// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package parser implements a parser for Go source files. Input may be // provided in a variety of forms (see the various Parse* functions); the // output is an abstract syntax tree (AST) representing the Go source. The // parser is invoked through one of the Parse* functions. // // The parser accepts a larger language than is syntactically permitted by // the Go spec, for simplicity, and for improved robustness in the presence // of syntax errors. For instance, in method declarations, the receiver is // treated like an ordinary parameter list and thus may contain multiple // entries where the spec permits exactly one. Consequently, the corresponding // field in the AST (ast.FuncDecl.Recv) field is not restricted to one entry. package parser import ( "fmt" "go/ast" "go/internal/typeparams" "go/scanner" "go/token" "strconv" "strings" "unicode" ) // The parser structure holds the parser's internal state. type parser struct { file *token.File errors scanner.ErrorList scanner scanner.Scanner // Tracing/debugging mode Mode // parsing mode trace bool // == (mode&Trace != 0) indent int // indentation used for tracing output // Comments comments []*ast.CommentGroup leadComment *ast.CommentGroup // last lead comment lineComment *ast.CommentGroup // last line comment // Next token pos token.Pos // token position tok token.Token // one token look-ahead lit string // token literal // Error recovery // (used to limit the number of calls to parser.advance // w/o making scanning progress - avoids potential endless // loops across multiple parser functions during error recovery) syncPos token.Pos // last synchronization position syncCnt int // number of parser.advance calls without progress // Non-syntactic parser control exprLev int // < 0: in control clause, >= 0: in expression inRhs bool // if set, the parser is parsing a rhs expression imports []*ast.ImportSpec // list of imports // nestLev is used to track and limit the recursion depth // during parsing. nestLev int } func (p *parser) init(fset *token.FileSet, filename string, src []byte, mode Mode) { p.file = fset.AddFile(filename, -1, len(src)) var m scanner.Mode if mode&ParseComments != 0 { m = scanner.ScanComments } eh := func(pos token.Position, msg string) { p.errors.Add(pos, msg) } p.scanner.Init(p.file, src, eh, m) p.mode = mode p.trace = mode&Trace != 0 // for convenience (p.trace is used frequently) p.next() } func (p *parser) allowGenerics() bool { return p.mode&typeparams.DisallowParsing == 0 } func (p *parser) allowTypeSets() bool { return p.mode&typeparams.DisallowTypeSets == 0 } // ---------------------------------------------------------------------------- // Parsing support func (p *parser) printTrace(a ...any) { const dots = ". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . " const n = len(dots) pos := p.file.Position(p.pos) fmt.Printf("%5d:%3d: ", pos.Line, pos.Column) i := 2 * p.indent for i > n { fmt.Print(dots) i -= n } // i <= n fmt.Print(dots[0:i]) fmt.Println(a...) } func trace(p *parser, msg string) *parser { p.printTrace(msg, "(") p.indent++ return p } // Usage pattern: defer un(trace(p, "...")) func un(p *parser) { p.indent-- p.printTrace(")") } // maxNestLev is the deepest we're willing to recurse during parsing const maxNestLev int = 1e5 func incNestLev(p *parser) *parser { p.nestLev++ if p.nestLev > maxNestLev { p.error(p.pos, "exceeded max nesting depth") panic(bailout{}) } return p } // decNestLev is used to track nesting depth during parsing to prevent stack exhaustion. // It is used along with incNestLev in a similar fashion to how un and trace are used. func decNestLev(p *parser) { p.nestLev-- } // Advance to the next token. func (p *parser) next0() { // Because of one-token look-ahead, print the previous token // when tracing as it provides a more readable output. The // very first token (!p.pos.IsValid()) is not initialized // (it is token.ILLEGAL), so don't print it. if p.trace && p.pos.IsValid() { s := p.tok.String() switch { case p.tok.IsLiteral(): p.printTrace(s, p.lit) case p.tok.IsOperator(), p.tok.IsKeyword(): p.printTrace("\"" + s + "\"") default: p.printTrace(s) } } p.pos, p.tok, p.lit = p.scanner.Scan() } // Consume a comment and return it and the line on which it ends. func (p *parser) consumeComment() (comment *ast.Comment, endline int) { // /*-style comments may end on a different line than where they start. // Scan the comment for '\n' chars and adjust endline accordingly. endline = p.file.Line(p.pos) if p.lit[1] == '*' { // don't use range here - no need to decode Unicode code points for i := 0; i < len(p.lit); i++ { if p.lit[i] == '\n' { endline++ } } } comment = &ast.Comment{Slash: p.pos, Text: p.lit} p.next0() return } // Consume a group of adjacent comments, add it to the parser's // comments list, and return it together with the line at which // the last comment in the group ends. A non-comment token or n // empty lines terminate a comment group. func (p *parser) consumeCommentGroup(n int) (comments *ast.CommentGroup, endline int) { var list []*ast.Comment endline = p.file.Line(p.pos) for p.tok == token.COMMENT && p.file.Line(p.pos) <= endline+n { var comment *ast.Comment comment, endline = p.consumeComment() list = append(list, comment) } // add comment group to the comments list comments = &ast.CommentGroup{List: list} p.comments = append(p.comments, comments) return } // Advance to the next non-comment token. In the process, collect // any comment groups encountered, and remember the last lead and // line comments. // // A lead comment is a comment group that starts and ends in a // line without any other tokens and that is followed by a non-comment // token on the line immediately after the comment group. // // A line comment is a comment group that follows a non-comment // token on the same line, and that has no tokens after it on the line // where it ends. // // Lead and line comments may be considered documentation that is // stored in the AST. func (p *parser) next() { p.leadComment = nil p.lineComment = nil prev := p.pos p.next0() if p.tok == token.COMMENT { var comment *ast.CommentGroup var endline int if p.file.Line(p.pos) == p.file.Line(prev) { // The comment is on same line as the previous token; it // cannot be a lead comment but may be a line comment. comment, endline = p.consumeCommentGroup(0) if p.file.Line(p.pos) != endline || p.tok == token.EOF { // The next token is on a different line, thus // the last comment group is a line comment. p.lineComment = comment } } // consume successor comments, if any endline = -1 for p.tok == token.COMMENT { comment, endline = p.consumeCommentGroup(1) } if endline+1 == p.file.Line(p.pos) { // The next token is following on the line immediately after the // comment group, thus the last comment group is a lead comment. p.leadComment = comment } } } // A bailout panic is raised to indicate early termination. pos and msg are // only populated when bailing out of object resolution. type bailout struct { pos token.Pos msg string } func (p *parser) error(pos token.Pos, msg string) { if p.trace { defer un(trace(p, "error: "+msg)) } epos := p.file.Position(pos) // If AllErrors is not set, discard errors reported on the same line // as the last recorded error and stop parsing if there are more than // 10 errors. if p.mode&AllErrors == 0 { n := len(p.errors) if n > 0 && p.errors[n-1].Pos.Line == epos.Line { return // discard - likely a spurious error } if n > 10 { panic(bailout{}) } } p.errors.Add(epos, msg) } func (p *parser) errorExpected(pos token.Pos, msg string) { msg = "expected " + msg if pos == p.pos { // the error happened at the current position; // make the error message more specific switch { case p.tok == token.SEMICOLON && p.lit == "\n": msg += ", found newline" case p.tok.IsLiteral(): // print 123 rather than 'INT', etc. msg += ", found " + p.lit default: msg += ", found '" + p.tok.String() + "'" } } p.error(pos, msg) } func (p *parser) expect(tok token.Token) token.Pos { pos := p.pos if p.tok != tok { p.errorExpected(pos, "'"+tok.String()+"'") } p.next() // make progress return pos } // expect2 is like expect, but it returns an invalid position // if the expected token is not found. func (p *parser) expect2(tok token.Token) (pos token.Pos) { if p.tok == tok { pos = p.pos } else { p.errorExpected(p.pos, "'"+tok.String()+"'") } p.next() // make progress return } // expectClosing is like expect but provides a better error message // for the common case of a missing comma before a newline. func (p *parser) expectClosing(tok token.Token, context string) token.Pos { if p.tok != tok && p.tok == token.SEMICOLON && p.lit == "\n" { p.error(p.pos, "missing ',' before newline in "+context) p.next() } return p.expect(tok) } func (p *parser) expectSemi() { // semicolon is optional before a closing ')' or '}' if p.tok != token.RPAREN && p.tok != token.RBRACE { switch p.tok { case token.COMMA: // permit a ',' instead of a ';' but complain p.errorExpected(p.pos, "';'") fallthrough case token.SEMICOLON: p.next() default: p.errorExpected(p.pos, "';'") p.advance(stmtStart) } } } func (p *parser) atComma(context string, follow token.Token) bool { if p.tok == token.COMMA { return true } if p.tok != follow { msg := "missing ','" if p.tok == token.SEMICOLON && p.lit == "\n" { msg += " before newline" } p.error(p.pos, msg+" in "+context) return true // "insert" comma and continue } return false } func assert(cond bool, msg string) { if !cond { panic("go/parser internal error: " + msg) } } // advance consumes tokens until the current token p.tok // is in the 'to' set, or token.EOF. For error recovery. func (p *parser) advance(to map[token.Token]bool) { for ; p.tok != token.EOF; p.next() { if to[p.tok] { // Return only if parser made some progress since last // sync or if it has not reached 10 advance calls without // progress. Otherwise consume at least one token to // avoid an endless parser loop (it is possible that // both parseOperand and parseStmt call advance and // correctly do not advance, thus the need for the // invocation limit p.syncCnt). if p.pos == p.syncPos && p.syncCnt < 10 { p.syncCnt++ return } if p.pos > p.syncPos { p.syncPos = p.pos p.syncCnt = 0 return } // Reaching here indicates a parser bug, likely an // incorrect token list in this function, but it only // leads to skipping of possibly correct code if a // previous error is present, and thus is preferred // over a non-terminating parse. } } } var stmtStart = map[token.Token]bool{ token.BREAK: true, token.CONST: true, token.CONTINUE: true, token.DEFER: true, token.FALLTHROUGH: true, token.FOR: true, token.GO: true, token.GOTO: true, token.IF: true, token.RETURN: true, token.SELECT: true, token.SWITCH: true, token.TYPE: true, token.VAR: true, } var declStart = map[token.Token]bool{ token.CONST: true, token.TYPE: true, token.VAR: true, } var exprEnd = map[token.Token]bool{ token.COMMA: true, token.COLON: true, token.SEMICOLON: true, token.RPAREN: true, token.RBRACK: true, token.RBRACE: true, } // safePos returns a valid file position for a given position: If pos // is valid to begin with, safePos returns pos. If pos is out-of-range, // safePos returns the EOF position. // // This is hack to work around "artificial" end positions in the AST which // are computed by adding 1 to (presumably valid) token positions. If the // token positions are invalid due to parse errors, the resulting end position // may be past the file's EOF position, which would lead to panics if used // later on. func (p *parser) safePos(pos token.Pos) (res token.Pos) { defer func() { if recover() != nil { res = token.Pos(p.file.Base() + p.file.Size()) // EOF position } }() _ = p.file.Offset(pos) // trigger a panic if position is out-of-range return pos } // ---------------------------------------------------------------------------- // Identifiers func (p *parser) parseIdent() *ast.Ident { pos := p.pos name := "_" if p.tok == token.IDENT { name = p.lit p.next() } else { p.expect(token.IDENT) // use expect() error handling } return &ast.Ident{NamePos: pos, Name: name} } func (p *parser) parseIdentList() (list []*ast.Ident) { if p.trace { defer un(trace(p, "IdentList")) } list = append(list, p.parseIdent()) for p.tok == token.COMMA { p.next() list = append(list, p.parseIdent()) } return } // ---------------------------------------------------------------------------- // Common productions // If lhs is set, result list elements which are identifiers are not resolved. func (p *parser) parseExprList() (list []ast.Expr) { if p.trace { defer un(trace(p, "ExpressionList")) } list = append(list, p.checkExpr(p.parseExpr())) for p.tok == token.COMMA { p.next() list = append(list, p.checkExpr(p.parseExpr())) } return } func (p *parser) parseList(inRhs bool) []ast.Expr { old := p.inRhs p.inRhs = inRhs list := p.parseExprList() p.inRhs = old return list } // ---------------------------------------------------------------------------- // Types func (p *parser) parseType() ast.Expr { if p.trace { defer un(trace(p, "Type")) } typ := p.tryIdentOrType() if typ == nil { pos := p.pos p.errorExpected(pos, "type") p.advance(exprEnd) return &ast.BadExpr{From: pos, To: p.pos} } return typ } func (p *parser) parseQualifiedIdent(ident *ast.Ident) ast.Expr { if p.trace { defer un(trace(p, "QualifiedIdent")) } typ := p.parseTypeName(ident) if p.tok == token.LBRACK && p.allowGenerics() { typ = p.parseTypeInstance(typ) } return typ } // If the result is an identifier, it is not resolved. func (p *parser) parseTypeName(ident *ast.Ident) ast.Expr { if p.trace { defer un(trace(p, "TypeName")) } if ident == nil { ident = p.parseIdent() } if p.tok == token.PERIOD { // ident is a package name p.next() sel := p.parseIdent() return &ast.SelectorExpr{X: ident, Sel: sel} } return ident } // "[" has already been consumed, and lbrack is its position. // If len != nil it is the already consumed array length. func (p *parser) parseArrayType(lbrack token.Pos, len ast.Expr) *ast.ArrayType { if p.trace { defer un(trace(p, "ArrayType")) } if len == nil { p.exprLev++ // always permit ellipsis for more fault-tolerant parsing if p.tok == token.ELLIPSIS { len = &ast.Ellipsis{Ellipsis: p.pos} p.next() } else if p.tok != token.RBRACK { len = p.parseRhs() } p.exprLev-- } if p.tok == token.COMMA { // Trailing commas are accepted in type parameter // lists but not in array type declarations. // Accept for better error handling but complain. p.error(p.pos, "unexpected comma; expecting ]") p.next() } p.expect(token.RBRACK) elt := p.parseType() return &ast.ArrayType{Lbrack: lbrack, Len: len, Elt: elt} } func (p *parser) parseArrayFieldOrTypeInstance(x *ast.Ident) (*ast.Ident, ast.Expr) { if p.trace { defer un(trace(p, "ArrayFieldOrTypeInstance")) } // TODO(gri) Should we allow a trailing comma in a type argument // list such as T[P,]? (We do in parseTypeInstance). lbrack := p.expect(token.LBRACK) var args []ast.Expr var firstComma token.Pos // TODO(rfindley): consider changing parseRhsOrType so that this function variable // is not needed. argparser := p.parseRhsOrType if !p.allowGenerics() { argparser = p.parseRhs } if p.tok != token.RBRACK { p.exprLev++ args = append(args, argparser()) for p.tok == token.COMMA { if !firstComma.IsValid() { firstComma = p.pos } p.next() args = append(args, argparser()) } p.exprLev-- } rbrack := p.expect(token.RBRACK) if len(args) == 0 { // x []E elt := p.parseType() return x, &ast.ArrayType{Lbrack: lbrack, Elt: elt} } // x [P]E or x[P] if len(args) == 1 { elt := p.tryIdentOrType() if elt != nil { // x [P]E return x, &ast.ArrayType{Lbrack: lbrack, Len: args[0], Elt: elt} } if !p.allowGenerics() { p.error(rbrack, "missing element type in array type expression") return nil, &ast.BadExpr{From: args[0].Pos(), To: args[0].End()} } } if !p.allowGenerics() { p.error(firstComma, "expected ']', found ','") return x, &ast.BadExpr{From: args[0].Pos(), To: args[len(args)-1].End()} } // x[P], x[P1, P2], ... return nil, typeparams.PackIndexExpr(x, lbrack, args, rbrack) } func (p *parser) parseFieldDecl() *ast.Field { if p.trace { defer un(trace(p, "FieldDecl")) } doc := p.leadComment var names []*ast.Ident var typ ast.Expr if p.tok == token.IDENT { name := p.parseIdent() if p.tok == token.PERIOD || p.tok == token.STRING || p.tok == token.SEMICOLON || p.tok == token.RBRACE { // embedded type typ = name if p.tok == token.PERIOD { typ = p.parseQualifiedIdent(name) } } else { // name1, name2, ... T names = []*ast.Ident{name} for p.tok == token.COMMA { p.next() names = append(names, p.parseIdent()) } // Careful dance: We don't know if we have an embedded instantiated // type T[P1, P2, ...] or a field T of array type []E or [P]E. if len(names) == 1 && p.tok == token.LBRACK { name, typ = p.parseArrayFieldOrTypeInstance(name) if name == nil { names = nil } } else { // T P typ = p.parseType() } } } else { // embedded, possibly generic type // (using the enclosing parentheses to distinguish it from a named field declaration) // TODO(rFindley) confirm that this doesn't allow parenthesized embedded type typ = p.parseType() } var tag *ast.BasicLit if p.tok == token.STRING { tag = &ast.BasicLit{ValuePos: p.pos, Kind: p.tok, Value: p.lit} p.next() } p.expectSemi() // call before accessing p.linecomment field := &ast.Field{Doc: doc, Names: names, Type: typ, Tag: tag, Comment: p.lineComment} return field } func (p *parser) parseStructType() *ast.StructType { if p.trace { defer un(trace(p, "StructType")) } pos := p.expect(token.STRUCT) lbrace := p.expect(token.LBRACE) var list []*ast.Field for p.tok == token.IDENT || p.tok == token.MUL || p.tok == token.LPAREN { // a field declaration cannot start with a '(' but we accept // it here for more robust parsing and better error messages // (parseFieldDecl will check and complain if necessary) list = append(list, p.parseFieldDecl()) } rbrace := p.expect(token.RBRACE) return &ast.StructType{ Struct: pos, Fields: &ast.FieldList{ Opening: lbrace, List: list, Closing: rbrace, }, } } func (p *parser) parsePointerType() *ast.StarExpr { if p.trace { defer un(trace(p, "PointerType")) } star := p.expect(token.MUL) base := p.parseType() return &ast.StarExpr{Star: star, X: base} } func (p *parser) parseDotsType() *ast.Ellipsis { if p.trace { defer un(trace(p, "DotsType")) } pos := p.expect(token.ELLIPSIS) elt := p.parseType() return &ast.Ellipsis{Ellipsis: pos, Elt: elt} } type field struct { name *ast.Ident typ ast.Expr } func (p *parser) parseParamDecl(name *ast.Ident, typeSetsOK bool) (f field) { // TODO(rFindley) refactor to be more similar to paramDeclOrNil in the syntax // package if p.trace { defer un(trace(p, "ParamDeclOrNil")) } ptok := p.tok if name != nil { p.tok = token.IDENT // force token.IDENT case in switch below } else if typeSetsOK && p.tok == token.TILDE { // "~" ... return field{nil, p.embeddedElem(nil)} } switch p.tok { case token.IDENT: // name if name != nil { f.name = name p.tok = ptok } else { f.name = p.parseIdent() } switch p.tok { case token.IDENT, token.MUL, token.ARROW, token.FUNC, token.CHAN, token.MAP, token.STRUCT, token.INTERFACE, token.LPAREN: // name type f.typ = p.parseType() case token.LBRACK: // name "[" type1, ..., typeN "]" or name "[" n "]" type f.name, f.typ = p.parseArrayFieldOrTypeInstance(f.name) case token.ELLIPSIS: // name "..." type f.typ = p.parseDotsType() return // don't allow ...type "|" ... case token.PERIOD: // name "." ... f.typ = p.parseQualifiedIdent(f.name) f.name = nil case token.TILDE: if typeSetsOK { f.typ = p.embeddedElem(nil) return } case token.OR: if typeSetsOK { // name "|" typeset f.typ = p.embeddedElem(f.name) f.name = nil return } } case token.MUL, token.ARROW, token.FUNC, token.LBRACK, token.CHAN, token.MAP, token.STRUCT, token.INTERFACE, token.LPAREN: // type f.typ = p.parseType() case token.ELLIPSIS: // "..." type // (always accepted) f.typ = p.parseDotsType() return // don't allow ...type "|" ... default: // TODO(rfindley): this is incorrect in the case of type parameter lists // (should be "']'" in that case) p.errorExpected(p.pos, "')'") p.advance(exprEnd) } // [name] type "|" if typeSetsOK && p.tok == token.OR && f.typ != nil { f.typ = p.embeddedElem(f.typ) } return } func (p *parser) parseParameterList(name0 *ast.Ident, typ0 ast.Expr, closing token.Token) (params []*ast.Field) { if p.trace { defer un(trace(p, "ParameterList")) } // Type parameters are the only parameter list closed by ']'. tparams := closing == token.RBRACK // Type set notation is ok in type parameter lists. typeSetsOK := tparams && p.allowTypeSets() pos := p.pos if name0 != nil { pos = name0.Pos() } var list []field var named int // number of parameters that have an explicit name and type for name0 != nil || p.tok != closing && p.tok != token.EOF { var par field if typ0 != nil { if typeSetsOK { typ0 = p.embeddedElem(typ0) } par = field{name0, typ0} } else { par = p.parseParamDecl(name0, typeSetsOK) } name0 = nil // 1st name was consumed if present typ0 = nil // 1st typ was consumed if present if par.name != nil || par.typ != nil { list = append(list, par) if par.name != nil && par.typ != nil { named++ } } if !p.atComma("parameter list", closing) { break } p.next() } if len(list) == 0 { return // not uncommon } // TODO(gri) parameter distribution and conversion to []*ast.Field // can be combined and made more efficient // distribute parameter types if named == 0 { // all unnamed => found names are type names for i := 0; i < len(list); i++ { par := &list[i] if typ := par.name; typ != nil { par.typ = typ par.name = nil } } if tparams { p.error(pos, "all type parameters must be named") } } else if named != len(list) { // some named => all must be named ok := true var typ ast.Expr missingName := pos for i := len(list) - 1; i >= 0; i-- { if par := &list[i]; par.typ != nil { typ = par.typ if par.name == nil { ok = false missingName = par.typ.Pos() n := ast.NewIdent("_") n.NamePos = typ.Pos() // correct position par.name = n } } else if typ != nil { par.typ = typ } else { // par.typ == nil && typ == nil => we only have a par.name ok = false missingName = par.name.Pos() par.typ = &ast.BadExpr{From: par.name.Pos(), To: p.pos} } } if !ok { if tparams { p.error(missingName, "all type parameters must be named") } else { p.error(pos, "mixed named and unnamed parameters") } } } // convert list []*ast.Field if named == 0 { // parameter list consists of types only for _, par := range list { assert(par.typ != nil, "nil type in unnamed parameter list") params = append(params, &ast.Field{Type: par.typ}) } return } // parameter list consists of named parameters with types var names []*ast.Ident var typ ast.Expr addParams := func() { assert(typ != nil, "nil type in named parameter list") field := &ast.Field{Names: names, Type: typ} params = append(params, field) names = nil } for _, par := range list { if par.typ != typ { if len(names) > 0 { addParams() } typ = par.typ } names = append(names, par.name) } if len(names) > 0 { addParams() } return } func (p *parser) parseParameters(acceptTParams bool) (tparams, params *ast.FieldList) { if p.trace { defer un(trace(p, "Parameters")) } if p.allowGenerics() && acceptTParams && p.tok == token.LBRACK { opening := p.pos p.next() // [T any](params) syntax list := p.parseParameterList(nil, nil, token.RBRACK) rbrack := p.expect(token.RBRACK) tparams = &ast.FieldList{Opening: opening, List: list, Closing: rbrack} // Type parameter lists must not be empty. if tparams.NumFields() == 0 { p.error(tparams.Closing, "empty type parameter list") tparams = nil // avoid follow-on errors } } opening := p.expect(token.LPAREN) var fields []*ast.Field if p.tok != token.RPAREN { fields = p.parseParameterList(nil, nil, token.RPAREN) } rparen := p.expect(token.RPAREN) params = &ast.FieldList{Opening: opening, List: fields, Closing: rparen} return } func (p *parser) parseResult() *ast.FieldList { if p.trace { defer un(trace(p, "Result")) } if p.tok == token.LPAREN { _, results := p.parseParameters(false) return results } typ := p.tryIdentOrType() if typ != nil { list := make([]*ast.Field, 1) list[0] = &ast.Field{Type: typ} return &ast.FieldList{List: list} } return nil } func (p *parser) parseFuncType() *ast.FuncType { if p.trace { defer un(trace(p, "FuncType")) } pos := p.expect(token.FUNC) tparams, params := p.parseParameters(true) if tparams != nil { p.error(tparams.Pos(), "function type must have no type parameters") } results := p.parseResult() return &ast.FuncType{Func: pos, Params: params, Results: results} } func (p *parser) parseMethodSpec() *ast.Field { if p.trace { defer un(trace(p, "MethodSpec")) } doc := p.leadComment var idents []*ast.Ident var typ ast.Expr x := p.parseTypeName(nil) if ident, _ := x.(*ast.Ident); ident != nil { switch { case p.tok == token.LBRACK && p.allowGenerics(): // generic method or embedded instantiated type lbrack := p.pos p.next() p.exprLev++ x := p.parseExpr() p.exprLev-- if name0, _ := x.(*ast.Ident); name0 != nil && p.tok != token.COMMA && p.tok != token.RBRACK { // generic method m[T any] // // Interface methods do not have type parameters. We parse them for a // better error message and improved error recovery. _ = p.parseParameterList(name0, nil, token.RBRACK) _ = p.expect(token.RBRACK) p.error(lbrack, "interface method must have no type parameters") // TODO(rfindley) refactor to share code with parseFuncType. _, params := p.parseParameters(false) results := p.parseResult() idents = []*ast.Ident{ident} typ = &ast.FuncType{ Func: token.NoPos, Params: params, Results: results, } } else { // embedded instantiated type // TODO(rfindley) should resolve all identifiers in x. list := []ast.Expr{x} if p.atComma("type argument list", token.RBRACK) { p.exprLev++ p.next() for p.tok != token.RBRACK && p.tok != token.EOF { list = append(list, p.parseType()) if !p.atComma("type argument list", token.RBRACK) { break } p.next() } p.exprLev-- } rbrack := p.expectClosing(token.RBRACK, "type argument list") typ = typeparams.PackIndexExpr(ident, lbrack, list, rbrack) } case p.tok == token.LPAREN: // ordinary method // TODO(rfindley) refactor to share code with parseFuncType. _, params := p.parseParameters(false) results := p.parseResult() idents = []*ast.Ident{ident} typ = &ast.FuncType{Func: token.NoPos, Params: params, Results: results} default: // embedded type typ = x } } else { // embedded, possibly instantiated type typ = x if p.tok == token.LBRACK && p.allowGenerics() { // embedded instantiated interface typ = p.parseTypeInstance(typ) } } // Comment is added at the callsite: the field below may joined with // additional type specs using '|'. // TODO(rfindley) this should be refactored. // TODO(rfindley) add more tests for comment handling. return &ast.Field{Doc: doc, Names: idents, Type: typ} } func (p *parser) embeddedElem(x ast.Expr) ast.Expr { if p.trace { defer un(trace(p, "EmbeddedElem")) } if x == nil { x = p.embeddedTerm() } for p.tok == token.OR { t := new(ast.BinaryExpr) t.OpPos = p.pos t.Op = token.OR p.next() t.X = x t.Y = p.embeddedTerm() x = t } return x } func (p *parser) embeddedTerm() ast.Expr { if p.trace { defer un(trace(p, "EmbeddedTerm")) } if p.tok == token.TILDE { t := new(ast.UnaryExpr) t.OpPos = p.pos t.Op = token.TILDE p.next() t.X = p.parseType() return t } t := p.tryIdentOrType() if t == nil { pos := p.pos p.errorExpected(pos, "~ term or type") p.advance(exprEnd) return &ast.BadExpr{From: pos, To: p.pos} } return t } func (p *parser) parseInterfaceType() *ast.InterfaceType { if p.trace { defer un(trace(p, "InterfaceType")) } pos := p.expect(token.INTERFACE) lbrace := p.expect(token.LBRACE) var list []*ast.Field parseElements: for { switch { case p.tok == token.IDENT: f := p.parseMethodSpec() if f.Names == nil && p.allowGenerics() { f.Type = p.embeddedElem(f.Type) } p.expectSemi() f.Comment = p.lineComment list = append(list, f) case p.tok == token.TILDE && p.allowGenerics(): typ := p.embeddedElem(nil) p.expectSemi() comment := p.lineComment list = append(list, &ast.Field{Type: typ, Comment: comment}) case p.allowGenerics(): if t := p.tryIdentOrType(); t != nil { typ := p.embeddedElem(t) p.expectSemi() comment := p.lineComment list = append(list, &ast.Field{Type: typ, Comment: comment}) } else { break parseElements } default: break parseElements } } // TODO(rfindley): the error produced here could be improved, since we could // accept a identifier, 'type', or a '}' at this point. rbrace := p.expect(token.RBRACE) return &ast.InterfaceType{ Interface: pos, Methods: &ast.FieldList{ Opening: lbrace, List: list, Closing: rbrace, }, } } func (p *parser) parseMapType() *ast.MapType { if p.trace { defer un(trace(p, "MapType")) } pos := p.expect(token.MAP) p.expect(token.LBRACK) key := p.parseType() p.expect(token.RBRACK) value := p.parseType() return &ast.MapType{Map: pos, Key: key, Value: value} } func (p *parser) parseChanType() *ast.ChanType { if p.trace { defer un(trace(p, "ChanType")) } pos := p.pos dir := ast.SEND | ast.RECV var arrow token.Pos if p.tok == token.CHAN { p.next() if p.tok == token.ARROW { arrow = p.pos p.next() dir = ast.SEND } } else { arrow = p.expect(token.ARROW) p.expect(token.CHAN) dir = ast.RECV } value := p.parseType() return &ast.ChanType{Begin: pos, Arrow: arrow, Dir: dir, Value: value} } func (p *parser) parseTypeInstance(typ ast.Expr) ast.Expr { assert(p.allowGenerics(), "parseTypeInstance while not parsing type params") if p.trace { defer un(trace(p, "TypeInstance")) } opening := p.expect(token.LBRACK) p.exprLev++ var list []ast.Expr for p.tok != token.RBRACK && p.tok != token.EOF { list = append(list, p.parseType()) if !p.atComma("type argument list", token.RBRACK) { break } p.next() } p.exprLev-- closing := p.expectClosing(token.RBRACK, "type argument list") if len(list) == 0 { p.errorExpected(closing, "type argument list") return &ast.IndexExpr{ X: typ, Lbrack: opening, Index: &ast.BadExpr{From: opening + 1, To: closing}, Rbrack: closing, } } return typeparams.PackIndexExpr(typ, opening, list, closing) } func (p *parser) tryIdentOrType() ast.Expr { defer decNestLev(incNestLev(p)) switch p.tok { case token.IDENT: typ := p.parseTypeName(nil) if p.tok == token.LBRACK && p.allowGenerics() { typ = p.parseTypeInstance(typ) } return typ case token.LBRACK: lbrack := p.expect(token.LBRACK) return p.parseArrayType(lbrack, nil) case token.STRUCT: return p.parseStructType() case token.MUL: return p.parsePointerType() case token.FUNC: typ := p.parseFuncType() return typ case token.INTERFACE: return p.parseInterfaceType() case token.MAP: return p.parseMapType() case token.CHAN, token.ARROW: return p.parseChanType() case token.LPAREN: lparen := p.pos p.next() typ := p.parseType() rparen := p.expect(token.RPAREN) return &ast.ParenExpr{Lparen: lparen, X: typ, Rparen: rparen} } // no type found return nil } // ---------------------------------------------------------------------------- // Blocks func (p *parser) parseStmtList() (list []ast.Stmt) { if p.trace { defer un(trace(p, "StatementList")) } for p.tok != token.CASE && p.tok != token.DEFAULT && p.tok != token.RBRACE && p.tok != token.EOF { list = append(list, p.parseStmt()) } return } func (p *parser) parseBody() *ast.BlockStmt { if p.trace { defer un(trace(p, "Body")) } lbrace := p.expect(token.LBRACE) list := p.parseStmtList() rbrace := p.expect2(token.RBRACE) return &ast.BlockStmt{Lbrace: lbrace, List: list, Rbrace: rbrace} } func (p *parser) parseBlockStmt() *ast.BlockStmt { if p.trace { defer un(trace(p, "BlockStmt")) } lbrace := p.expect(token.LBRACE) list := p.parseStmtList() rbrace := p.expect2(token.RBRACE) return &ast.BlockStmt{Lbrace: lbrace, List: list, Rbrace: rbrace} } // ---------------------------------------------------------------------------- // Expressions func (p *parser) parseFuncTypeOrLit() ast.Expr { if p.trace { defer un(trace(p, "FuncTypeOrLit")) } typ := p.parseFuncType() if p.tok != token.LBRACE { // function type only return typ } p.exprLev++ body := p.parseBody() p.exprLev-- return &ast.FuncLit{Type: typ, Body: body} } // parseOperand may return an expression or a raw type (incl. array // types of the form [...]T. Callers must verify the result. func (p *parser) parseOperand() ast.Expr { if p.trace { defer un(trace(p, "Operand")) } switch p.tok { case token.IDENT: x := p.parseIdent() return x case token.INT, token.FLOAT, token.IMAG, token.CHAR, token.STRING: x := &ast.BasicLit{ValuePos: p.pos, Kind: p.tok, Value: p.lit} p.next() return x case token.LPAREN: lparen := p.pos p.next() p.exprLev++ x := p.parseRhsOrType() // types may be parenthesized: (some type) p.exprLev-- rparen := p.expect(token.RPAREN) return &ast.ParenExpr{Lparen: lparen, X: x, Rparen: rparen} case token.FUNC: return p.parseFuncTypeOrLit() } if typ := p.tryIdentOrType(); typ != nil { // do not consume trailing type parameters // could be type for composite literal or conversion _, isIdent := typ.(*ast.Ident) assert(!isIdent, "type cannot be identifier") return typ } // we have an error pos := p.pos p.errorExpected(pos, "operand") p.advance(stmtStart) return &ast.BadExpr{From: pos, To: p.pos} } func (p *parser) parseSelector(x ast.Expr) ast.Expr { if p.trace { defer un(trace(p, "Selector")) } sel := p.parseIdent() return &ast.SelectorExpr{X: x, Sel: sel} } func (p *parser) parseTypeAssertion(x ast.Expr) ast.Expr { if p.trace { defer un(trace(p, "TypeAssertion")) } lparen := p.expect(token.LPAREN) var typ ast.Expr if p.tok == token.TYPE { // type switch: typ == nil p.next() } else { typ = p.parseType() } rparen := p.expect(token.RPAREN) return &ast.TypeAssertExpr{X: x, Type: typ, Lparen: lparen, Rparen: rparen} } func (p *parser) parseIndexOrSliceOrInstance(x ast.Expr) ast.Expr { if p.trace { defer un(trace(p, "parseIndexOrSliceOrInstance")) } lbrack := p.expect(token.LBRACK) if p.tok == token.RBRACK { // empty index, slice or index expressions are not permitted; // accept them for parsing tolerance, but complain p.errorExpected(p.pos, "operand") rbrack := p.pos p.next() return &ast.IndexExpr{ X: x, Lbrack: lbrack, Index: &ast.BadExpr{From: rbrack, To: rbrack}, Rbrack: rbrack, } } p.exprLev++ const N = 3 // change the 3 to 2 to disable 3-index slices var args []ast.Expr var index [N]ast.Expr var colons [N - 1]token.Pos var firstComma token.Pos if p.tok != token.COLON { // We can't know if we have an index expression or a type instantiation; // so even if we see a (named) type we are not going to be in type context. index[0] = p.parseRhsOrType() } ncolons := 0 switch p.tok { case token.COLON: // slice expression for p.tok == token.COLON && ncolons < len(colons) { colons[ncolons] = p.pos ncolons++ p.next() if p.tok != token.COLON && p.tok != token.RBRACK && p.tok != token.EOF { index[ncolons] = p.parseRhs() } } case token.COMMA: firstComma = p.pos // instance expression args = append(args, index[0]) for p.tok == token.COMMA { p.next() if p.tok != token.RBRACK && p.tok != token.EOF { args = append(args, p.parseType()) } } } p.exprLev-- rbrack := p.expect(token.RBRACK) if ncolons > 0 { // slice expression slice3 := false if ncolons == 2 { slice3 = true // Check presence of 2nd and 3rd index here rather than during type-checking // to prevent erroneous programs from passing through gofmt (was issue 7305). if index[1] == nil { p.error(colons[0], "2nd index required in 3-index slice") index[1] = &ast.BadExpr{From: colons[0] + 1, To: colons[1]} } if index[2] == nil { p.error(colons[1], "3rd index required in 3-index slice") index[2] = &ast.BadExpr{From: colons[1] + 1, To: rbrack} } } return &ast.SliceExpr{X: x, Lbrack: lbrack, Low: index[0], High: index[1], Max: index[2], Slice3: slice3, Rbrack: rbrack} } if len(args) == 0 { // index expression return &ast.IndexExpr{X: x, Lbrack: lbrack, Index: index[0], Rbrack: rbrack} } if !p.allowGenerics() { p.error(firstComma, "expected ']' or ':', found ','") return &ast.BadExpr{From: args[0].Pos(), To: args[len(args)-1].End()} } // instance expression return typeparams.PackIndexExpr(x, lbrack, args, rbrack) } func (p *parser) parseCallOrConversion(fun ast.Expr) *ast.CallExpr { if p.trace { defer un(trace(p, "CallOrConversion")) } lparen := p.expect(token.LPAREN) p.exprLev++ var list []ast.Expr var ellipsis token.Pos for p.tok != token.RPAREN && p.tok != token.EOF && !ellipsis.IsValid() { list = append(list, p.parseRhsOrType()) // builtins may expect a type: make(some type, ...) if p.tok == token.ELLIPSIS { ellipsis = p.pos p.next() } if !p.atComma("argument list", token.RPAREN) { break } p.next() } p.exprLev-- rparen := p.expectClosing(token.RPAREN, "argument list") return &ast.CallExpr{Fun: fun, Lparen: lparen, Args: list, Ellipsis: ellipsis, Rparen: rparen} } func (p *parser) parseValue() ast.Expr { if p.trace { defer un(trace(p, "Element")) } if p.tok == token.LBRACE { return p.parseLiteralValue(nil) } x := p.checkExpr(p.parseExpr()) return x } func (p *parser) parseElement() ast.Expr { if p.trace { defer un(trace(p, "Element")) } x := p.parseValue() if p.tok == token.COLON { colon := p.pos p.next() x = &ast.KeyValueExpr{Key: x, Colon: colon, Value: p.parseValue()} } return x } func (p *parser) parseElementList() (list []ast.Expr) { if p.trace { defer un(trace(p, "ElementList")) } for p.tok != token.RBRACE && p.tok != token.EOF { list = append(list, p.parseElement()) if !p.atComma("composite literal", token.RBRACE) { break } p.next() } return } func (p *parser) parseLiteralValue(typ ast.Expr) ast.Expr { if p.trace { defer un(trace(p, "LiteralValue")) } lbrace := p.expect(token.LBRACE) var elts []ast.Expr p.exprLev++ if p.tok != token.RBRACE { elts = p.parseElementList() } p.exprLev-- rbrace := p.expectClosing(token.RBRACE, "composite literal") return &ast.CompositeLit{Type: typ, Lbrace: lbrace, Elts: elts, Rbrace: rbrace} } // checkExpr checks that x is an expression (and not a type). func (p *parser) checkExpr(x ast.Expr) ast.Expr { switch unparen(x).(type) { case *ast.BadExpr: case *ast.Ident: case *ast.BasicLit: case *ast.FuncLit: case *ast.CompositeLit: case *ast.ParenExpr: panic("unreachable") case *ast.SelectorExpr: case *ast.IndexExpr: case *ast.IndexListExpr: case *ast.SliceExpr: case *ast.TypeAssertExpr: // If t.Type == nil we have a type assertion of the form // y.(type), which is only allowed in type switch expressions. // It's hard to exclude those but for the case where we are in // a type switch. Instead be lenient and test this in the type // checker. case *ast.CallExpr: case *ast.StarExpr: case *ast.UnaryExpr: case *ast.BinaryExpr: default: // all other nodes are not proper expressions p.errorExpected(x.Pos(), "expression") x = &ast.BadExpr{From: x.Pos(), To: p.safePos(x.End())} } return x } // If x is of the form (T), unparen returns unparen(T), otherwise it returns x. func unparen(x ast.Expr) ast.Expr { if p, isParen := x.(*ast.ParenExpr); isParen { x = unparen(p.X) } return x } // checkExprOrType checks that x is an expression or a type // (and not a raw type such as [...]T). func (p *parser) checkExprOrType(x ast.Expr) ast.Expr { switch t := unparen(x).(type) { case *ast.ParenExpr: panic("unreachable") case *ast.ArrayType: if len, isEllipsis := t.Len.(*ast.Ellipsis); isEllipsis { p.error(len.Pos(), "expected array length, found '...'") x = &ast.BadExpr{From: x.Pos(), To: p.safePos(x.End())} } } // all other nodes are expressions or types return x } func (p *parser) parsePrimaryExpr(x ast.Expr) ast.Expr { if p.trace { defer un(trace(p, "PrimaryExpr")) } if x == nil { x = p.parseOperand() } // We track the nesting here rather than at the entry for the function, // since it can iteratively produce a nested output, and we want to // limit how deep a structure we generate. var n int defer func() { p.nestLev -= n }() for n = 1; ; n++ { incNestLev(p) switch p.tok { case token.PERIOD: p.next() switch p.tok { case token.IDENT: x = p.parseSelector(p.checkExprOrType(x)) case token.LPAREN: x = p.parseTypeAssertion(p.checkExpr(x)) default: pos := p.pos p.errorExpected(pos, "selector or type assertion") // TODO(rFindley) The check for token.RBRACE below is a targeted fix // to error recovery sufficient to make the x/tools tests to // pass with the new parsing logic introduced for type // parameters. Remove this once error recovery has been // more generally reconsidered. if p.tok != token.RBRACE { p.next() // make progress } sel := &ast.Ident{NamePos: pos, Name: "_"} x = &ast.SelectorExpr{X: x, Sel: sel} } case token.LBRACK: x = p.parseIndexOrSliceOrInstance(p.checkExpr(x)) case token.LPAREN: x = p.parseCallOrConversion(p.checkExprOrType(x)) case token.LBRACE: // operand may have returned a parenthesized complit // type; accept it but complain if we have a complit t := unparen(x) // determine if '{' belongs to a composite literal or a block statement switch t.(type) { case *ast.BadExpr, *ast.Ident, *ast.SelectorExpr: if p.exprLev < 0 { return x } // x is possibly a composite literal type case *ast.IndexExpr, *ast.IndexListExpr: if p.exprLev < 0 { return x } // x is possibly a composite literal type case *ast.ArrayType, *ast.StructType, *ast.MapType: // x is a composite literal type default: return x } if t != x { p.error(t.Pos(), "cannot parenthesize type in composite literal") // already progressed, no need to advance } x = p.parseLiteralValue(x) default: return x } } } func (p *parser) parseUnaryExpr() ast.Expr { defer decNestLev(incNestLev(p)) if p.trace { defer un(trace(p, "UnaryExpr")) } switch p.tok { case token.ADD, token.SUB, token.NOT, token.XOR, token.AND, token.TILDE: pos, op := p.pos, p.tok p.next() x := p.parseUnaryExpr() return &ast.UnaryExpr{OpPos: pos, Op: op, X: p.checkExpr(x)} case token.ARROW: // channel type or receive expression arrow := p.pos p.next() // If the next token is token.CHAN we still don't know if it // is a channel type or a receive operation - we only know // once we have found the end of the unary expression. There // are two cases: // // <- type => (<-type) must be channel type // <- expr => <-(expr) is a receive from an expression // // In the first case, the arrow must be re-associated with // the channel type parsed already: // // <- (chan type) => (<-chan type) // <- (chan<- type) => (<-chan (<-type)) x := p.parseUnaryExpr() // determine which case we have if typ, ok := x.(*ast.ChanType); ok { // (<-type) // re-associate position info and <- dir := ast.SEND for ok && dir == ast.SEND { if typ.Dir == ast.RECV { // error: (<-type) is (<-(<-chan T)) p.errorExpected(typ.Arrow, "'chan'") } arrow, typ.Begin, typ.Arrow = typ.Arrow, arrow, arrow dir, typ.Dir = typ.Dir, ast.RECV typ, ok = typ.Value.(*ast.ChanType) } if dir == ast.SEND { p.errorExpected(arrow, "channel type") } return x } // <-(expr) return &ast.UnaryExpr{OpPos: arrow, Op: token.ARROW, X: p.checkExpr(x)} case token.MUL: // pointer type or unary "*" expression pos := p.pos p.next() x := p.parseUnaryExpr() return &ast.StarExpr{Star: pos, X: p.checkExprOrType(x)} } return p.parsePrimaryExpr(nil) } func (p *parser) tokPrec() (token.Token, int) { tok := p.tok if p.inRhs && tok == token.ASSIGN { tok = token.EQL } return tok, tok.Precedence() } // parseBinaryExpr parses a (possibly) binary expression. // If x is non-nil, it is used as the left operand. // If check is true, operands are checked to be valid expressions. // // TODO(rfindley): parseBinaryExpr has become overloaded. Consider refactoring. func (p *parser) parseBinaryExpr(x ast.Expr, prec1 int, check bool) ast.Expr { if p.trace { defer un(trace(p, "BinaryExpr")) } if x == nil { x = p.parseUnaryExpr() } // We track the nesting here rather than at the entry for the function, // since it can iteratively produce a nested output, and we want to // limit how deep a structure we generate. var n int defer func() { p.nestLev -= n }() for n = 1; ; n++ { incNestLev(p) op, oprec := p.tokPrec() if oprec < prec1 { return x } pos := p.expect(op) y := p.parseBinaryExpr(nil, oprec+1, check) if check { x = p.checkExpr(x) y = p.checkExpr(y) } x = &ast.BinaryExpr{X: x, OpPos: pos, Op: op, Y: y} } } // The result may be a type or even a raw type ([...]int). Callers must // check the result (using checkExpr or checkExprOrType), depending on // context. func (p *parser) parseExpr() ast.Expr { if p.trace { defer un(trace(p, "Expression")) } return p.parseBinaryExpr(nil, token.LowestPrec+1, true) } func (p *parser) parseRhs() ast.Expr { old := p.inRhs p.inRhs = true x := p.checkExpr(p.parseExpr()) p.inRhs = old return x } func (p *parser) parseRhsOrType() ast.Expr { old := p.inRhs p.inRhs = true x := p.checkExprOrType(p.parseExpr()) p.inRhs = old return x } // ---------------------------------------------------------------------------- // Statements // Parsing modes for parseSimpleStmt. const ( basic = iota labelOk rangeOk ) // parseSimpleStmt returns true as 2nd result if it parsed the assignment // of a range clause (with mode == rangeOk). The returned statement is an // assignment with a right-hand side that is a single unary expression of // the form "range x". No guarantees are given for the left-hand side. func (p *parser) parseSimpleStmt(mode int) (ast.Stmt, bool) { if p.trace { defer un(trace(p, "SimpleStmt")) } x := p.parseList(false) switch p.tok { case token.DEFINE, token.ASSIGN, token.ADD_ASSIGN, token.SUB_ASSIGN, token.MUL_ASSIGN, token.QUO_ASSIGN, token.REM_ASSIGN, token.AND_ASSIGN, token.OR_ASSIGN, token.XOR_ASSIGN, token.SHL_ASSIGN, token.SHR_ASSIGN, token.AND_NOT_ASSIGN: // assignment statement, possibly part of a range clause pos, tok := p.pos, p.tok p.next() var y []ast.Expr isRange := false if mode == rangeOk && p.tok == token.RANGE && (tok == token.DEFINE || tok == token.ASSIGN) { pos := p.pos p.next() y = []ast.Expr{&ast.UnaryExpr{OpPos: pos, Op: token.RANGE, X: p.parseRhs()}} isRange = true } else { y = p.parseList(true) } as := &ast.AssignStmt{Lhs: x, TokPos: pos, Tok: tok, Rhs: y} if tok == token.DEFINE { p.checkAssignStmt(as) } return as, isRange } if len(x) > 1 { p.errorExpected(x[0].Pos(), "1 expression") // continue with first expression } switch p.tok { case token.COLON: // labeled statement colon := p.pos p.next() if label, isIdent := x[0].(*ast.Ident); mode == labelOk && isIdent { // Go spec: The scope of a label is the body of the function // in which it is declared and excludes the body of any nested // function. stmt := &ast.LabeledStmt{Label: label, Colon: colon, Stmt: p.parseStmt()} return stmt, false } // The label declaration typically starts at x[0].Pos(), but the label // declaration may be erroneous due to a token after that position (and // before the ':'). If SpuriousErrors is not set, the (only) error // reported for the line is the illegal label error instead of the token // before the ':' that caused the problem. Thus, use the (latest) colon // position for error reporting. p.error(colon, "illegal label declaration") return &ast.BadStmt{From: x[0].Pos(), To: colon + 1}, false case token.ARROW: // send statement arrow := p.pos p.next() y := p.parseRhs() return &ast.SendStmt{Chan: x[0], Arrow: arrow, Value: y}, false case token.INC, token.DEC: // increment or decrement s := &ast.IncDecStmt{X: x[0], TokPos: p.pos, Tok: p.tok} p.next() return s, false } // expression return &ast.ExprStmt{X: x[0]}, false } func (p *parser) checkAssignStmt(as *ast.AssignStmt) { for _, x := range as.Lhs { if _, isIdent := x.(*ast.Ident); !isIdent { p.errorExpected(x.Pos(), "identifier on left side of :=") } } } func (p *parser) parseCallExpr(callType string) *ast.CallExpr { x := p.parseRhsOrType() // could be a conversion: (some type)(x) if call, isCall := x.(*ast.CallExpr); isCall { return call } if _, isBad := x.(*ast.BadExpr); !isBad { // only report error if it's a new one p.error(p.safePos(x.End()), fmt.Sprintf("function must be invoked in %s statement", callType)) } return nil } func (p *parser) parseGoStmt() ast.Stmt { if p.trace { defer un(trace(p, "GoStmt")) } pos := p.expect(token.GO) call := p.parseCallExpr("go") p.expectSemi() if call == nil { return &ast.BadStmt{From: pos, To: pos + 2} // len("go") } return &ast.GoStmt{Go: pos, Call: call} } func (p *parser) parseDeferStmt() ast.Stmt { if p.trace { defer un(trace(p, "DeferStmt")) } pos := p.expect(token.DEFER) call := p.parseCallExpr("defer") p.expectSemi() if call == nil { return &ast.BadStmt{From: pos, To: pos + 5} // len("defer") } return &ast.DeferStmt{Defer: pos, Call: call} } func (p *parser) parseReturnStmt() *ast.ReturnStmt { if p.trace { defer un(trace(p, "ReturnStmt")) } pos := p.pos p.expect(token.RETURN) var x []ast.Expr if p.tok != token.SEMICOLON && p.tok != token.RBRACE { x = p.parseList(true) } p.expectSemi() return &ast.ReturnStmt{Return: pos, Results: x} } func (p *parser) parseBranchStmt(tok token.Token) *ast.BranchStmt { if p.trace { defer un(trace(p, "BranchStmt")) } pos := p.expect(tok) var label *ast.Ident if tok != token.FALLTHROUGH && p.tok == token.IDENT { label = p.parseIdent() } p.expectSemi() return &ast.BranchStmt{TokPos: pos, Tok: tok, Label: label} } func (p *parser) makeExpr(s ast.Stmt, want string) ast.Expr { if s == nil { return nil } if es, isExpr := s.(*ast.ExprStmt); isExpr { return p.checkExpr(es.X) } found := "simple statement" if _, isAss := s.(*ast.AssignStmt); isAss { found = "assignment" } p.error(s.Pos(), fmt.Sprintf("expected %s, found %s (missing parentheses around composite literal?)", want, found)) return &ast.BadExpr{From: s.Pos(), To: p.safePos(s.End())} } // parseIfHeader is an adjusted version of parser.header // in cmd/compile/internal/syntax/parser.go, which has // been tuned for better error handling. func (p *parser) parseIfHeader() (init ast.Stmt, cond ast.Expr) { if p.tok == token.LBRACE { p.error(p.pos, "missing condition in if statement") cond = &ast.BadExpr{From: p.pos, To: p.pos} return } // p.tok != token.LBRACE prevLev := p.exprLev p.exprLev = -1 if p.tok != token.SEMICOLON { // accept potential variable declaration but complain if p.tok == token.VAR { p.next() p.error(p.pos, "var declaration not allowed in 'IF' initializer") } init, _ = p.parseSimpleStmt(basic) } var condStmt ast.Stmt var semi struct { pos token.Pos lit string // ";" or "\n"; valid if pos.IsValid() } if p.tok != token.LBRACE { if p.tok == token.SEMICOLON { semi.pos = p.pos semi.lit = p.lit p.next() } else { p.expect(token.SEMICOLON) } if p.tok != token.LBRACE { condStmt, _ = p.parseSimpleStmt(basic) } } else { condStmt = init init = nil } if condStmt != nil { cond = p.makeExpr(condStmt, "boolean expression") } else if semi.pos.IsValid() { if semi.lit == "\n" { p.error(semi.pos, "unexpected newline, expecting { after if clause") } else { p.error(semi.pos, "missing condition in if statement") } } // make sure we have a valid AST if cond == nil { cond = &ast.BadExpr{From: p.pos, To: p.pos} } p.exprLev = prevLev return } func (p *parser) parseIfStmt() *ast.IfStmt { defer decNestLev(incNestLev(p)) if p.trace { defer un(trace(p, "IfStmt")) } pos := p.expect(token.IF) init, cond := p.parseIfHeader() body := p.parseBlockStmt() var else_ ast.Stmt if p.tok == token.ELSE { p.next() switch p.tok { case token.IF: else_ = p.parseIfStmt() case token.LBRACE: else_ = p.parseBlockStmt() p.expectSemi() default: p.errorExpected(p.pos, "if statement or block") else_ = &ast.BadStmt{From: p.pos, To: p.pos} } } else { p.expectSemi() } return &ast.IfStmt{If: pos, Init: init, Cond: cond, Body: body, Else: else_} } func (p *parser) parseTypeList() (list []ast.Expr) { if p.trace { defer un(trace(p, "TypeList")) } list = append(list, p.parseType()) for p.tok == token.COMMA { p.next() list = append(list, p.parseType()) } return } func (p *parser) parseCaseClause(typeSwitch bool) *ast.CaseClause { if p.trace { defer un(trace(p, "CaseClause")) } pos := p.pos var list []ast.Expr if p.tok == token.CASE { p.next() if typeSwitch { list = p.parseTypeList() } else { list = p.parseList(true) } } else { p.expect(token.DEFAULT) } colon := p.expect(token.COLON) body := p.parseStmtList() return &ast.CaseClause{Case: pos, List: list, Colon: colon, Body: body} } func isTypeSwitchAssert(x ast.Expr) bool { a, ok := x.(*ast.TypeAssertExpr) return ok && a.Type == nil } func (p *parser) isTypeSwitchGuard(s ast.Stmt) bool { switch t := s.(type) { case *ast.ExprStmt: // x.(type) return isTypeSwitchAssert(t.X) case *ast.AssignStmt: // v := x.(type) if len(t.Lhs) == 1 && len(t.Rhs) == 1 && isTypeSwitchAssert(t.Rhs[0]) { switch t.Tok { case token.ASSIGN: // permit v = x.(type) but complain p.error(t.TokPos, "expected ':=', found '='") fallthrough case token.DEFINE: return true } } } return false } func (p *parser) parseSwitchStmt() ast.Stmt { if p.trace { defer un(trace(p, "SwitchStmt")) } pos := p.expect(token.SWITCH) var s1, s2 ast.Stmt if p.tok != token.LBRACE { prevLev := p.exprLev p.exprLev = -1 if p.tok != token.SEMICOLON { s2, _ = p.parseSimpleStmt(basic) } if p.tok == token.SEMICOLON { p.next() s1 = s2 s2 = nil if p.tok != token.LBRACE { // A TypeSwitchGuard may declare a variable in addition // to the variable declared in the initial SimpleStmt. // Introduce extra scope to avoid redeclaration errors: // // switch t := 0; t := x.(T) { ... } // // (this code is not valid Go because the first t // cannot be accessed and thus is never used, the extra // scope is needed for the correct error message). // // If we don't have a type switch, s2 must be an expression. // Having the extra nested but empty scope won't affect it. s2, _ = p.parseSimpleStmt(basic) } } p.exprLev = prevLev } typeSwitch := p.isTypeSwitchGuard(s2) lbrace := p.expect(token.LBRACE) var list []ast.Stmt for p.tok == token.CASE || p.tok == token.DEFAULT { list = append(list, p.parseCaseClause(typeSwitch)) } rbrace := p.expect(token.RBRACE) p.expectSemi() body := &ast.BlockStmt{Lbrace: lbrace, List: list, Rbrace: rbrace} if typeSwitch { return &ast.TypeSwitchStmt{Switch: pos, Init: s1, Assign: s2, Body: body} } return &ast.SwitchStmt{Switch: pos, Init: s1, Tag: p.makeExpr(s2, "switch expression"), Body: body} } func (p *parser) parseCommClause() *ast.CommClause { if p.trace { defer un(trace(p, "CommClause")) } pos := p.pos var comm ast.Stmt if p.tok == token.CASE { p.next() lhs := p.parseList(false) if p.tok == token.ARROW { // SendStmt if len(lhs) > 1 { p.errorExpected(lhs[0].Pos(), "1 expression") // continue with first expression } arrow := p.pos p.next() rhs := p.parseRhs() comm = &ast.SendStmt{Chan: lhs[0], Arrow: arrow, Value: rhs} } else { // RecvStmt if tok := p.tok; tok == token.ASSIGN || tok == token.DEFINE { // RecvStmt with assignment if len(lhs) > 2 { p.errorExpected(lhs[0].Pos(), "1 or 2 expressions") // continue with first two expressions lhs = lhs[0:2] } pos := p.pos p.next() rhs := p.parseRhs() as := &ast.AssignStmt{Lhs: lhs, TokPos: pos, Tok: tok, Rhs: []ast.Expr{rhs}} if tok == token.DEFINE { p.checkAssignStmt(as) } comm = as } else { // lhs must be single receive operation if len(lhs) > 1 { p.errorExpected(lhs[0].Pos(), "1 expression") // continue with first expression } comm = &ast.ExprStmt{X: lhs[0]} } } } else { p.expect(token.DEFAULT) } colon := p.expect(token.COLON) body := p.parseStmtList() return &ast.CommClause{Case: pos, Comm: comm, Colon: colon, Body: body} } func (p *parser) parseSelectStmt() *ast.SelectStmt { if p.trace { defer un(trace(p, "SelectStmt")) } pos := p.expect(token.SELECT) lbrace := p.expect(token.LBRACE) var list []ast.Stmt for p.tok == token.CASE || p.tok == token.DEFAULT { list = append(list, p.parseCommClause()) } rbrace := p.expect(token.RBRACE) p.expectSemi() body := &ast.BlockStmt{Lbrace: lbrace, List: list, Rbrace: rbrace} return &ast.SelectStmt{Select: pos, Body: body} } func (p *parser) parseForStmt() ast.Stmt { if p.trace { defer un(trace(p, "ForStmt")) } pos := p.expect(token.FOR) var s1, s2, s3 ast.Stmt var isRange bool if p.tok != token.LBRACE { prevLev := p.exprLev p.exprLev = -1 if p.tok != token.SEMICOLON { if p.tok == token.RANGE { // "for range x" (nil lhs in assignment) pos := p.pos p.next() y := []ast.Expr{&ast.UnaryExpr{OpPos: pos, Op: token.RANGE, X: p.parseRhs()}} s2 = &ast.AssignStmt{Rhs: y} isRange = true } else { s2, isRange = p.parseSimpleStmt(rangeOk) } } if !isRange && p.tok == token.SEMICOLON { p.next() s1 = s2 s2 = nil if p.tok != token.SEMICOLON { s2, _ = p.parseSimpleStmt(basic) } p.expectSemi() if p.tok != token.LBRACE { s3, _ = p.parseSimpleStmt(basic) } } p.exprLev = prevLev } body := p.parseBlockStmt() p.expectSemi() if isRange { as := s2.(*ast.AssignStmt) // check lhs var key, value ast.Expr switch len(as.Lhs) { case 0: // nothing to do case 1: key = as.Lhs[0] case 2: key, value = as.Lhs[0], as.Lhs[1] default: p.errorExpected(as.Lhs[len(as.Lhs)-1].Pos(), "at most 2 expressions") return &ast.BadStmt{From: pos, To: p.safePos(body.End())} } // parseSimpleStmt returned a right-hand side that // is a single unary expression of the form "range x" x := as.Rhs[0].(*ast.UnaryExpr).X return &ast.RangeStmt{ For: pos, Key: key, Value: value, TokPos: as.TokPos, Tok: as.Tok, X: x, Body: body, } } // regular for statement return &ast.ForStmt{ For: pos, Init: s1, Cond: p.makeExpr(s2, "boolean or range expression"), Post: s3, Body: body, } } func (p *parser) parseStmt() (s ast.Stmt) { defer decNestLev(incNestLev(p)) if p.trace { defer un(trace(p, "Statement")) } switch p.tok { case token.CONST, token.TYPE, token.VAR: s = &ast.DeclStmt{Decl: p.parseDecl(stmtStart)} case // tokens that may start an expression token.IDENT, token.INT, token.FLOAT, token.IMAG, token.CHAR, token.STRING, token.FUNC, token.LPAREN, // operands token.LBRACK, token.STRUCT, token.MAP, token.CHAN, token.INTERFACE, // composite types token.ADD, token.SUB, token.MUL, token.AND, token.XOR, token.ARROW, token.NOT: // unary operators s, _ = p.parseSimpleStmt(labelOk) // because of the required look-ahead, labeled statements are // parsed by parseSimpleStmt - don't expect a semicolon after // them if _, isLabeledStmt := s.(*ast.LabeledStmt); !isLabeledStmt { p.expectSemi() } case token.GO: s = p.parseGoStmt() case token.DEFER: s = p.parseDeferStmt() case token.RETURN: s = p.parseReturnStmt() case token.BREAK, token.CONTINUE, token.GOTO, token.FALLTHROUGH: s = p.parseBranchStmt(p.tok) case token.LBRACE: s = p.parseBlockStmt() p.expectSemi() case token.IF: s = p.parseIfStmt() case token.SWITCH: s = p.parseSwitchStmt() case token.SELECT: s = p.parseSelectStmt() case token.FOR: s = p.parseForStmt() case token.SEMICOLON: // Is it ever possible to have an implicit semicolon // producing an empty statement in a valid program? // (handle correctly anyway) s = &ast.EmptyStmt{Semicolon: p.pos, Implicit: p.lit == "\n"} p.next() case token.RBRACE: // a semicolon may be omitted before a closing "}" s = &ast.EmptyStmt{Semicolon: p.pos, Implicit: true} default: // no statement found pos := p.pos p.errorExpected(pos, "statement") p.advance(stmtStart) s = &ast.BadStmt{From: pos, To: p.pos} } return } // ---------------------------------------------------------------------------- // Declarations type parseSpecFunction func(doc *ast.CommentGroup, pos token.Pos, keyword token.Token, iota int) ast.Spec func isValidImport(lit string) bool { const illegalChars = `!"#$%&'()*,:;<=>?[\]^{|}` + "`\uFFFD" s, _ := strconv.Unquote(lit) // go/scanner returns a legal string literal for _, r := range s { if !unicode.IsGraphic(r) || unicode.IsSpace(r) || strings.ContainsRune(illegalChars, r) { return false } } return s != "" } func (p *parser) parseImportSpec(doc *ast.CommentGroup, _ token.Pos, _ token.Token, _ int) ast.Spec { if p.trace { defer un(trace(p, "ImportSpec")) } var ident *ast.Ident switch p.tok { case token.PERIOD: ident = &ast.Ident{NamePos: p.pos, Name: "."} p.next() case token.IDENT: ident = p.parseIdent() } pos := p.pos var path string if p.tok == token.STRING { path = p.lit if !isValidImport(path) { p.error(pos, "invalid import path: "+path) } p.next() } else { p.expect(token.STRING) // use expect() error handling } p.expectSemi() // call before accessing p.linecomment // collect imports spec := &ast.ImportSpec{ Doc: doc, Name: ident, Path: &ast.BasicLit{ValuePos: pos, Kind: token.STRING, Value: path}, Comment: p.lineComment, } p.imports = append(p.imports, spec) return spec } func (p *parser) parseValueSpec(doc *ast.CommentGroup, _ token.Pos, keyword token.Token, iota int) ast.Spec { if p.trace { defer un(trace(p, keyword.String()+"Spec")) } pos := p.pos idents := p.parseIdentList() typ := p.tryIdentOrType() var values []ast.Expr // always permit optional initialization for more tolerant parsing if p.tok == token.ASSIGN { p.next() values = p.parseList(true) } p.expectSemi() // call before accessing p.linecomment switch keyword { case token.VAR: if typ == nil && values == nil { p.error(pos, "missing variable type or initialization") } case token.CONST: if values == nil && (iota == 0 || typ != nil) { p.error(pos, "missing constant value") } } spec := &ast.ValueSpec{ Doc: doc, Names: idents, Type: typ, Values: values, Comment: p.lineComment, } return spec } func (p *parser) parseGenericType(spec *ast.TypeSpec, openPos token.Pos, name0 *ast.Ident, typ0 ast.Expr) { if p.trace { defer un(trace(p, "parseGenericType")) } list := p.parseParameterList(name0, typ0, token.RBRACK) closePos := p.expect(token.RBRACK) spec.TypeParams = &ast.FieldList{Opening: openPos, List: list, Closing: closePos} // Let the type checker decide whether to accept type parameters on aliases: // see issue #46477. if p.tok == token.ASSIGN { // type alias spec.Assign = p.pos p.next() } spec.Type = p.parseType() } func (p *parser) parseTypeSpec(doc *ast.CommentGroup, _ token.Pos, _ token.Token, _ int) ast.Spec { if p.trace { defer un(trace(p, "TypeSpec")) } name := p.parseIdent() spec := &ast.TypeSpec{Doc: doc, Name: name} if p.tok == token.LBRACK && p.allowGenerics() { // spec.Name "[" ... // array/slice type or type parameter list lbrack := p.pos p.next() if p.tok == token.IDENT { // We may have an array type or a type parameter list. // In either case we expect an expression x (which may // just be a name, or a more complex expression) which // we can analyze further. // // A type parameter list may have a type bound starting // with a "[" as in: P []E. In that case, simply parsing // an expression would lead to an error: P[] is invalid. // But since index or slice expressions are never constant // and thus invalid array length expressions, if the name // is followed by "[" it must be the start of an array or // slice constraint. Only if we don't see a "[" do we // need to parse a full expression. Notably, name <- x // is not a concern because name <- x is a statement and // not an expression. var x ast.Expr = p.parseIdent() if p.tok != token.LBRACK { // To parse the expression starting with name, expand // the call sequence we would get by passing in name // to parser.expr, and pass in name to parsePrimaryExpr. p.exprLev++ lhs := p.parsePrimaryExpr(x) x = p.parseBinaryExpr(lhs, token.LowestPrec+1, false) p.exprLev-- } // Analyze expression x. If we can split x into a type parameter // name, possibly followed by a type parameter type, we consider // this the start of a type parameter list, with some caveats: // a single name followed by "]" tilts the decision towards an // array declaration; a type parameter type that could also be // an ordinary expression but which is followed by a comma tilts // the decision towards a type parameter list. if pname, ptype := extractName(x, p.tok == token.COMMA); pname != nil && (ptype != nil || p.tok != token.RBRACK) { // spec.Name "[" pname ... // spec.Name "[" pname ptype ... // spec.Name "[" pname ptype "," ... p.parseGenericType(spec, lbrack, pname, ptype) // ptype may be nil } else { // spec.Name "[" pname "]" ... // spec.Name "[" x ... spec.Type = p.parseArrayType(lbrack, x) } } else { // array type spec.Type = p.parseArrayType(lbrack, nil) } } else { // no type parameters if p.tok == token.ASSIGN { // type alias spec.Assign = p.pos p.next() } spec.Type = p.parseType() } p.expectSemi() // call before accessing p.linecomment spec.Comment = p.lineComment return spec } // extractName splits the expression x into (name, expr) if syntactically // x can be written as name expr. The split only happens if expr is a type // element (per the isTypeElem predicate) or if force is set. // If x is just a name, the result is (name, nil). If the split succeeds, // the result is (name, expr). Otherwise the result is (nil, x). // Examples: // // x force name expr // ------------------------------------ // P*[]int T/F P *[]int // P*E T P *E // P*E F nil P*E // P([]int) T/F P []int // P(E) T P E // P(E) F nil P(E) // P*E|F|~G T/F P *E|F|~G // P*E|F|G T P *E|F|G // P*E|F|G F nil P*E|F|G func extractName(x ast.Expr, force bool) (*ast.Ident, ast.Expr) { switch x := x.(type) { case *ast.Ident: return x, nil case *ast.BinaryExpr: switch x.Op { case token.MUL: if name, _ := x.X.(*ast.Ident); name != nil && (force || isTypeElem(x.Y)) { // x = name *x.Y return name, &ast.StarExpr{Star: x.OpPos, X: x.Y} } case token.OR: if name, lhs := extractName(x.X, force || isTypeElem(x.Y)); name != nil && lhs != nil { // x = name lhs|x.Y op := *x op.X = lhs return name, &op } } case *ast.CallExpr: if name, _ := x.Fun.(*ast.Ident); name != nil { if len(x.Args) == 1 && x.Ellipsis == token.NoPos && (force || isTypeElem(x.Args[0])) { // x = name "(" x.ArgList[0] ")" return name, x.Args[0] } } } return nil, x } // isTypeElem reports whether x is a (possibly parenthesized) type element expression. // The result is false if x could be a type element OR an ordinary (value) expression. func isTypeElem(x ast.Expr) bool { switch x := x.(type) { case *ast.ArrayType, *ast.StructType, *ast.FuncType, *ast.InterfaceType, *ast.MapType, *ast.ChanType: return true case *ast.BinaryExpr: return isTypeElem(x.X) || isTypeElem(x.Y) case *ast.UnaryExpr: return x.Op == token.TILDE case *ast.ParenExpr: return isTypeElem(x.X) } return false } func (p *parser) parseGenDecl(keyword token.Token, f parseSpecFunction) *ast.GenDecl { if p.trace { defer un(trace(p, "GenDecl("+keyword.String()+")")) } doc := p.leadComment pos := p.expect(keyword) var lparen, rparen token.Pos var list []ast.Spec if p.tok == token.LPAREN { lparen = p.pos p.next() for iota := 0; p.tok != token.RPAREN && p.tok != token.EOF; iota++ { list = append(list, f(p.leadComment, pos, keyword, iota)) } rparen = p.expect(token.RPAREN) p.expectSemi() } else { list = append(list, f(nil, pos, keyword, 0)) } return &ast.GenDecl{ Doc: doc, TokPos: pos, Tok: keyword, Lparen: lparen, Specs: list, Rparen: rparen, } } func (p *parser) parseFuncDecl() *ast.FuncDecl { if p.trace { defer un(trace(p, "FunctionDecl")) } doc := p.leadComment pos := p.expect(token.FUNC) var recv *ast.FieldList if p.tok == token.LPAREN { _, recv = p.parseParameters(false) } ident := p.parseIdent() tparams, params := p.parseParameters(true) if recv != nil && tparams != nil { // Method declarations do not have type parameters. We parse them for a // better error message and improved error recovery. p.error(tparams.Opening, "method must have no type parameters") tparams = nil } results := p.parseResult() var body *ast.BlockStmt switch p.tok { case token.LBRACE: body = p.parseBody() p.expectSemi() case token.SEMICOLON: p.next() if p.tok == token.LBRACE { // opening { of function declaration on next line p.error(p.pos, "unexpected semicolon or newline before {") body = p.parseBody() p.expectSemi() } default: p.expectSemi() } decl := &ast.FuncDecl{ Doc: doc, Recv: recv, Name: ident, Type: &ast.FuncType{ Func: pos, TypeParams: tparams, Params: params, Results: results, }, Body: body, } return decl } func (p *parser) parseDecl(sync map[token.Token]bool) ast.Decl { if p.trace { defer un(trace(p, "Declaration")) } var f parseSpecFunction switch p.tok { case token.CONST, token.VAR: f = p.parseValueSpec case token.TYPE: f = p.parseTypeSpec case token.FUNC: return p.parseFuncDecl() default: pos := p.pos p.errorExpected(pos, "declaration") p.advance(sync) return &ast.BadDecl{From: pos, To: p.pos} } return p.parseGenDecl(p.tok, f) } // ---------------------------------------------------------------------------- // Source files func (p *parser) parseFile() *ast.File { if p.trace { defer un(trace(p, "File")) } // Don't bother parsing the rest if we had errors scanning the first token. // Likely not a Go source file at all. if p.errors.Len() != 0 { return nil } // package clause doc := p.leadComment pos := p.expect(token.PACKAGE) // Go spec: The package clause is not a declaration; // the package name does not appear in any scope. ident := p.parseIdent() if ident.Name == "_" && p.mode&DeclarationErrors != 0 { p.error(p.pos, "invalid package name _") } p.expectSemi() // Don't bother parsing the rest if we had errors parsing the package clause. // Likely not a Go source file at all. if p.errors.Len() != 0 { return nil } var decls []ast.Decl if p.mode&PackageClauseOnly == 0 { // import decls for p.tok == token.IMPORT { decls = append(decls, p.parseGenDecl(token.IMPORT, p.parseImportSpec)) } if p.mode&ImportsOnly == 0 { // rest of package body for p.tok != token.EOF { decls = append(decls, p.parseDecl(declStart)) } } } f := &ast.File{ Doc: doc, Package: pos, Name: ident, Decls: decls, Imports: p.imports, Comments: p.comments, } var declErr func(token.Pos, string) if p.mode&DeclarationErrors != 0 { declErr = p.error } if p.mode&SkipObjectResolution == 0 { resolveFile(f, p.file, declErr) } return f }