVerification
+ }
+
+ // RFC 8017 Section 8.2.2: If the length of the signature S is not k
+ // octets (where k is the length in octets of the RSA modulus n), output
+ // "invalid signature" and stop.
+ if k != len(sig) {
+ return ErrVerification
+ }
+
+ c := new(big.Int).SetBytes(sig)
+ m := encrypt(new(big.Int), pub, c)
+ em := m.FillBytes(make([]byte, k))
+ // EM = 0x00 || 0x01 || PS || 0x00 || T
+
+ ok := subtle.ConstantTimeByteEq(em[0], 0)
+ ok &= subtle.ConstantTimeByteEq(em[1], 1)
+ ok &= subtle.ConstantTimeCompare(em[k-hashLen:k], hashed)
+ ok &= subtle.ConstantTimeCompare(em[k-tLen:k-hashLen], prefix)
+ ok &= subtle.ConstantTimeByteEq(em[k-tLen-1], 0)
+
+ for i := 2; i < k-tLen-1; i++ {
+ ok &= subtle.ConstantTimeByteEq(em[i], 0xff)
+ }
+
+ if ok != 1 {
+ return ErrVerification
+ }
+
+ return nil
+}
+
+func pkcs1v15HashInfo(hash crypto.Hash, inLen int) (hashLen int, prefix []byte, err error) {
+ // Special case: crypto.Hash(0) is used to indicate that the data is
+ // signed directly.
+ if hash == 0 {
+ return inLen, nil, nil
+ }
+
+ hashLen = hash.Size()
+ if inLen != hashLen {
+ return 0, nil, errors.New("crypto/rsa: input must be hashed message")
+ }
+ prefix, ok := hashPrefixes[hash]
+ if !ok {
+ return 0, nil, errors.New("crypto/rsa: unsupported hash function")
+ }
+ return
+}