// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This file implements printing of AST nodes; specifically // expressions, statements, declarations, and files. It uses // the print functionality implemented in printer.go. package printer import ( "bytes" "go/ast" "go/token" "math" "strconv" "strings" "unicode" "unicode/utf8" ) // Formatting issues: // - better comment formatting for /*-style comments at the end of a line (e.g. a declaration) // when the comment spans multiple lines; if such a comment is just two lines, formatting is // not idempotent // - formatting of expression lists // - should use blank instead of tab to separate one-line function bodies from // the function header unless there is a group of consecutive one-liners // ---------------------------------------------------------------------------- // Common AST nodes. // Print as many newlines as necessary (but at least min newlines) to get to // the current line. ws is printed before the first line break. If newSection // is set, the first line break is printed as formfeed. Returns 0 if no line // breaks were printed, returns 1 if there was exactly one newline printed, // and returns a value > 1 if there was a formfeed or more than one newline // printed. // // TODO(gri): linebreak may add too many lines if the next statement at "line" // is preceded by comments because the computation of n assumes // the current position before the comment and the target position // after the comment. Thus, after interspersing such comments, the // space taken up by them is not considered to reduce the number of // linebreaks. At the moment there is no easy way to know about // future (not yet interspersed) comments in this function. func (p *printer) linebreak(line, min int, ws whiteSpace, newSection bool) (nbreaks int) { n := nlimit(line - p.pos.Line) if n < min { n = min } if n > 0 { p.print(ws) if newSection { p.print(formfeed) n-- nbreaks = 2 } nbreaks += n for ; n > 0; n-- { p.print(newline) } } return } // setComment sets g as the next comment if g != nil and if node comments // are enabled - this mode is used when printing source code fragments such // as exports only. It assumes that there is no pending comment in p.comments // and at most one pending comment in the p.comment cache. func (p *printer) setComment(g *ast.CommentGroup) { if g == nil || !p.useNodeComments { return } if p.comments == nil { // initialize p.comments lazily p.comments = make([]*ast.CommentGroup, 1) } else if p.cindex < len(p.comments) { // for some reason there are pending comments; this // should never happen - handle gracefully and flush // all comments up to g, ignore anything after that p.flush(p.posFor(g.List[0].Pos()), token.ILLEGAL) p.comments = p.comments[0:1] // in debug mode, report error p.internalError("setComment found pending comments") } p.comments[0] = g p.cindex = 0 // don't overwrite any pending comment in the p.comment cache // (there may be a pending comment when a line comment is // immediately followed by a lead comment with no other // tokens between) if p.commentOffset == infinity { p.nextComment() // get comment ready for use } } type exprListMode uint const ( commaTerm exprListMode = 1 << iota // list is optionally terminated by a comma noIndent // no extra indentation in multi-line lists ) // If indent is set, a multi-line identifier list is indented after the // first linebreak encountered. func (p *printer) identList(list []*ast.Ident, indent bool) { // convert into an expression list so we can re-use exprList formatting xlist := make([]ast.Expr, len(list)) for i, x := range list { xlist[i] = x } var mode exprListMode if !indent { mode = noIndent } p.exprList(token.NoPos, xlist, 1, mode, token.NoPos, false) } const filteredMsg = "contains filtered or unexported fields" // Print a list of expressions. If the list spans multiple // source lines, the original line breaks are respected between // expressions. // // TODO(gri) Consider rewriting this to be independent of []ast.Expr // so that we can use the algorithm for any kind of list // // (e.g., pass list via a channel over which to range). func (p *printer) exprList(prev0 token.Pos, list []ast.Expr, depth int, mode exprListMode, next0 token.Pos, isIncomplete bool) { if len(list) == 0 { if isIncomplete { prev := p.posFor(prev0) next := p.posFor(next0) if prev.IsValid() && prev.Line == next.Line { p.print("/* " + filteredMsg + " */") } else { p.print(newline) p.print(indent, "// "+filteredMsg, unindent, newline) } } return } prev := p.posFor(prev0) next := p.posFor(next0) line := p.lineFor(list[0].Pos()) endLine := p.lineFor(list[len(list)-1].End()) if prev.IsValid() && prev.Line == line && line == endLine { // all list entries on a single line for i, x := range list { if i > 0 { // use position of expression following the comma as // comma position for correct comment placement p.print(x.Pos(), token.COMMA, blank) } p.expr0(x, depth) } if isIncomplete { p.print(token.COMMA, blank, "/* "+filteredMsg+" */") } return } // list entries span multiple lines; // use source code positions to guide line breaks // Don't add extra indentation if noIndent is set; // i.e., pretend that the first line is already indented. ws := ignore if mode&noIndent == 0 { ws = indent } // The first linebreak is always a formfeed since this section must not // depend on any previous formatting. prevBreak := -1 // index of last expression that was followed by a linebreak if prev.IsValid() && prev.Line < line && p.linebreak(line, 0, ws, true) > 0 { ws = ignore prevBreak = 0 } // initialize expression/key size: a zero value indicates expr/key doesn't fit on a single line size := 0 // We use the ratio between the geometric mean of the previous key sizes and // the current size to determine if there should be a break in the alignment. // To compute the geometric mean we accumulate the ln(size) values (lnsum) // and the number of sizes included (count). lnsum := 0.0 count := 0 // print all list elements prevLine := prev.Line for i, x := range list { line = p.lineFor(x.Pos()) // Determine if the next linebreak, if any, needs to use formfeed: // in general, use the entire node size to make the decision; for // key:value expressions, use the key size. // TODO(gri) for a better result, should probably incorporate both // the key and the node size into the decision process useFF := true // Determine element size: All bets are off if we don't have // position information for the previous and next token (likely // generated code - simply ignore the size in this case by setting // it to 0). prevSize := size const infinity = 1e6 // larger than any source line size = p.nodeSize(x, infinity) pair, isPair := x.(*ast.KeyValueExpr) if size <= infinity && prev.IsValid() && next.IsValid() { // x fits on a single line if isPair { size = p.nodeSize(pair.Key, infinity) // size <= infinity } } else { // size too large or we don't have good layout information size = 0 } // If the previous line and the current line had single- // line-expressions and the key sizes are small or the // ratio between the current key and the geometric mean // if the previous key sizes does not exceed a threshold, // align columns and do not use formfeed. if prevSize > 0 && size > 0 { const smallSize = 40 if count == 0 || prevSize <= smallSize && size <= smallSize { useFF = false } else { const r = 2.5 // threshold geomean := math.Exp(lnsum / float64(count)) // count > 0 ratio := float64(size) / geomean useFF = r*ratio <= 1 || r <= ratio } } needsLinebreak := 0 < prevLine && prevLine < line if i > 0 { // Use position of expression following the comma as // comma position for correct comment placement, but // only if the expression is on the same line. if !needsLinebreak { p.print(x.Pos()) } p.print(token.COMMA) needsBlank := true if needsLinebreak { // Lines are broken using newlines so comments remain aligned // unless useFF is set or there are multiple expressions on // the same line in which case formfeed is used. nbreaks := p.linebreak(line, 0, ws, useFF || prevBreak+1 < i) if nbreaks > 0 { ws = ignore prevBreak = i needsBlank = false // we got a line break instead } // If there was a new section or more than one new line // (which means that the tabwriter will implicitly break // the section), reset the geomean variables since we are // starting a new group of elements with the next element. if nbreaks > 1 { lnsum = 0 count = 0 } } if needsBlank { p.print(blank) } } if len(list) > 1 && isPair && size > 0 && needsLinebreak { // We have a key:value expression that fits onto one line // and it's not on the same line as the prior expression: // Use a column for the key such that consecutive entries // can align if possible. // (needsLinebreak is set if we started a new line before) p.expr(pair.Key) p.print(pair.Colon, token.COLON, vtab) p.expr(pair.Value) } else { p.expr0(x, depth) } if size > 0 { lnsum += math.Log(float64(size)) count++ } prevLine = line } if mode&commaTerm != 0 && next.IsValid() && p.pos.Line < next.Line { // Print a terminating comma if the next token is on a new line. p.print(token.COMMA) if isIncomplete { p.print(newline) p.print("// " + filteredMsg) } if ws == ignore && mode&noIndent == 0 { // unindent if we indented p.print(unindent) } p.print(formfeed) // terminating comma needs a line break to look good return } if isIncomplete { p.print(token.COMMA, newline) p.print("// "+filteredMsg, newline) } if ws == ignore && mode&noIndent == 0 { // unindent if we indented p.print(unindent) } } type paramMode int const ( funcParam paramMode = iota funcTParam typeTParam ) func (p *printer) parameters(fields *ast.FieldList, mode paramMode) { openTok, closeTok := token.LPAREN, token.RPAREN if mode != funcParam { openTok, closeTok = token.LBRACK, token.RBRACK } p.print(fields.Opening, openTok) if len(fields.List) > 0 { prevLine := p.lineFor(fields.Opening) ws := indent for i, par := range fields.List { // determine par begin and end line (may be different // if there are multiple parameter names for this par // or the type is on a separate line) parLineBeg := p.lineFor(par.Pos()) parLineEnd := p.lineFor(par.End()) // separating "," if needed needsLinebreak := 0 < prevLine && prevLine < parLineBeg if i > 0 { // use position of parameter following the comma as // comma position for correct comma placement, but // only if the next parameter is on the same line if !needsLinebreak { p.print(par.Pos()) } p.print(token.COMMA) } // separator if needed (linebreak or blank) if needsLinebreak && p.linebreak(parLineBeg, 0, ws, true) > 0 { // break line if the opening "(" or previous parameter ended on a different line ws = ignore } else if i > 0 { p.print(blank) } // parameter names if len(par.Names) > 0 { // Very subtle: If we indented before (ws == ignore), identList // won't indent again. If we didn't (ws == indent), identList will // indent if the identList spans multiple lines, and it will outdent // again at the end (and still ws == indent). Thus, a subsequent indent // by a linebreak call after a type, or in the next multi-line identList // will do the right thing. p.identList(par.Names, ws == indent) p.print(blank) } // parameter type p.expr(stripParensAlways(par.Type)) prevLine = parLineEnd } // if the closing ")" is on a separate line from the last parameter, // print an additional "," and line break if closing := p.lineFor(fields.Closing); 0 < prevLine && prevLine < closing { p.print(token.COMMA) p.linebreak(closing, 0, ignore, true) } else if mode == typeTParam && fields.NumFields() == 1 && combinesWithName(fields.List[0].Type) { // A type parameter list [P T] where the name P and the type expression T syntactically // combine to another valid (value) expression requires a trailing comma, as in [P *T,] // (or an enclosing interface as in [P interface(*T)]), so that the type parameter list // is not parsed as an array length [P*T]. p.print(token.COMMA) } // unindent if we indented if ws == ignore { p.print(unindent) } } p.print(fields.Closing, closeTok) } // combinesWithName reports whether a name followed by the expression x // syntactically combines to another valid (value) expression. For instance // using *T for x, "name *T" syntactically appears as the expression x*T. // On the other hand, using P|Q or *P|~Q for x, "name P|Q" or name *P|~Q" // cannot be combined into a valid (value) expression. func combinesWithName(x ast.Expr) bool { switch x := x.(type) { case *ast.StarExpr: // name *x.X combines to name*x.X if x.X is not a type element return !isTypeElem(x.X) case *ast.BinaryExpr: return combinesWithName(x.X) && !isTypeElem(x.Y) case *ast.ParenExpr: // name(x) combines but we are making sure at // the call site that x is never parenthesized. panic("unexpected parenthesized expression") } return false } // isTypeElem reports whether x is a (possibly parenthesized) type element expression. // The result is false if x could be a type element OR an ordinary (value) expression. func isTypeElem(x ast.Expr) bool { switch x := x.(type) { case *ast.ArrayType, *ast.StructType, *ast.FuncType, *ast.InterfaceType, *ast.MapType, *ast.ChanType: return true case *ast.UnaryExpr: return x.Op == token.TILDE case *ast.BinaryExpr: return isTypeElem(x.X) || isTypeElem(x.Y) case *ast.ParenExpr: return isTypeElem(x.X) } return false } func (p *printer) signature(sig *ast.FuncType) { if sig.TypeParams != nil { p.parameters(sig.TypeParams, funcTParam) } if sig.Params != nil { p.parameters(sig.Params, funcParam) } else { p.print(token.LPAREN, token.RPAREN) } res := sig.Results n := res.NumFields() if n > 0 { // res != nil p.print(blank) if n == 1 && res.List[0].Names == nil { // single anonymous res; no ()'s p.expr(stripParensAlways(res.List[0].Type)) return } p.parameters(res, funcParam) } } func identListSize(list []*ast.Ident, maxSize int) (size int) { for i, x := range list { if i > 0 { size += len(", ") } size += utf8.RuneCountInString(x.Name) if size >= maxSize { break } } return } func (p *printer) isOneLineFieldList(list []*ast.Field) bool { if len(list) != 1 { return false // allow only one field } f := list[0] if f.Tag != nil || f.Comment != nil { return false // don't allow tags or comments } // only name(s) and type const maxSize = 30 // adjust as appropriate, this is an approximate value namesSize := identListSize(f.Names, maxSize) if namesSize > 0 { namesSize = 1 // blank between names and types } typeSize := p.nodeSize(f.Type, maxSize) return namesSize+typeSize <= maxSize } func (p *printer) setLineComment(text string) { p.setComment(&ast.CommentGroup{List: []*ast.Comment{{Slash: token.NoPos, Text: text}}}) } func (p *printer) fieldList(fields *ast.FieldList, isStruct, isIncomplete bool) { lbrace := fields.Opening list := fields.List rbrace := fields.Closing hasComments := isIncomplete || p.commentBefore(p.posFor(rbrace)) srcIsOneLine := lbrace.IsValid() && rbrace.IsValid() && p.lineFor(lbrace) == p.lineFor(rbrace) if !hasComments && srcIsOneLine { // possibly a one-line struct/interface if len(list) == 0 { // no blank between keyword and {} in this case p.print(lbrace, token.LBRACE, rbrace, token.RBRACE) return } else if p.isOneLineFieldList(list) { // small enough - print on one line // (don't use identList and ignore source line breaks) p.print(lbrace, token.LBRACE, blank) f := list[0] if isStruct { for i, x := range f.Names { if i > 0 { // no comments so no need for comma position p.print(token.COMMA, blank) } p.expr(x) } if len(f.Names) > 0 { p.print(blank) } p.expr(f.Type) } else { // interface if len(f.Names) > 0 { name := f.Names[0] // method name p.expr(name) p.signature(f.Type.(*ast.FuncType)) // don't print "func" } else { // embedded interface p.expr(f.Type) } } p.print(blank, rbrace, token.RBRACE) return } } // hasComments || !srcIsOneLine p.print(blank, lbrace, token.LBRACE, indent) if hasComments || len(list) > 0 { p.print(formfeed) } if isStruct { sep := vtab if len(list) == 1 { sep = blank } var line int for i, f := range list { if i > 0 { p.linebreak(p.lineFor(f.Pos()), 1, ignore, p.linesFrom(line) > 0) } extraTabs := 0 p.setComment(f.Doc) p.recordLine(&line) if len(f.Names) > 0 { // named fields p.identList(f.Names, false) p.print(sep) p.expr(f.Type) extraTabs = 1 } else { // anonymous field p.expr(f.Type) extraTabs = 2 } if f.Tag != nil { if len(f.Names) > 0 && sep == vtab { p.print(sep) } p.print(sep) p.expr(f.Tag) extraTabs = 0 } if f.Comment != nil { for ; extraTabs > 0; extraTabs-- { p.print(sep) } p.setComment(f.Comment) } } if isIncomplete { if len(list) > 0 { p.print(formfeed) } p.flush(p.posFor(rbrace), token.RBRACE) // make sure we don't lose the last line comment p.setLineComment("// " + filteredMsg) } } else { // interface var line int var prev *ast.Ident // previous "type" identifier for i, f := range list { var name *ast.Ident // first name, or nil if len(f.Names) > 0 { name = f.Names[0] } if i > 0 { // don't do a line break (min == 0) if we are printing a list of types // TODO(gri) this doesn't work quite right if the list of types is // spread across multiple lines min := 1 if prev != nil && name == prev { min = 0 } p.linebreak(p.lineFor(f.Pos()), min, ignore, p.linesFrom(line) > 0) } p.setComment(f.Doc) p.recordLine(&line) if name != nil { // method p.expr(name) p.signature(f.Type.(*ast.FuncType)) // don't print "func" prev = nil } else { // embedded interface p.expr(f.Type) prev = nil } p.setComment(f.Comment) } if isIncomplete { if len(list) > 0 { p.print(formfeed) } p.flush(p.posFor(rbrace), token.RBRACE) // make sure we don't lose the last line comment p.setLineComment("// contains filtered or unexported methods") } } p.print(unindent, formfeed, rbrace, token.RBRACE) } // ---------------------------------------------------------------------------- // Expressions func walkBinary(e *ast.BinaryExpr) (has4, has5 bool, maxProblem int) { switch e.Op.Precedence() { case 4: has4 = true case 5: has5 = true } switch l := e.X.(type) { case *ast.BinaryExpr: if l.Op.Precedence() < e.Op.Precedence() { // parens will be inserted. // pretend this is an *ast.ParenExpr and do nothing. break } h4, h5, mp := walkBinary(l) has4 = has4 || h4 has5 = has5 || h5 if maxProblem < mp { maxProblem = mp } } switch r := e.Y.(type) { case *ast.BinaryExpr: if r.Op.Precedence() <= e.Op.Precedence() { // parens will be inserted. // pretend this is an *ast.ParenExpr and do nothing. break } h4, h5, mp := walkBinary(r) has4 = has4 || h4 has5 = has5 || h5 if maxProblem < mp { maxProblem = mp } case *ast.StarExpr: if e.Op == token.QUO { // `*/` maxProblem = 5 } case *ast.UnaryExpr: switch e.Op.String() + r.Op.String() { case "/*", "&&", "&^": maxProblem = 5 case "++", "--": if maxProblem < 4 { maxProblem = 4 } } } return } func cutoff(e *ast.BinaryExpr, depth int) int { has4, has5, maxProblem := walkBinary(e) if maxProblem > 0 { return maxProblem + 1 } if has4 && has5 { if depth == 1 { return 5 } return 4 } if depth == 1 { return 6 } return 4 } func diffPrec(expr ast.Expr, prec int) int { x, ok := expr.(*ast.BinaryExpr) if !ok || prec != x.Op.Precedence() { return 1 } return 0 } func reduceDepth(depth int) int { depth-- if depth < 1 { depth = 1 } return depth } // Format the binary expression: decide the cutoff and then format. // Let's call depth == 1 Normal mode, and depth > 1 Compact mode. // (Algorithm suggestion by Russ Cox.) // // The precedences are: // // 5 * / % << >> & &^ // 4 + - | ^ // 3 == != < <= > >= // 2 && // 1 || // // The only decision is whether there will be spaces around levels 4 and 5. // There are never spaces at level 6 (unary), and always spaces at levels 3 and below. // // To choose the cutoff, look at the whole expression but excluding primary // expressions (function calls, parenthesized exprs), and apply these rules: // // 1. If there is a binary operator with a right side unary operand // that would clash without a space, the cutoff must be (in order): // // /* 6 // && 6 // &^ 6 // ++ 5 // -- 5 // // (Comparison operators always have spaces around them.) // // 2. If there is a mix of level 5 and level 4 operators, then the cutoff // is 5 (use spaces to distinguish precedence) in Normal mode // and 4 (never use spaces) in Compact mode. // // 3. If there are no level 4 operators or no level 5 operators, then the // cutoff is 6 (always use spaces) in Normal mode // and 4 (never use spaces) in Compact mode. func (p *printer) binaryExpr(x *ast.BinaryExpr, prec1, cutoff, depth int) { prec := x.Op.Precedence() if prec < prec1 { // parenthesis needed // Note: The parser inserts an ast.ParenExpr node; thus this case // can only occur if the AST is created in a different way. p.print(token.LPAREN) p.expr0(x, reduceDepth(depth)) // parentheses undo one level of depth p.print(token.RPAREN) return } printBlank := prec < cutoff ws := indent p.expr1(x.X, prec, depth+diffPrec(x.X, prec)) if printBlank { p.print(blank) } xline := p.pos.Line // before the operator (it may be on the next line!) yline := p.lineFor(x.Y.Pos()) p.print(x.OpPos, x.Op) if xline != yline && xline > 0 && yline > 0 { // at least one line break, but respect an extra empty line // in the source if p.linebreak(yline, 1, ws, true) > 0 { ws = ignore printBlank = false // no blank after line break } } if printBlank { p.print(blank) } p.expr1(x.Y, prec+1, depth+1) if ws == ignore { p.print(unindent) } } func isBinary(expr ast.Expr) bool { _, ok := expr.(*ast.BinaryExpr) return ok } func (p *printer) expr1(expr ast.Expr, prec1, depth int) { p.print(expr.Pos()) switch x := expr.(type) { case *ast.BadExpr: p.print("BadExpr") case *ast.Ident: p.print(x) case *ast.BinaryExpr: if depth < 1 { p.internalError("depth < 1:", depth) depth = 1 } p.binaryExpr(x, prec1, cutoff(x, depth), depth) case *ast.KeyValueExpr: p.expr(x.Key) p.print(x.Colon, token.COLON, blank) p.expr(x.Value) case *ast.StarExpr: const prec = token.UnaryPrec if prec < prec1 { // parenthesis needed p.print(token.LPAREN) p.print(token.MUL) p.expr(x.X) p.print(token.RPAREN) } else { // no parenthesis needed p.print(token.MUL) p.expr(x.X) } case *ast.UnaryExpr: const prec = token.UnaryPrec if prec < prec1 { // parenthesis needed p.print(token.LPAREN) p.expr(x) p.print(token.RPAREN) } else { // no parenthesis needed p.print(x.Op) if x.Op == token.RANGE { // TODO(gri) Remove this code if it cannot be reached. p.print(blank) } p.expr1(x.X, prec, depth) } case *ast.BasicLit: if p.Config.Mode&normalizeNumbers != 0 { x = normalizedNumber(x) } p.print(x) case *ast.FuncLit: p.print(x.Type.Pos(), token.FUNC) // See the comment in funcDecl about how the header size is computed. startCol := p.out.Column - len("func") p.signature(x.Type) p.funcBody(p.distanceFrom(x.Type.Pos(), startCol), blank, x.Body) case *ast.ParenExpr: if _, hasParens := x.X.(*ast.ParenExpr); hasParens { // don't print parentheses around an already parenthesized expression // TODO(gri) consider making this more general and incorporate precedence levels p.expr0(x.X, depth) } else { p.print(token.LPAREN) p.expr0(x.X, reduceDepth(depth)) // parentheses undo one level of depth p.print(x.Rparen, token.RPAREN) } case *ast.SelectorExpr: p.selectorExpr(x, depth, false) case *ast.TypeAssertExpr: p.expr1(x.X, token.HighestPrec, depth) p.print(token.PERIOD, x.Lparen, token.LPAREN) if x.Type != nil { p.expr(x.Type) } else { p.print(token.TYPE) } p.print(x.Rparen, token.RPAREN) case *ast.IndexExpr: // TODO(gri): should treat[] like parentheses and undo one level of depth p.expr1(x.X, token.HighestPrec, 1) p.print(x.Lbrack, token.LBRACK) p.expr0(x.Index, depth+1) p.print(x.Rbrack, token.RBRACK) case *ast.IndexListExpr: // TODO(gri): as for IndexExpr, should treat [] like parentheses and undo // one level of depth p.expr1(x.X, token.HighestPrec, 1) p.print(x.Lbrack, token.LBRACK) p.exprList(x.Lbrack, x.Indices, depth+1, commaTerm, x.Rbrack, false) p.print(x.Rbrack, token.RBRACK) case *ast.SliceExpr: // TODO(gri): should treat[] like parentheses and undo one level of depth p.expr1(x.X, token.HighestPrec, 1) p.print(x.Lbrack, token.LBRACK) indices := []ast.Expr{x.Low, x.High} if x.Max != nil { indices = append(indices, x.Max) } // determine if we need extra blanks around ':' var needsBlanks bool if depth <= 1 { var indexCount int var hasBinaries bool for _, x := range indices { if x != nil { indexCount++ if isBinary(x) { hasBinaries = true } } } if indexCount > 1 && hasBinaries { needsBlanks = true } } for i, x := range indices { if i > 0 { if indices[i-1] != nil && needsBlanks { p.print(blank) } p.print(token.COLON) if x != nil && needsBlanks { p.print(blank) } } if x != nil { p.expr0(x, depth+1) } } p.print(x.Rbrack, token.RBRACK) case *ast.CallExpr: if len(x.Args) > 1 { depth++ } var wasIndented bool if _, ok := x.Fun.(*ast.FuncType); ok { // conversions to literal function types require parentheses around the type p.print(token.LPAREN) wasIndented = p.possibleSelectorExpr(x.Fun, token.HighestPrec, depth) p.print(token.RPAREN) } else { wasIndented = p.possibleSelectorExpr(x.Fun, token.HighestPrec, depth) } p.print(x.Lparen, token.LPAREN) if x.Ellipsis.IsValid() { p.exprList(x.Lparen, x.Args, depth, 0, x.Ellipsis, false) p.print(x.Ellipsis, token.ELLIPSIS) if x.Rparen.IsValid() && p.lineFor(x.Ellipsis) < p.lineFor(x.Rparen) { p.print(token.COMMA, formfeed) } } else { p.exprList(x.Lparen, x.Args, depth, commaTerm, x.Rparen, false) } p.print(x.Rparen, token.RPAREN) if wasIndented { p.print(unindent) } case *ast.CompositeLit: // composite literal elements that are composite literals themselves may have the type omitted if x.Type != nil { p.expr1(x.Type, token.HighestPrec, depth) } p.level++ p.print(x.Lbrace, token.LBRACE) p.exprList(x.Lbrace, x.Elts, 1, commaTerm, x.Rbrace, x.Incomplete) // do not insert extra line break following a /*-style comment // before the closing '}' as it might break the code if there // is no trailing ',' mode := noExtraLinebreak // do not insert extra blank following a /*-style comment // before the closing '}' unless the literal is empty if len(x.Elts) > 0 { mode |= noExtraBlank } // need the initial indent to print lone comments with // the proper level of indentation p.print(indent, unindent, mode, x.Rbrace, token.RBRACE, mode) p.level-- case *ast.Ellipsis: p.print(token.ELLIPSIS) if x.Elt != nil { p.expr(x.Elt) } case *ast.ArrayType: p.print(token.LBRACK) if x.Len != nil { p.expr(x.Len) } p.print(token.RBRACK) p.expr(x.Elt) case *ast.StructType: p.print(token.STRUCT) p.fieldList(x.Fields, true, x.Incomplete) case *ast.FuncType: p.print(token.FUNC) p.signature(x) case *ast.InterfaceType: p.print(token.INTERFACE) p.fieldList(x.Methods, false, x.Incomplete) case *ast.MapType: p.print(token.MAP, token.LBRACK) p.expr(x.Key) p.print(token.RBRACK) p.expr(x.Value) case *ast.ChanType: switch x.Dir { case ast.SEND | ast.RECV: p.print(token.CHAN) case ast.RECV: p.print(token.ARROW, token.CHAN) // x.Arrow and x.Pos() are the same case ast.SEND: p.print(token.CHAN, x.Arrow, token.ARROW) } p.print(blank) p.expr(x.Value) default: panic("unreachable") } } // normalizedNumber rewrites base prefixes and exponents // of numbers to use lower-case letters (0X123 to 0x123 and 1.2E3 to 1.2e3), // and removes leading 0's from integer imaginary literals (0765i to 765i). // It leaves hexadecimal digits alone. // // normalizedNumber doesn't modify the ast.BasicLit value lit points to. // If lit is not a number or a number in canonical format already, // lit is returned as is. Otherwise a new ast.BasicLit is created. func normalizedNumber(lit *ast.BasicLit) *ast.BasicLit { if lit.Kind != token.INT && lit.Kind != token.FLOAT && lit.Kind != token.IMAG { return lit // not a number - nothing to do } if len(lit.Value) < 2 { return lit // only one digit (common case) - nothing to do } // len(lit.Value) >= 2 // We ignore lit.Kind because for lit.Kind == token.IMAG the literal may be an integer // or floating-point value, decimal or not. Instead, just consider the literal pattern. x := lit.Value switch x[:2] { default: // 0-prefix octal, decimal int, or float (possibly with 'i' suffix) if i := strings.LastIndexByte(x, 'E'); i >= 0 { x = x[:i] + "e" + x[i+1:] break } // remove leading 0's from integer (but not floating-point) imaginary literals if x[len(x)-1] == 'i' && !strings.ContainsAny(x, ".e") { x = strings.TrimLeft(x, "0_") if x == "i" { x = "0i" } } case "0X": x = "0x" + x[2:] // possibly a hexadecimal float if i := strings.LastIndexByte(x, 'P'); i >= 0 { x = x[:i] + "p" + x[i+1:] } case "0x": // possibly a hexadecimal float i := strings.LastIndexByte(x, 'P') if i == -1 { return lit // nothing to do } x = x[:i] + "p" + x[i+1:] case "0O": x = "0o" + x[2:] case "0o": return lit // nothing to do case "0B": x = "0b" + x[2:] case "0b": return lit // nothing to do } return &ast.BasicLit{ValuePos: lit.ValuePos, Kind: lit.Kind, Value: x} } func (p *printer) possibleSelectorExpr(expr ast.Expr, prec1, depth int) bool { if x, ok := expr.(*ast.SelectorExpr); ok { return p.selectorExpr(x, depth, true) } p.expr1(expr, prec1, depth) return false } // selectorExpr handles an *ast.SelectorExpr node and reports whether x spans // multiple lines. func (p *printer) selectorExpr(x *ast.SelectorExpr, depth int, isMethod bool) bool { p.expr1(x.X, token.HighestPrec, depth) p.print(token.PERIOD) if line := p.lineFor(x.Sel.Pos()); p.pos.IsValid() && p.pos.Line < line { p.print(indent, newline, x.Sel.Pos(), x.Sel) if !isMethod { p.print(unindent) } return true } p.print(x.Sel.Pos(), x.Sel) return false } func (p *printer) expr0(x ast.Expr, depth int) { p.expr1(x, token.LowestPrec, depth) } func (p *printer) expr(x ast.Expr) { const depth = 1 p.expr1(x, token.LowestPrec, depth) } // ---------------------------------------------------------------------------- // Statements // Print the statement list indented, but without a newline after the last statement. // Extra line breaks between statements in the source are respected but at most one // empty line is printed between statements. func (p *printer) stmtList(list []ast.Stmt, nindent int, nextIsRBrace bool) { if nindent > 0 { p.print(indent) } var line int i := 0 for _, s := range list { // ignore empty statements (was issue 3466) if _, isEmpty := s.(*ast.EmptyStmt); !isEmpty { // nindent == 0 only for lists of switch/select case clauses; // in those cases each clause is a new section if len(p.output) > 0 { // only print line break if we are not at the beginning of the output // (i.e., we are not printing only a partial program) p.linebreak(p.lineFor(s.Pos()), 1, ignore, i == 0 || nindent == 0 || p.linesFrom(line) > 0) } p.recordLine(&line) p.stmt(s, nextIsRBrace && i == len(list)-1) // labeled statements put labels on a separate line, but here // we only care about the start line of the actual statement // without label - correct line for each label for t := s; ; { lt, _ := t.(*ast.LabeledStmt) if lt == nil { break } line++ t = lt.Stmt } i++ } } if nindent > 0 { p.print(unindent) } } // block prints an *ast.BlockStmt; it always spans at least two lines. func (p *printer) block(b *ast.BlockStmt, nindent int) { p.print(b.Lbrace, token.LBRACE) p.stmtList(b.List, nindent, true) p.linebreak(p.lineFor(b.Rbrace), 1, ignore, true) p.print(b.Rbrace, token.RBRACE) } func isTypeName(x ast.Expr) bool { switch t := x.(type) { case *ast.Ident: return true case *ast.SelectorExpr: return isTypeName(t.X) } return false } func stripParens(x ast.Expr) ast.Expr { if px, strip := x.(*ast.ParenExpr); strip { // parentheses must not be stripped if there are any // unparenthesized composite literals starting with // a type name ast.Inspect(px.X, func(node ast.Node) bool { switch x := node.(type) { case *ast.ParenExpr: // parentheses protect enclosed composite literals return false case *ast.CompositeLit: if isTypeName(x.Type) { strip = false // do not strip parentheses } return false } // in all other cases, keep inspecting return true }) if strip { return stripParens(px.X) } } return x } func stripParensAlways(x ast.Expr) ast.Expr { if x, ok := x.(*ast.ParenExpr); ok { return stripParensAlways(x.X) } return x } func (p *printer) controlClause(isForStmt bool, init ast.Stmt, expr ast.Expr, post ast.Stmt) { p.print(blank) needsBlank := false if init == nil && post == nil { // no semicolons required if expr != nil { p.expr(stripParens(expr)) needsBlank = true } } else { // all semicolons required // (they are not separators, print them explicitly) if init != nil { p.stmt(init, false) } p.print(token.SEMICOLON, blank) if expr != nil { p.expr(stripParens(expr)) needsBlank = true } if isForStmt { p.print(token.SEMICOLON, blank) needsBlank = false if post != nil { p.stmt(post, false) needsBlank = true } } } if needsBlank { p.print(blank) } } // indentList reports whether an expression list would look better if it // were indented wholesale (starting with the very first element, rather // than starting at the first line break). func (p *printer) indentList(list []ast.Expr) bool { // Heuristic: indentList reports whether there are more than one multi- // line element in the list, or if there is any element that is not // starting on the same line as the previous one ends. if len(list) >= 2 { var b = p.lineFor(list[0].Pos()) var e = p.lineFor(list[len(list)-1].End()) if 0 < b && b < e { // list spans multiple lines n := 0 // multi-line element count line := b for _, x := range list { xb := p.lineFor(x.Pos()) xe := p.lineFor(x.End()) if line < xb { // x is not starting on the same // line as the previous one ended return true } if xb < xe { // x is a multi-line element n++ } line = xe } return n > 1 } } return false } func (p *printer) stmt(stmt ast.Stmt, nextIsRBrace bool) { p.print(stmt.Pos()) switch s := stmt.(type) { case *ast.BadStmt: p.print("BadStmt") case *ast.DeclStmt: p.decl(s.Decl) case *ast.EmptyStmt: // nothing to do case *ast.LabeledStmt: // a "correcting" unindent immediately following a line break // is applied before the line break if there is no comment // between (see writeWhitespace) p.print(unindent) p.expr(s.Label) p.print(s.Colon, token.COLON, indent) if e, isEmpty := s.Stmt.(*ast.EmptyStmt); isEmpty { if !nextIsRBrace { p.print(newline, e.Pos(), token.SEMICOLON) break } } else { p.linebreak(p.lineFor(s.Stmt.Pos()), 1, ignore, true) } p.stmt(s.Stmt, nextIsRBrace) case *ast.ExprStmt: const depth = 1 p.expr0(s.X, depth) case *ast.SendStmt: const depth = 1 p.expr0(s.Chan, depth) p.print(blank, s.Arrow, token.ARROW, blank) p.expr0(s.Value, depth) case *ast.IncDecStmt: const depth = 1 p.expr0(s.X, depth+1) p.print(s.TokPos, s.Tok) case *ast.AssignStmt: var depth = 1 if len(s.Lhs) > 1 && len(s.Rhs) > 1 { depth++ } p.exprList(s.Pos(), s.Lhs, depth, 0, s.TokPos, false) p.print(blank, s.TokPos, s.Tok, blank) p.exprList(s.TokPos, s.Rhs, depth, 0, token.NoPos, false) case *ast.GoStmt: p.print(token.GO, blank) p.expr(s.Call) case *ast.DeferStmt: p.print(token.DEFER, blank) p.expr(s.Call) case *ast.ReturnStmt: p.print(token.RETURN) if s.Results != nil { p.print(blank) // Use indentList heuristic to make corner cases look // better (issue 1207). A more systematic approach would // always indent, but this would cause significant // reformatting of the code base and not necessarily // lead to more nicely formatted code in general. if p.indentList(s.Results) { p.print(indent) // Use NoPos so that a newline never goes before // the results (see issue #32854). p.exprList(token.NoPos, s.Results, 1, noIndent, token.NoPos, false) p.print(unindent) } else { p.exprList(token.NoPos, s.Results, 1, 0, token.NoPos, false) } } case *ast.BranchStmt: p.print(s.Tok) if s.Label != nil { p.print(blank) p.expr(s.Label) } case *ast.BlockStmt: p.block(s, 1) case *ast.IfStmt: p.print(token.IF) p.controlClause(false, s.Init, s.Cond, nil) p.block(s.Body, 1) if s.Else != nil { p.print(blank, token.ELSE, blank) switch s.Else.(type) { case *ast.BlockStmt, *ast.IfStmt: p.stmt(s.Else, nextIsRBrace) default: // This can only happen with an incorrectly // constructed AST. Permit it but print so // that it can be parsed without errors. p.print(token.LBRACE, indent, formfeed) p.stmt(s.Else, true) p.print(unindent, formfeed, token.RBRACE) } } case *ast.CaseClause: if s.List != nil { p.print(token.CASE, blank) p.exprList(s.Pos(), s.List, 1, 0, s.Colon, false) } else { p.print(token.DEFAULT) } p.print(s.Colon, token.COLON) p.stmtList(s.Body, 1, nextIsRBrace) case *ast.SwitchStmt: p.print(token.SWITCH) p.controlClause(false, s.Init, s.Tag, nil) p.block(s.Body, 0) case *ast.TypeSwitchStmt: p.print(token.SWITCH) if s.Init != nil { p.print(blank) p.stmt(s.Init, false) p.print(token.SEMICOLON) } p.print(blank) p.stmt(s.Assign, false) p.print(blank) p.block(s.Body, 0) case *ast.CommClause: if s.Comm != nil { p.print(token.CASE, blank) p.stmt(s.Comm, false) } else { p.print(token.DEFAULT) } p.print(s.Colon, token.COLON) p.stmtList(s.Body, 1, nextIsRBrace) case *ast.SelectStmt: p.print(token.SELECT, blank) body := s.Body if len(body.List) == 0 && !p.commentBefore(p.posFor(body.Rbrace)) { // print empty select statement w/o comments on one line p.print(body.Lbrace, token.LBRACE, body.Rbrace, token.RBRACE) } else { p.block(body, 0) } case *ast.ForStmt: p.print(token.FOR) p.controlClause(true, s.Init, s.Cond, s.Post) p.block(s.Body, 1) case *ast.RangeStmt: p.print(token.FOR, blank) if s.Key != nil { p.expr(s.Key) if s.Value != nil { // use position of value following the comma as // comma position for correct comment placement p.print(s.Value.Pos(), token.COMMA, blank) p.expr(s.Value) } p.print(blank, s.TokPos, s.Tok, blank) } p.print(token.RANGE, blank) p.expr(stripParens(s.X)) p.print(blank) p.block(s.Body, 1) default: panic("unreachable") } } // ---------------------------------------------------------------------------- // Declarations // The keepTypeColumn function determines if the type column of a series of // consecutive const or var declarations must be kept, or if initialization // values (V) can be placed in the type column (T) instead. The i'th entry // in the result slice is true if the type column in spec[i] must be kept. // // For example, the declaration: // // const ( // foobar int = 42 // comment // x = 7 // comment // foo // bar = 991 // ) // // leads to the type/values matrix below. A run of value columns (V) can // be moved into the type column if there is no type for any of the values // in that column (we only move entire columns so that they align properly). // // matrix formatted result // matrix // T V -> T V -> true there is a T and so the type // - V - V true column must be kept // - - - - false // - V V - false V is moved into T column func keepTypeColumn(specs []ast.Spec) []bool { m := make([]bool, len(specs)) populate := func(i, j int, keepType bool) { if keepType { for ; i < j; i++ { m[i] = true } } } i0 := -1 // if i0 >= 0 we are in a run and i0 is the start of the run var keepType bool for i, s := range specs { t := s.(*ast.ValueSpec) if t.Values != nil { if i0 < 0 { // start of a run of ValueSpecs with non-nil Values i0 = i keepType = false } } else { if i0 >= 0 { // end of a run populate(i0, i, keepType) i0 = -1 } } if t.Type != nil { keepType = true } } if i0 >= 0 { // end of a run populate(i0, len(specs), keepType) } return m } func (p *printer) valueSpec(s *ast.ValueSpec, keepType bool) { p.setComment(s.Doc) p.identList(s.Names, false) // always present extraTabs := 3 if s.Type != nil || keepType { p.print(vtab) extraTabs-- } if s.Type != nil { p.expr(s.Type) } if s.Values != nil { p.print(vtab, token.ASSIGN, blank) p.exprList(token.NoPos, s.Values, 1, 0, token.NoPos, false) extraTabs-- } if s.Comment != nil { for ; extraTabs > 0; extraTabs-- { p.print(vtab) } p.setComment(s.Comment) } } func sanitizeImportPath(lit *ast.BasicLit) *ast.BasicLit { // Note: An unmodified AST generated by go/parser will already // contain a backward- or double-quoted path string that does // not contain any invalid characters, and most of the work // here is not needed. However, a modified or generated AST // may possibly contain non-canonical paths. Do the work in // all cases since it's not too hard and not speed-critical. // if we don't have a proper string, be conservative and return whatever we have if lit.Kind != token.STRING { return lit } s, err := strconv.Unquote(lit.Value) if err != nil { return lit } // if the string is an invalid path, return whatever we have // // spec: "Implementation restriction: A compiler may restrict // ImportPaths to non-empty strings using only characters belonging // to Unicode's L, M, N, P, and S general categories (the Graphic // characters without spaces) and may also exclude the characters // !"#$%&'()*,:;<=>?[\]^`{|} and the Unicode replacement character // U+FFFD." if s == "" { return lit } const illegalChars = `!"#$%&'()*,:;<=>?[\]^{|}` + "`\uFFFD" for _, r := range s { if !unicode.IsGraphic(r) || unicode.IsSpace(r) || strings.ContainsRune(illegalChars, r) { return lit } } // otherwise, return the double-quoted path s = strconv.Quote(s) if s == lit.Value { return lit // nothing wrong with lit } return &ast.BasicLit{ValuePos: lit.ValuePos, Kind: token.STRING, Value: s} } // The parameter n is the number of specs in the group. If doIndent is set, // multi-line identifier lists in the spec are indented when the first // linebreak is encountered. func (p *printer) spec(spec ast.Spec, n int, doIndent bool) { switch s := spec.(type) { case *ast.ImportSpec: p.setComment(s.Doc) if s.Name != nil { p.expr(s.Name) p.print(blank) } p.expr(sanitizeImportPath(s.Path)) p.setComment(s.Comment) p.print(s.EndPos) case *ast.ValueSpec: if n != 1 { p.internalError("expected n = 1; got", n) } p.setComment(s.Doc) p.identList(s.Names, doIndent) // always present if s.Type != nil { p.print(blank) p.expr(s.Type) } if s.Values != nil { p.print(blank, token.ASSIGN, blank) p.exprList(token.NoPos, s.Values, 1, 0, token.NoPos, false) } p.setComment(s.Comment) case *ast.TypeSpec: p.setComment(s.Doc) p.expr(s.Name) if s.TypeParams != nil { p.parameters(s.TypeParams, typeTParam) } if n == 1 { p.print(blank) } else { p.print(vtab) } if s.Assign.IsValid() { p.print(token.ASSIGN, blank) } p.expr(s.Type) p.setComment(s.Comment) default: panic("unreachable") } } func (p *printer) genDecl(d *ast.GenDecl) { p.setComment(d.Doc) p.print(d.Pos(), d.Tok, blank) if d.Lparen.IsValid() || len(d.Specs) > 1 { // group of parenthesized declarations p.print(d.Lparen, token.LPAREN) if n := len(d.Specs); n > 0 { p.print(indent, formfeed) if n > 1 && (d.Tok == token.CONST || d.Tok == token.VAR) { // two or more grouped const/var declarations: // determine if the type column must be kept keepType := keepTypeColumn(d.Specs) var line int for i, s := range d.Specs { if i > 0 { p.linebreak(p.lineFor(s.Pos()), 1, ignore, p.linesFrom(line) > 0) } p.recordLine(&line) p.valueSpec(s.(*ast.ValueSpec), keepType[i]) } } else { var line int for i, s := range d.Specs { if i > 0 { p.linebreak(p.lineFor(s.Pos()), 1, ignore, p.linesFrom(line) > 0) } p.recordLine(&line) p.spec(s, n, false) } } p.print(unindent, formfeed) } p.print(d.Rparen, token.RPAREN) } else if len(d.Specs) > 0 { // single declaration p.spec(d.Specs[0], 1, true) } } // nodeSize determines the size of n in chars after formatting. // The result is <= maxSize if the node fits on one line with at // most maxSize chars and the formatted output doesn't contain // any control chars. Otherwise, the result is > maxSize. func (p *printer) nodeSize(n ast.Node, maxSize int) (size int) { // nodeSize invokes the printer, which may invoke nodeSize // recursively. For deep composite literal nests, this can // lead to an exponential algorithm. Remember previous // results to prune the recursion (was issue 1628). if size, found := p.nodeSizes[n]; found { return size } size = maxSize + 1 // assume n doesn't fit p.nodeSizes[n] = size // nodeSize computation must be independent of particular // style so that we always get the same decision; print // in RawFormat cfg := Config{Mode: RawFormat} var buf bytes.Buffer if err := cfg.fprint(&buf, p.fset, n, p.nodeSizes); err != nil { return } if buf.Len() <= maxSize { for _, ch := range buf.Bytes() { switch ch { case '\n', '\f': return // does not fit in a single line } } size = buf.Len() // n fits p.nodeSizes[n] = size } return } // numLines returns the number of lines spanned by node n in the original source. func (p *printer) numLines(n ast.Node) int { if from := n.Pos(); from.IsValid() { if to := n.End(); to.IsValid() { return p.lineFor(to) - p.lineFor(from) + 1 } } return infinity } // bodySize is like nodeSize but it is specialized for *ast.BlockStmt's. func (p *printer) bodySize(b *ast.BlockStmt, maxSize int) int { pos1 := b.Pos() pos2 := b.Rbrace if pos1.IsValid() && pos2.IsValid() && p.lineFor(pos1) != p.lineFor(pos2) { // opening and closing brace are on different lines - don't make it a one-liner return maxSize + 1 } if len(b.List) > 5 { // too many statements - don't make it a one-liner return maxSize + 1 } // otherwise, estimate body size bodySize := p.commentSizeBefore(p.posFor(pos2)) for i, s := range b.List { if bodySize > maxSize { break // no need to continue } if i > 0 { bodySize += 2 // space for a semicolon and blank } bodySize += p.nodeSize(s, maxSize) } return bodySize } // funcBody prints a function body following a function header of given headerSize. // If the header's and block's size are "small enough" and the block is "simple enough", // the block is printed on the current line, without line breaks, spaced from the header // by sep. Otherwise the block's opening "{" is printed on the current line, followed by // lines for the block's statements and its closing "}". func (p *printer) funcBody(headerSize int, sep whiteSpace, b *ast.BlockStmt) { if b == nil { return } // save/restore composite literal nesting level defer func(level int) { p.level = level }(p.level) p.level = 0 const maxSize = 100 if headerSize+p.bodySize(b, maxSize) <= maxSize { p.print(sep, b.Lbrace, token.LBRACE) if len(b.List) > 0 { p.print(blank) for i, s := range b.List { if i > 0 { p.print(token.SEMICOLON, blank) } p.stmt(s, i == len(b.List)-1) } p.print(blank) } p.print(noExtraLinebreak, b.Rbrace, token.RBRACE, noExtraLinebreak) return } if sep != ignore { p.print(blank) // always use blank } p.block(b, 1) } // distanceFrom returns the column difference between p.out (the current output // position) and startOutCol. If the start position is on a different line from // the current position (or either is unknown), the result is infinity. func (p *printer) distanceFrom(startPos token.Pos, startOutCol int) int { if startPos.IsValid() && p.pos.IsValid() && p.posFor(startPos).Line == p.pos.Line { return p.out.Column - startOutCol } return infinity } func (p *printer) funcDecl(d *ast.FuncDecl) { p.setComment(d.Doc) p.print(d.Pos(), token.FUNC, blank) // We have to save startCol only after emitting FUNC; otherwise it can be on a // different line (all whitespace preceding the FUNC is emitted only when the // FUNC is emitted). startCol := p.out.Column - len("func ") if d.Recv != nil { p.parameters(d.Recv, funcParam) // method: print receiver p.print(blank) } p.expr(d.Name) p.signature(d.Type) p.funcBody(p.distanceFrom(d.Pos(), startCol), vtab, d.Body) } func (p *printer) decl(decl ast.Decl) { switch d := decl.(type) { case *ast.BadDecl: p.print(d.Pos(), "BadDecl") case *ast.GenDecl: p.genDecl(d) case *ast.FuncDecl: p.funcDecl(d) default: panic("unreachable") } } // ---------------------------------------------------------------------------- // Files func declToken(decl ast.Decl) (tok token.Token) { tok = token.ILLEGAL switch d := decl.(type) { case *ast.GenDecl: tok = d.Tok case *ast.FuncDecl: tok = token.FUNC } return } func (p *printer) declList(list []ast.Decl) { tok := token.ILLEGAL for _, d := range list { prev := tok tok = declToken(d) // If the declaration token changed (e.g., from CONST to TYPE) // or the next declaration has documentation associated with it, // print an empty line between top-level declarations. // (because p.linebreak is called with the position of d, which // is past any documentation, the minimum requirement is satisfied // even w/o the extra getDoc(d) nil-check - leave it in case the // linebreak logic improves - there's already a TODO). if len(p.output) > 0 { // only print line break if we are not at the beginning of the output // (i.e., we are not printing only a partial program) min := 1 if prev != tok || getDoc(d) != nil { min = 2 } // start a new section if the next declaration is a function // that spans multiple lines (see also issue #19544) p.linebreak(p.lineFor(d.Pos()), min, ignore, tok == token.FUNC && p.numLines(d) > 1) } p.decl(d) } } func (p *printer) file(src *ast.File) { p.setComment(src.Doc) p.print(src.Pos(), token.PACKAGE, blank) p.expr(src.Name) p.declList(src.Decls) p.print(newline) }