// Copyright 2022 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Code generated by generate.go. DO NOT EDIT. package nistec import ( "crypto/internal/nistec/fiat" "crypto/subtle" "errors" "sync" ) var p521B, _ = new(fiat.P521Element).SetBytes([]byte{0x0, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, 0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85, 0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3, 0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1, 0x9, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e, 0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1, 0xbf, 0x7, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c, 0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50, 0x3f, 0x0}) var p521G, _ = NewP521Point().SetBytes([]byte{0x4, 0x0, 0xc6, 0x85, 0x8e, 0x6, 0xb7, 0x4, 0x4, 0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95, 0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x5, 0x3f, 0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d, 0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7, 0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff, 0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a, 0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5, 0xbd, 0x66, 0x1, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, 0xc0, 0x4, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d, 0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b, 0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e, 0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4, 0x26, 0x40, 0xc5, 0x50, 0xb9, 0x1, 0x3f, 0xad, 0x7, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72, 0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1, 0x66, 0x50}) // p521ElementLength is the length of an element of the base or scalar field, // which have the same bytes length for all NIST P curves. const p521ElementLength = 66 // P521Point is a P521 point. The zero value is NOT valid. type P521Point struct { // The point is represented in projective coordinates (X:Y:Z), // where x = X/Z and y = Y/Z. x, y, z *fiat.P521Element } // NewP521Point returns a new P521Point representing the point at infinity point. func NewP521Point() *P521Point { return &P521Point{ x: new(fiat.P521Element), y: new(fiat.P521Element).One(), z: new(fiat.P521Element), } } // NewP521Generator returns a new P521Point set to the canonical generator. func NewP521Generator() *P521Point { return (&P521Point{ x: new(fiat.P521Element), y: new(fiat.P521Element), z: new(fiat.P521Element), }).Set(p521G) } // Set sets p = q and returns p. func (p *P521Point) Set(q *P521Point) *P521Point { p.x.Set(q.x) p.y.Set(q.y) p.z.Set(q.z) return p } // SetBytes sets p to the compressed, uncompressed, or infinity value encoded in // b, as specified in SEC 1, Version 2.0, Section 2.3.4. If the point is not on // the curve, it returns nil and an error, and the receiver is unchanged. // Otherwise, it returns p. func (p *P521Point) SetBytes(b []byte) (*P521Point, error) { switch { // Point at infinity. case len(b) == 1 && b[0] == 0: return p.Set(NewP521Point()), nil // Uncompressed form. case len(b) == 1+2*p521ElementLength && b[0] == 4: x, err := new(fiat.P521Element).SetBytes(b[1 : 1+p521ElementLength]) if err != nil { return nil, err } y, err := new(fiat.P521Element).SetBytes(b[1+p521ElementLength:]) if err != nil { return nil, err } if err := p521CheckOnCurve(x, y); err != nil { return nil, err } p.x.Set(x) p.y.Set(y) p.z.One() return p, nil // Compressed form. case len(b) == 1+p521ElementLength && (b[0] == 2 || b[0] == 3): x, err := new(fiat.P521Element).SetBytes(b[1:]) if err != nil { return nil, err } // y² = x³ - 3x + b y := p521Polynomial(new(fiat.P521Element), x) if !p521Sqrt(y, y) { return nil, errors.New("invalid P521 compressed point encoding") } // Select the positive or negative root, as indicated by the least // significant bit, based on the encoding type byte. otherRoot := new(fiat.P521Element) otherRoot.Sub(otherRoot, y) cond := y.Bytes()[p521ElementLength-1]&1 ^ b[0]&1 y.Select(otherRoot, y, int(cond)) p.x.Set(x) p.y.Set(y) p.z.One() return p, nil default: return nil, errors.New("invalid P521 point encoding") } } // p521Polynomial sets y2 to x³ - 3x + b, and returns y2. func p521Polynomial(y2, x *fiat.P521Element) *fiat.P521Element { y2.Square(x) y2.Mul(y2, x) threeX := new(fiat.P521Element).Add(x, x) threeX.Add(threeX, x) y2.Sub(y2, threeX) return y2.Add(y2, p521B) } func p521CheckOnCurve(x, y *fiat.P521Element) error { // y² = x³ - 3x + b rhs := p521Polynomial(new(fiat.P521Element), x) lhs := new(fiat.P521Element).Square(y) if rhs.Equal(lhs) != 1 { return errors.New("P521 point not on curve") } return nil } // Bytes returns the uncompressed or infinity encoding of p, as specified in // SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the point at // infinity is shorter than all other encodings. func (p *P521Point) Bytes() []byte { // This function is outlined to make the allocations inline in the caller // rather than happen on the heap. var out [1 + 2*p521ElementLength]byte return p.bytes(&out) } func (p *P521Point) bytes(out *[1 + 2*p521ElementLength]byte) []byte { if p.z.IsZero() == 1 { return append(out[:0], 0) } zinv := new(fiat.P521Element).Invert(p.z) x := new(fiat.P521Element).Mul(p.x, zinv) y := new(fiat.P521Element).Mul(p.y, zinv) buf := append(out[:0], 4) buf = append(buf, x.Bytes()...) buf = append(buf, y.Bytes()...) return buf } // BytesCompressed returns the compressed or infinity encoding of p, as // specified in SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the // point at infinity is shorter than all other encodings. func (p *P521Point) BytesCompressed() []byte { // This function is outlined to make the allocations inline in the caller // rather than happen on the heap. var out [1 + p521ElementLength]byte return p.bytesCompressed(&out) } func (p *P521Point) bytesCompressed(out *[1 + p521ElementLength]byte) []byte { if p.z.IsZero() == 1 { return append(out[:0], 0) } zinv := new(fiat.P521Element).Invert(p.z) x := new(fiat.P521Element).Mul(p.x, zinv) y := new(fiat.P521Element).Mul(p.y, zinv) // Encode the sign of the y coordinate (indicated by the least significant // bit) as the encoding type (2 or 3). buf := append(out[:0], 2) buf[0] |= y.Bytes()[p521ElementLength-1] & 1 buf = append(buf, x.Bytes()...) return buf } // Add sets q = p1 + p2, and returns q. The points may overlap. func (q *P521Point) Add(p1, p2 *P521Point) *P521Point { // Complete addition formula for a = -3 from "Complete addition formulas for // prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §A.2. t0 := new(fiat.P521Element).Mul(p1.x, p2.x) // t0 := X1 * X2 t1 := new(fiat.P521Element).Mul(p1.y, p2.y) // t1 := Y1 * Y2 t2 := new(fiat.P521Element).Mul(p1.z, p2.z) // t2 := Z1 * Z2 t3 := new(fiat.P521Element).Add(p1.x, p1.y) // t3 := X1 + Y1 t4 := new(fiat.P521Element).Add(p2.x, p2.y) // t4 := X2 + Y2 t3.Mul(t3, t4) // t3 := t3 * t4 t4.Add(t0, t1) // t4 := t0 + t1 t3.Sub(t3, t4) // t3 := t3 - t4 t4.Add(p1.y, p1.z) // t4 := Y1 + Z1 x3 := new(fiat.P521Element).Add(p2.y, p2.z) // X3 := Y2 + Z2 t4.Mul(t4, x3) // t4 := t4 * X3 x3.Add(t1, t2) // X3 := t1 + t2 t4.Sub(t4, x3) // t4 := t4 - X3 x3.Add(p1.x, p1.z) // X3 := X1 + Z1 y3 := new(fiat.P521Element).Add(p2.x, p2.z) // Y3 := X2 + Z2 x3.Mul(x3, y3) // X3 := X3 * Y3 y3.Add(t0, t2) // Y3 := t0 + t2 y3.Sub(x3, y3) // Y3 := X3 - Y3 z3 := new(fiat.P521Element).Mul(p521B, t2) // Z3 := b * t2 x3.Sub(y3, z3) // X3 := Y3 - Z3 z3.Add(x3, x3) // Z3 := X3 + X3 x3.Add(x3, z3) // X3 := X3 + Z3 z3.Sub(t1, x3) // Z3 := t1 - X3 x3.Add(t1, x3) // X3 := t1 + X3 y3.Mul(p521B, y3) // Y3 := b * Y3 t1.Add(t2, t2) // t1 := t2 + t2 t2.Add(t1, t2) // t2 := t1 + t2 y3.Sub(y3, t2) // Y3 := Y3 - t2 y3.Sub(y3, t0) // Y3 := Y3 - t0 t1.Add(y3, y3) // t1 := Y3 + Y3 y3.Add(t1, y3) // Y3 := t1 + Y3 t1.Add(t0, t0) // t1 := t0 + t0 t0.Add(t1, t0) // t0 := t1 + t0 t0.Sub(t0, t2) // t0 := t0 - t2 t1.Mul(t4, y3) // t1 := t4 * Y3 t2.Mul(t0, y3) // t2 := t0 * Y3 y3.Mul(x3, z3) // Y3 := X3 * Z3 y3.Add(y3, t2) // Y3 := Y3 + t2 x3.Mul(t3, x3) // X3 := t3 * X3 x3.Sub(x3, t1) // X3 := X3 - t1 z3.Mul(t4, z3) // Z3 := t4 * Z3 t1.Mul(t3, t0) // t1 := t3 * t0 z3.Add(z3, t1) // Z3 := Z3 + t1 q.x.Set(x3) q.y.Set(y3) q.z.Set(z3) return q } // Double sets q = p + p, and returns q. The points may overlap. func (q *P521Point) Double(p *P521Point) *P521Point { // Complete addition formula for a = -3 from "Complete addition formulas for // prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §A.2. t0 := new(fiat.P521Element).Square(p.x) // t0 := X ^ 2 t1 := new(fiat.P521Element).Square(p.y) // t1 := Y ^ 2 t2 := new(fiat.P521Element).Square(p.z) // t2 := Z ^ 2 t3 := new(fiat.P521Element).Mul(p.x, p.y) // t3 := X * Y t3.Add(t3, t3) // t3 := t3 + t3 z3 := new(fiat.P521Element).Mul(p.x, p.z) // Z3 := X * Z z3.Add(z3, z3) // Z3 := Z3 + Z3 y3 := new(fiat.P521Element).Mul(p521B, t2) // Y3 := b * t2 y3.Sub(y3, z3) // Y3 := Y3 - Z3 x3 := new(fiat.P521Element).Add(y3, y3) // X3 := Y3 + Y3 y3.Add(x3, y3) // Y3 := X3 + Y3 x3.Sub(t1, y3) // X3 := t1 - Y3 y3.Add(t1, y3) // Y3 := t1 + Y3 y3.Mul(x3, y3) // Y3 := X3 * Y3 x3.Mul(x3, t3) // X3 := X3 * t3 t3.Add(t2, t2) // t3 := t2 + t2 t2.Add(t2, t3) // t2 := t2 + t3 z3.Mul(p521B, z3) // Z3 := b * Z3 z3.Sub(z3, t2) // Z3 := Z3 - t2 z3.Sub(z3, t0) // Z3 := Z3 - t0 t3.Add(z3, z3) // t3 := Z3 + Z3 z3.Add(z3, t3) // Z3 := Z3 + t3 t3.Add(t0, t0) // t3 := t0 + t0 t0.Add(t3, t0) // t0 := t3 + t0 t0.Sub(t0, t2) // t0 := t0 - t2 t0.Mul(t0, z3) // t0 := t0 * Z3 y3.Add(y3, t0) // Y3 := Y3 + t0 t0.Mul(p.y, p.z) // t0 := Y * Z t0.Add(t0, t0) // t0 := t0 + t0 z3.Mul(t0, z3) // Z3 := t0 * Z3 x3.Sub(x3, z3) // X3 := X3 - Z3 z3.Mul(t0, t1) // Z3 := t0 * t1 z3.Add(z3, z3) // Z3 := Z3 + Z3 z3.Add(z3, z3) // Z3 := Z3 + Z3 q.x.Set(x3) q.y.Set(y3) q.z.Set(z3) return q } // Select sets q to p1 if cond == 1, and to p2 if cond == 0. func (q *P521Point) Select(p1, p2 *P521Point, cond int) *P521Point { q.x.Select(p1.x, p2.x, cond) q.y.Select(p1.y, p2.y, cond) q.z.Select(p1.z, p2.z, cond) return q } // A p521Table holds the first 15 multiples of a point at offset -1, so [1]P // is at table[0], [15]P is at table[14], and [0]P is implicitly the identity // point. type p521Table [15]*P521Point // Select selects the n-th multiple of the table base point into p. It works in // constant time by iterating over every entry of the table. n must be in [0, 15]. func (table *p521Table) Select(p *P521Point, n uint8) { if n >= 16 { panic("nistec: internal error: p521Table called with out-of-bounds value") } p.Set(NewP521Point()) for i := uint8(1); i < 16; i++ { cond := subtle.ConstantTimeByteEq(i, n) p.Select(table[i-1], p, cond) } } // ScalarMult sets p = scalar * q, and returns p. func (p *P521Point) ScalarMult(q *P521Point, scalar []byte) (*P521Point, error) { // Compute a p521Table for the base point q. The explicit NewP521Point // calls get inlined, letting the allocations live on the stack. var table = p521Table{NewP521Point(), NewP521Point(), NewP521Point(), NewP521Point(), NewP521Point(), NewP521Point(), NewP521Point(), NewP521Point(), NewP521Point(), NewP521Point(), NewP521Point(), NewP521Point(), NewP521Point(), NewP521Point(), NewP521Point()} table[0].Set(q) for i := 1; i < 15; i += 2 { table[i].Double(table[i/2]) table[i+1].Add(table[i], q) } // Instead of doing the classic double-and-add chain, we do it with a // four-bit window: we double four times, and then add [0-15]P. t := NewP521Point() p.Set(NewP521Point()) for i, byte := range scalar { // No need to double on the first iteration, as p is the identity at // this point, and [N]∞ = ∞. if i != 0 { p.Double(p) p.Double(p) p.Double(p) p.Double(p) } windowValue := byte >> 4 table.Select(t, windowValue) p.Add(p, t) p.Double(p) p.Double(p) p.Double(p) p.Double(p) windowValue = byte & 0b1111 table.Select(t, windowValue) p.Add(p, t) } return p, nil } var p521GeneratorTable *[p521ElementLength * 2]p521Table var p521GeneratorTableOnce sync.Once // generatorTable returns a sequence of p521Tables. The first table contains // multiples of G. Each successive table is the previous table doubled four // times. func (p *P521Point) generatorTable() *[p521ElementLength * 2]p521Table { p521GeneratorTableOnce.Do(func() { p521GeneratorTable = new([p521ElementLength * 2]p521Table) base := NewP521Generator() for i := 0; i < p521ElementLength*2; i++ { p521GeneratorTable[i][0] = NewP521Point().Set(base) for j := 1; j < 15; j++ { p521GeneratorTable[i][j] = NewP521Point().Add(p521GeneratorTable[i][j-1], base) } base.Double(base) base.Double(base) base.Double(base) base.Double(base) } }) return p521GeneratorTable } // ScalarBaseMult sets p = scalar * B, where B is the canonical generator, and // returns p. func (p *P521Point) ScalarBaseMult(scalar []byte) (*P521Point, error) { if len(scalar) != p521ElementLength { return nil, errors.New("invalid scalar length") } tables := p.generatorTable() // This is also a scalar multiplication with a four-bit window like in // ScalarMult, but in this case the doublings are precomputed. The value // [windowValue]G added at iteration k would normally get doubled // (totIterations-k)×4 times, but with a larger precomputation we can // instead add [2^((totIterations-k)×4)][windowValue]G and avoid the // doublings between iterations. t := NewP521Point() p.Set(NewP521Point()) tableIndex := len(tables) - 1 for _, byte := range scalar { windowValue := byte >> 4 tables[tableIndex].Select(t, windowValue) p.Add(p, t) tableIndex-- windowValue = byte & 0b1111 tables[tableIndex].Select(t, windowValue) p.Add(p, t) tableIndex-- } return p, nil } // p521Sqrt sets e to a square root of x. If x is not a square, p521Sqrt returns // false and e is unchanged. e and x can overlap. func p521Sqrt(e, x *fiat.P521Element) (isSquare bool) { candidate := new(fiat.P521Element) p521SqrtCandidate(candidate, x) square := new(fiat.P521Element).Square(candidate) if square.Equal(x) != 1 { return false } e.Set(candidate) return true } // p521SqrtCandidate sets z to a square root candidate for x. z and x must not overlap. func p521SqrtCandidate(z, x *fiat.P521Element) { // Since p = 3 mod 4, exponentiation by (p + 1) / 4 yields a square root candidate. // // The sequence of 0 multiplications and 519 squarings is derived from the // following addition chain generated with github.com/mmcloughlin/addchain v0.4.0. // // return 1 << 519 // z.Square(x) for s := 1; s < 519; s++ { z.Square(z) } }