From 109be507377fe7f6e8819ac94041d3fdcdf6fd2f Mon Sep 17 00:00:00 2001
From: Daniel Baumann <daniel.baumann@progress-linux.org>
Date: Sun, 28 Apr 2024 15:18:25 +0200
Subject: Adding upstream version 1.19.8.

Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
---
 src/regexp/backtrack.go | 367 ++++++++++++++++++++++++++++++++++++++++++++++++
 1 file changed, 367 insertions(+)
 create mode 100644 src/regexp/backtrack.go

(limited to 'src/regexp/backtrack.go')

diff --git a/src/regexp/backtrack.go b/src/regexp/backtrack.go
new file mode 100644
index 0000000..0739f5f
--- /dev/null
+++ b/src/regexp/backtrack.go
@@ -0,0 +1,367 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// backtrack is a regular expression search with submatch
+// tracking for small regular expressions and texts. It allocates
+// a bit vector with (length of input) * (length of prog) bits,
+// to make sure it never explores the same (character position, instruction)
+// state multiple times. This limits the search to run in time linear in
+// the length of the test.
+//
+// backtrack is a fast replacement for the NFA code on small
+// regexps when onepass cannot be used.
+
+package regexp
+
+import (
+	"regexp/syntax"
+	"sync"
+)
+
+// A job is an entry on the backtracker's job stack. It holds
+// the instruction pc and the position in the input.
+type job struct {
+	pc  uint32
+	arg bool
+	pos int
+}
+
+const (
+	visitedBits        = 32
+	maxBacktrackProg   = 500        // len(prog.Inst) <= max
+	maxBacktrackVector = 256 * 1024 // bit vector size <= max (bits)
+)
+
+// bitState holds state for the backtracker.
+type bitState struct {
+	end      int
+	cap      []int
+	matchcap []int
+	jobs     []job
+	visited  []uint32
+
+	inputs inputs
+}
+
+var bitStatePool sync.Pool
+
+func newBitState() *bitState {
+	b, ok := bitStatePool.Get().(*bitState)
+	if !ok {
+		b = new(bitState)
+	}
+	return b
+}
+
+func freeBitState(b *bitState) {
+	b.inputs.clear()
+	bitStatePool.Put(b)
+}
+
+// maxBitStateLen returns the maximum length of a string to search with
+// the backtracker using prog.
+func maxBitStateLen(prog *syntax.Prog) int {
+	if !shouldBacktrack(prog) {
+		return 0
+	}
+	return maxBacktrackVector / len(prog.Inst)
+}
+
+// shouldBacktrack reports whether the program is too
+// long for the backtracker to run.
+func shouldBacktrack(prog *syntax.Prog) bool {
+	return len(prog.Inst) <= maxBacktrackProg
+}
+
+// reset resets the state of the backtracker.
+// end is the end position in the input.
+// ncap is the number of captures.
+func (b *bitState) reset(prog *syntax.Prog, end int, ncap int) {
+	b.end = end
+
+	if cap(b.jobs) == 0 {
+		b.jobs = make([]job, 0, 256)
+	} else {
+		b.jobs = b.jobs[:0]
+	}
+
+	visitedSize := (len(prog.Inst)*(end+1) + visitedBits - 1) / visitedBits
+	if cap(b.visited) < visitedSize {
+		b.visited = make([]uint32, visitedSize, maxBacktrackVector/visitedBits)
+	} else {
+		b.visited = b.visited[:visitedSize]
+		for i := range b.visited {
+			b.visited[i] = 0
+		}
+	}
+
+	if cap(b.cap) < ncap {
+		b.cap = make([]int, ncap)
+	} else {
+		b.cap = b.cap[:ncap]
+	}
+	for i := range b.cap {
+		b.cap[i] = -1
+	}
+
+	if cap(b.matchcap) < ncap {
+		b.matchcap = make([]int, ncap)
+	} else {
+		b.matchcap = b.matchcap[:ncap]
+	}
+	for i := range b.matchcap {
+		b.matchcap[i] = -1
+	}
+}
+
+// shouldVisit reports whether the combination of (pc, pos) has not
+// been visited yet.
+func (b *bitState) shouldVisit(pc uint32, pos int) bool {
+	n := uint(int(pc)*(b.end+1) + pos)
+	if b.visited[n/visitedBits]&(1<<(n&(visitedBits-1))) != 0 {
+		return false
+	}
+	b.visited[n/visitedBits] |= 1 << (n & (visitedBits - 1))
+	return true
+}
+
+// push pushes (pc, pos, arg) onto the job stack if it should be
+// visited.
+func (b *bitState) push(re *Regexp, pc uint32, pos int, arg bool) {
+	// Only check shouldVisit when arg is false.
+	// When arg is true, we are continuing a previous visit.
+	if re.prog.Inst[pc].Op != syntax.InstFail && (arg || b.shouldVisit(pc, pos)) {
+		b.jobs = append(b.jobs, job{pc: pc, arg: arg, pos: pos})
+	}
+}
+
+// tryBacktrack runs a backtracking search starting at pos.
+func (re *Regexp) tryBacktrack(b *bitState, i input, pc uint32, pos int) bool {
+	longest := re.longest
+
+	b.push(re, pc, pos, false)
+	for len(b.jobs) > 0 {
+		l := len(b.jobs) - 1
+		// Pop job off the stack.
+		pc := b.jobs[l].pc
+		pos := b.jobs[l].pos
+		arg := b.jobs[l].arg
+		b.jobs = b.jobs[:l]
+
+		// Optimization: rather than push and pop,
+		// code that is going to Push and continue
+		// the loop simply updates ip, p, and arg
+		// and jumps to CheckAndLoop. We have to
+		// do the ShouldVisit check that Push
+		// would have, but we avoid the stack
+		// manipulation.
+		goto Skip
+	CheckAndLoop:
+		if !b.shouldVisit(pc, pos) {
+			continue
+		}
+	Skip:
+
+		inst := &re.prog.Inst[pc]
+
+		switch inst.Op {
+		default:
+			panic("bad inst")
+		case syntax.InstFail:
+			panic("unexpected InstFail")
+		case syntax.InstAlt:
+			// Cannot just
+			//   b.push(inst.Out, pos, false)
+			//   b.push(inst.Arg, pos, false)
+			// If during the processing of inst.Out, we encounter
+			// inst.Arg via another path, we want to process it then.
+			// Pushing it here will inhibit that. Instead, re-push
+			// inst with arg==true as a reminder to push inst.Arg out
+			// later.
+			if arg {
+				// Finished inst.Out; try inst.Arg.
+				arg = false
+				pc = inst.Arg
+				goto CheckAndLoop
+			} else {
+				b.push(re, pc, pos, true)
+				pc = inst.Out
+				goto CheckAndLoop
+			}
+
+		case syntax.InstAltMatch:
+			// One opcode consumes runes; the other leads to match.
+			switch re.prog.Inst[inst.Out].Op {
+			case syntax.InstRune, syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL:
+				// inst.Arg is the match.
+				b.push(re, inst.Arg, pos, false)
+				pc = inst.Arg
+				pos = b.end
+				goto CheckAndLoop
+			}
+			// inst.Out is the match - non-greedy
+			b.push(re, inst.Out, b.end, false)
+			pc = inst.Out
+			goto CheckAndLoop
+
+		case syntax.InstRune:
+			r, width := i.step(pos)
+			if !inst.MatchRune(r) {
+				continue
+			}
+			pos += width
+			pc = inst.Out
+			goto CheckAndLoop
+
+		case syntax.InstRune1:
+			r, width := i.step(pos)
+			if r != inst.Rune[0] {
+				continue
+			}
+			pos += width
+			pc = inst.Out
+			goto CheckAndLoop
+
+		case syntax.InstRuneAnyNotNL:
+			r, width := i.step(pos)
+			if r == '\n' || r == endOfText {
+				continue
+			}
+			pos += width
+			pc = inst.Out
+			goto CheckAndLoop
+
+		case syntax.InstRuneAny:
+			r, width := i.step(pos)
+			if r == endOfText {
+				continue
+			}
+			pos += width
+			pc = inst.Out
+			goto CheckAndLoop
+
+		case syntax.InstCapture:
+			if arg {
+				// Finished inst.Out; restore the old value.
+				b.cap[inst.Arg] = pos
+				continue
+			} else {
+				if inst.Arg < uint32(len(b.cap)) {
+					// Capture pos to register, but save old value.
+					b.push(re, pc, b.cap[inst.Arg], true) // come back when we're done.
+					b.cap[inst.Arg] = pos
+				}
+				pc = inst.Out
+				goto CheckAndLoop
+			}
+
+		case syntax.InstEmptyWidth:
+			flag := i.context(pos)
+			if !flag.match(syntax.EmptyOp(inst.Arg)) {
+				continue
+			}
+			pc = inst.Out
+			goto CheckAndLoop
+
+		case syntax.InstNop:
+			pc = inst.Out
+			goto CheckAndLoop
+
+		case syntax.InstMatch:
+			// We found a match. If the caller doesn't care
+			// where the match is, no point going further.
+			if len(b.cap) == 0 {
+				return true
+			}
+
+			// Record best match so far.
+			// Only need to check end point, because this entire
+			// call is only considering one start position.
+			if len(b.cap) > 1 {
+				b.cap[1] = pos
+			}
+			if old := b.matchcap[1]; old == -1 || (longest && pos > 0 && pos > old) {
+				copy(b.matchcap, b.cap)
+			}
+
+			// If going for first match, we're done.
+			if !longest {
+				return true
+			}
+
+			// If we used the entire text, no longer match is possible.
+			if pos == b.end {
+				return true
+			}
+
+			// Otherwise, continue on in hope of a longer match.
+			continue
+		}
+	}
+
+	return longest && len(b.matchcap) > 1 && b.matchcap[1] >= 0
+}
+
+// backtrack runs a backtracking search of prog on the input starting at pos.
+func (re *Regexp) backtrack(ib []byte, is string, pos int, ncap int, dstCap []int) []int {
+	startCond := re.cond
+	if startCond == ^syntax.EmptyOp(0) { // impossible
+		return nil
+	}
+	if startCond&syntax.EmptyBeginText != 0 && pos != 0 {
+		// Anchored match, past beginning of text.
+		return nil
+	}
+
+	b := newBitState()
+	i, end := b.inputs.init(nil, ib, is)
+	b.reset(re.prog, end, ncap)
+
+	// Anchored search must start at the beginning of the input
+	if startCond&syntax.EmptyBeginText != 0 {
+		if len(b.cap) > 0 {
+			b.cap[0] = pos
+		}
+		if !re.tryBacktrack(b, i, uint32(re.prog.Start), pos) {
+			freeBitState(b)
+			return nil
+		}
+	} else {
+
+		// Unanchored search, starting from each possible text position.
+		// Notice that we have to try the empty string at the end of
+		// the text, so the loop condition is pos <= end, not pos < end.
+		// This looks like it's quadratic in the size of the text,
+		// but we are not clearing visited between calls to TrySearch,
+		// so no work is duplicated and it ends up still being linear.
+		width := -1
+		for ; pos <= end && width != 0; pos += width {
+			if len(re.prefix) > 0 {
+				// Match requires literal prefix; fast search for it.
+				advance := i.index(re, pos)
+				if advance < 0 {
+					freeBitState(b)
+					return nil
+				}
+				pos += advance
+			}
+
+			if len(b.cap) > 0 {
+				b.cap[0] = pos
+			}
+			if re.tryBacktrack(b, i, uint32(re.prog.Start), pos) {
+				// Match must be leftmost; done.
+				goto Match
+			}
+			_, width = i.step(pos)
+		}
+		freeBitState(b)
+		return nil
+	}
+
+Match:
+	dstCap = append(dstCap, b.matchcap...)
+	freeBitState(b)
+	return dstCap
+}
-- 
cgit v1.2.3