// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "go_asm.h" #include "go_tls.h" #include "funcdata.h" #include "textflag.h" #include "cgo/abi_amd64.h" // _rt0_amd64 is common startup code for most amd64 systems when using // internal linking. This is the entry point for the program from the // kernel for an ordinary -buildmode=exe program. The stack holds the // number of arguments and the C-style argv. TEXT _rt0_amd64(SB),NOSPLIT,$-8 MOVQ 0(SP), DI // argc LEAQ 8(SP), SI // argv JMP runtime·rt0_go(SB) // main is common startup code for most amd64 systems when using // external linking. The C startup code will call the symbol "main" // passing argc and argv in the usual C ABI registers DI and SI. TEXT main(SB),NOSPLIT,$-8 JMP runtime·rt0_go(SB) // _rt0_amd64_lib is common startup code for most amd64 systems when // using -buildmode=c-archive or -buildmode=c-shared. The linker will // arrange to invoke this function as a global constructor (for // c-archive) or when the shared library is loaded (for c-shared). // We expect argc and argv to be passed in the usual C ABI registers // DI and SI. TEXT _rt0_amd64_lib(SB),NOSPLIT,$0 // Transition from C ABI to Go ABI. PUSH_REGS_HOST_TO_ABI0() MOVQ DI, _rt0_amd64_lib_argc<>(SB) MOVQ SI, _rt0_amd64_lib_argv<>(SB) // Synchronous initialization. CALL runtime·libpreinit(SB) // Create a new thread to finish Go runtime initialization. MOVQ _cgo_sys_thread_create(SB), AX TESTQ AX, AX JZ nocgo // We're calling back to C. // Align stack per ELF ABI requirements. MOVQ SP, BX // Callee-save in C ABI ANDQ $~15, SP MOVQ $_rt0_amd64_lib_go(SB), DI MOVQ $0, SI CALL AX MOVQ BX, SP JMP restore nocgo: ADJSP $16 MOVQ $0x800000, 0(SP) // stacksize MOVQ $_rt0_amd64_lib_go(SB), AX MOVQ AX, 8(SP) // fn CALL runtime·newosproc0(SB) ADJSP $-16 restore: POP_REGS_HOST_TO_ABI0() RET // _rt0_amd64_lib_go initializes the Go runtime. // This is started in a separate thread by _rt0_amd64_lib. TEXT _rt0_amd64_lib_go(SB),NOSPLIT,$0 MOVQ _rt0_amd64_lib_argc<>(SB), DI MOVQ _rt0_amd64_lib_argv<>(SB), SI JMP runtime·rt0_go(SB) DATA _rt0_amd64_lib_argc<>(SB)/8, $0 GLOBL _rt0_amd64_lib_argc<>(SB),NOPTR, $8 DATA _rt0_amd64_lib_argv<>(SB)/8, $0 GLOBL _rt0_amd64_lib_argv<>(SB),NOPTR, $8 #ifdef GOAMD64_v2 DATA bad_cpu_msg<>+0x00(SB)/84, $"This program can only be run on AMD64 processors with v2 microarchitecture support.\n" #endif #ifdef GOAMD64_v3 DATA bad_cpu_msg<>+0x00(SB)/84, $"This program can only be run on AMD64 processors with v3 microarchitecture support.\n" #endif #ifdef GOAMD64_v4 DATA bad_cpu_msg<>+0x00(SB)/84, $"This program can only be run on AMD64 processors with v4 microarchitecture support.\n" #endif GLOBL bad_cpu_msg<>(SB), RODATA, $84 // Define a list of AMD64 microarchitecture level features // https://en.wikipedia.org/wiki/X86-64#Microarchitecture_levels // SSE3 SSSE3 CMPXCHNG16 SSE4.1 SSE4.2 POPCNT #define V2_FEATURES_CX (1 << 0 | 1 << 9 | 1 << 13 | 1 << 19 | 1 << 20 | 1 << 23) // LAHF/SAHF #define V2_EXT_FEATURES_CX (1 << 0) // FMA MOVBE OSXSAVE AVX F16C #define V3_FEATURES_CX (V2_FEATURES_CX | 1 << 12 | 1 << 22 | 1 << 27 | 1 << 28 | 1 << 29) // ABM (FOR LZNCT) #define V3_EXT_FEATURES_CX (V2_EXT_FEATURES_CX | 1 << 5) // BMI1 AVX2 BMI2 #define V3_EXT_FEATURES_BX (1 << 3 | 1 << 5 | 1 << 8) // XMM YMM #define V3_OS_SUPPORT_AX (1 << 1 | 1 << 2) #define V4_FEATURES_CX V3_FEATURES_CX #define V4_EXT_FEATURES_CX V3_EXT_FEATURES_CX // AVX512F AVX512DQ AVX512CD AVX512BW AVX512VL #define V4_EXT_FEATURES_BX (V3_EXT_FEATURES_BX | 1 << 16 | 1 << 17 | 1 << 28 | 1 << 30 | 1 << 31) // OPMASK ZMM #define V4_OS_SUPPORT_AX (V3_OS_SUPPORT_AX | 1 << 5 | (1 << 6 | 1 << 7)) #ifdef GOAMD64_v2 #define NEED_MAX_CPUID 0x80000001 #define NEED_FEATURES_CX V2_FEATURES_CX #define NEED_EXT_FEATURES_CX V2_EXT_FEATURES_CX #endif #ifdef GOAMD64_v3 #define NEED_MAX_CPUID 0x80000001 #define NEED_FEATURES_CX V3_FEATURES_CX #define NEED_EXT_FEATURES_CX V3_EXT_FEATURES_CX #define NEED_EXT_FEATURES_BX V3_EXT_FEATURES_BX #define NEED_OS_SUPPORT_AX V3_OS_SUPPORT_AX #endif #ifdef GOAMD64_v4 #define NEED_MAX_CPUID 0x80000001 #define NEED_FEATURES_CX V4_FEATURES_CX #define NEED_EXT_FEATURES_CX V4_EXT_FEATURES_CX #define NEED_EXT_FEATURES_BX V4_EXT_FEATURES_BX // Darwin requires a different approach to check AVX512 support, see CL 285572. #ifdef GOOS_darwin #define NEED_OS_SUPPORT_AX V3_OS_SUPPORT_AX // These values are from: // https://github.com/apple/darwin-xnu/blob/xnu-4570.1.46/osfmk/i386/cpu_capabilities.h #define commpage64_base_address 0x00007fffffe00000 #define commpage64_cpu_capabilities64 (commpage64_base_address+0x010) #define commpage64_version (commpage64_base_address+0x01E) #define hasAVX512F 0x0000004000000000 #define hasAVX512CD 0x0000008000000000 #define hasAVX512DQ 0x0000010000000000 #define hasAVX512BW 0x0000020000000000 #define hasAVX512VL 0x0000100000000000 #define NEED_DARWIN_SUPPORT (hasAVX512F | hasAVX512DQ | hasAVX512CD | hasAVX512BW | hasAVX512VL) #else #define NEED_OS_SUPPORT_AX V4_OS_SUPPORT_AX #endif #endif TEXT runtime·rt0_go(SB),NOSPLIT|TOPFRAME,$0 // copy arguments forward on an even stack MOVQ DI, AX // argc MOVQ SI, BX // argv SUBQ $(5*8), SP // 3args 2auto ANDQ $~15, SP MOVQ AX, 24(SP) MOVQ BX, 32(SP) // create istack out of the given (operating system) stack. // _cgo_init may update stackguard. MOVQ $runtime·g0(SB), DI LEAQ (-64*1024+104)(SP), BX MOVQ BX, g_stackguard0(DI) MOVQ BX, g_stackguard1(DI) MOVQ BX, (g_stack+stack_lo)(DI) MOVQ SP, (g_stack+stack_hi)(DI) // find out information about the processor we're on MOVL $0, AX CPUID CMPL AX, $0 JE nocpuinfo CMPL BX, $0x756E6547 // "Genu" JNE notintel CMPL DX, $0x49656E69 // "ineI" JNE notintel CMPL CX, $0x6C65746E // "ntel" JNE notintel MOVB $1, runtime·isIntel(SB) notintel: // Load EAX=1 cpuid flags MOVL $1, AX CPUID MOVL AX, runtime·processorVersionInfo(SB) nocpuinfo: // if there is an _cgo_init, call it. MOVQ _cgo_init(SB), AX TESTQ AX, AX JZ needtls // arg 1: g0, already in DI MOVQ $setg_gcc<>(SB), SI // arg 2: setg_gcc #ifdef GOOS_android MOVQ $runtime·tls_g(SB), DX // arg 3: &tls_g // arg 4: TLS base, stored in slot 0 (Android's TLS_SLOT_SELF). // Compensate for tls_g (+16). MOVQ -16(TLS), CX #else MOVQ $0, DX // arg 3, 4: not used when using platform's TLS MOVQ $0, CX #endif #ifdef GOOS_windows // Adjust for the Win64 calling convention. MOVQ CX, R9 // arg 4 MOVQ DX, R8 // arg 3 MOVQ SI, DX // arg 2 MOVQ DI, CX // arg 1 #endif CALL AX // update stackguard after _cgo_init MOVQ $runtime·g0(SB), CX MOVQ (g_stack+stack_lo)(CX), AX ADDQ $const__StackGuard, AX MOVQ AX, g_stackguard0(CX) MOVQ AX, g_stackguard1(CX) #ifndef GOOS_windows JMP ok #endif needtls: #ifdef GOOS_plan9 // skip TLS setup on Plan 9 JMP ok #endif #ifdef GOOS_solaris // skip TLS setup on Solaris JMP ok #endif #ifdef GOOS_illumos // skip TLS setup on illumos JMP ok #endif #ifdef GOOS_darwin // skip TLS setup on Darwin JMP ok #endif #ifdef GOOS_openbsd // skip TLS setup on OpenBSD JMP ok #endif LEAQ runtime·m0+m_tls(SB), DI CALL runtime·settls(SB) // store through it, to make sure it works get_tls(BX) MOVQ $0x123, g(BX) MOVQ runtime·m0+m_tls(SB), AX CMPQ AX, $0x123 JEQ 2(PC) CALL runtime·abort(SB) ok: // set the per-goroutine and per-mach "registers" get_tls(BX) LEAQ runtime·g0(SB), CX MOVQ CX, g(BX) LEAQ runtime·m0(SB), AX // save m->g0 = g0 MOVQ CX, m_g0(AX) // save m0 to g0->m MOVQ AX, g_m(CX) CLD // convention is D is always left cleared // Check GOAMD64 reqirements // We need to do this after setting up TLS, so that // we can report an error if there is a failure. See issue 49586. #ifdef NEED_FEATURES_CX MOVL $0, AX CPUID CMPL AX, $0 JE bad_cpu MOVL $1, AX CPUID ANDL $NEED_FEATURES_CX, CX CMPL CX, $NEED_FEATURES_CX JNE bad_cpu #endif #ifdef NEED_MAX_CPUID MOVL $0x80000000, AX CPUID CMPL AX, $NEED_MAX_CPUID JL bad_cpu #endif #ifdef NEED_EXT_FEATURES_BX MOVL $7, AX MOVL $0, CX CPUID ANDL $NEED_EXT_FEATURES_BX, BX CMPL BX, $NEED_EXT_FEATURES_BX JNE bad_cpu #endif #ifdef NEED_EXT_FEATURES_CX MOVL $0x80000001, AX CPUID ANDL $NEED_EXT_FEATURES_CX, CX CMPL CX, $NEED_EXT_FEATURES_CX JNE bad_cpu #endif #ifdef NEED_OS_SUPPORT_AX XORL CX, CX XGETBV ANDL $NEED_OS_SUPPORT_AX, AX CMPL AX, $NEED_OS_SUPPORT_AX JNE bad_cpu #endif #ifdef NEED_DARWIN_SUPPORT MOVQ $commpage64_version, BX CMPW (BX), $13 // cpu_capabilities64 undefined in versions < 13 JL bad_cpu MOVQ $commpage64_cpu_capabilities64, BX MOVQ (BX), BX MOVQ $NEED_DARWIN_SUPPORT, CX ANDQ CX, BX CMPQ BX, CX JNE bad_cpu #endif CALL runtime·check(SB) MOVL 24(SP), AX // copy argc MOVL AX, 0(SP) MOVQ 32(SP), AX // copy argv MOVQ AX, 8(SP) CALL runtime·args(SB) CALL runtime·osinit(SB) CALL runtime·schedinit(SB) // create a new goroutine to start program MOVQ $runtime·mainPC(SB), AX // entry PUSHQ AX CALL runtime·newproc(SB) POPQ AX // start this M CALL runtime·mstart(SB) CALL runtime·abort(SB) // mstart should never return RET bad_cpu: // show that the program requires a certain microarchitecture level. MOVQ $2, 0(SP) MOVQ $bad_cpu_msg<>(SB), AX MOVQ AX, 8(SP) MOVQ $84, 16(SP) CALL runtime·write(SB) MOVQ $1, 0(SP) CALL runtime·exit(SB) CALL runtime·abort(SB) RET // Prevent dead-code elimination of debugCallV2, which is // intended to be called by debuggers. MOVQ $runtime·debugCallV2(SB), AX RET // mainPC is a function value for runtime.main, to be passed to newproc. // The reference to runtime.main is made via ABIInternal, since the // actual function (not the ABI0 wrapper) is needed by newproc. DATA runtime·mainPC+0(SB)/8,$runtime·main(SB) GLOBL runtime·mainPC(SB),RODATA,$8 TEXT runtime·breakpoint(SB),NOSPLIT,$0-0 BYTE $0xcc RET TEXT runtime·asminit(SB),NOSPLIT,$0-0 // No per-thread init. RET TEXT runtime·mstart(SB),NOSPLIT|TOPFRAME,$0 CALL runtime·mstart0(SB) RET // not reached /* * go-routine */ // func gogo(buf *gobuf) // restore state from Gobuf; longjmp TEXT runtime·gogo(SB), NOSPLIT, $0-8 MOVQ buf+0(FP), BX // gobuf MOVQ gobuf_g(BX), DX MOVQ 0(DX), CX // make sure g != nil JMP gogo<>(SB) TEXT gogo<>(SB), NOSPLIT, $0 get_tls(CX) MOVQ DX, g(CX) MOVQ DX, R14 // set the g register MOVQ gobuf_sp(BX), SP // restore SP MOVQ gobuf_ret(BX), AX MOVQ gobuf_ctxt(BX), DX MOVQ gobuf_bp(BX), BP MOVQ $0, gobuf_sp(BX) // clear to help garbage collector MOVQ $0, gobuf_ret(BX) MOVQ $0, gobuf_ctxt(BX) MOVQ $0, gobuf_bp(BX) MOVQ gobuf_pc(BX), BX JMP BX // func mcall(fn func(*g)) // Switch to m->g0's stack, call fn(g). // Fn must never return. It should gogo(&g->sched) // to keep running g. TEXT runtime·mcall(SB), NOSPLIT, $0-8 MOVQ AX, DX // DX = fn // save state in g->sched MOVQ 0(SP), BX // caller's PC MOVQ BX, (g_sched+gobuf_pc)(R14) LEAQ fn+0(FP), BX // caller's SP MOVQ BX, (g_sched+gobuf_sp)(R14) MOVQ BP, (g_sched+gobuf_bp)(R14) // switch to m->g0 & its stack, call fn MOVQ g_m(R14), BX MOVQ m_g0(BX), SI // SI = g.m.g0 CMPQ SI, R14 // if g == m->g0 call badmcall JNE goodm JMP runtime·badmcall(SB) goodm: MOVQ R14, AX // AX (and arg 0) = g MOVQ SI, R14 // g = g.m.g0 get_tls(CX) // Set G in TLS MOVQ R14, g(CX) MOVQ (g_sched+gobuf_sp)(R14), SP // sp = g0.sched.sp PUSHQ AX // open up space for fn's arg spill slot MOVQ 0(DX), R12 CALL R12 // fn(g) POPQ AX JMP runtime·badmcall2(SB) RET // systemstack_switch is a dummy routine that systemstack leaves at the bottom // of the G stack. We need to distinguish the routine that // lives at the bottom of the G stack from the one that lives // at the top of the system stack because the one at the top of // the system stack terminates the stack walk (see topofstack()). TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0 RET // func systemstack(fn func()) TEXT runtime·systemstack(SB), NOSPLIT, $0-8 MOVQ fn+0(FP), DI // DI = fn get_tls(CX) MOVQ g(CX), AX // AX = g MOVQ g_m(AX), BX // BX = m CMPQ AX, m_gsignal(BX) JEQ noswitch MOVQ m_g0(BX), DX // DX = g0 CMPQ AX, DX JEQ noswitch CMPQ AX, m_curg(BX) JNE bad // switch stacks // save our state in g->sched. Pretend to // be systemstack_switch if the G stack is scanned. CALL gosave_systemstack_switch<>(SB) // switch to g0 MOVQ DX, g(CX) MOVQ DX, R14 // set the g register MOVQ (g_sched+gobuf_sp)(DX), BX MOVQ BX, SP // call target function MOVQ DI, DX MOVQ 0(DI), DI CALL DI // switch back to g get_tls(CX) MOVQ g(CX), AX MOVQ g_m(AX), BX MOVQ m_curg(BX), AX MOVQ AX, g(CX) MOVQ (g_sched+gobuf_sp)(AX), SP MOVQ $0, (g_sched+gobuf_sp)(AX) RET noswitch: // already on m stack; tail call the function // Using a tail call here cleans up tracebacks since we won't stop // at an intermediate systemstack. MOVQ DI, DX MOVQ 0(DI), DI JMP DI bad: // Bad: g is not gsignal, not g0, not curg. What is it? MOVQ $runtime·badsystemstack(SB), AX CALL AX INT $3 /* * support for morestack */ // Called during function prolog when more stack is needed. // // The traceback routines see morestack on a g0 as being // the top of a stack (for example, morestack calling newstack // calling the scheduler calling newm calling gc), so we must // record an argument size. For that purpose, it has no arguments. TEXT runtime·morestack(SB),NOSPLIT,$0-0 // Cannot grow scheduler stack (m->g0). get_tls(CX) MOVQ g(CX), BX MOVQ g_m(BX), BX MOVQ m_g0(BX), SI CMPQ g(CX), SI JNE 3(PC) CALL runtime·badmorestackg0(SB) CALL runtime·abort(SB) // Cannot grow signal stack (m->gsignal). MOVQ m_gsignal(BX), SI CMPQ g(CX), SI JNE 3(PC) CALL runtime·badmorestackgsignal(SB) CALL runtime·abort(SB) // Called from f. // Set m->morebuf to f's caller. NOP SP // tell vet SP changed - stop checking offsets MOVQ 8(SP), AX // f's caller's PC MOVQ AX, (m_morebuf+gobuf_pc)(BX) LEAQ 16(SP), AX // f's caller's SP MOVQ AX, (m_morebuf+gobuf_sp)(BX) get_tls(CX) MOVQ g(CX), SI MOVQ SI, (m_morebuf+gobuf_g)(BX) // Set g->sched to context in f. MOVQ 0(SP), AX // f's PC MOVQ AX, (g_sched+gobuf_pc)(SI) LEAQ 8(SP), AX // f's SP MOVQ AX, (g_sched+gobuf_sp)(SI) MOVQ BP, (g_sched+gobuf_bp)(SI) MOVQ DX, (g_sched+gobuf_ctxt)(SI) // Call newstack on m->g0's stack. MOVQ m_g0(BX), BX MOVQ BX, g(CX) MOVQ (g_sched+gobuf_sp)(BX), SP CALL runtime·newstack(SB) CALL runtime·abort(SB) // crash if newstack returns RET // morestack but not preserving ctxt. TEXT runtime·morestack_noctxt(SB),NOSPLIT,$0 MOVL $0, DX JMP runtime·morestack(SB) // spillArgs stores return values from registers to a *internal/abi.RegArgs in R12. TEXT ·spillArgs(SB),NOSPLIT,$0-0 MOVQ AX, 0(R12) MOVQ BX, 8(R12) MOVQ CX, 16(R12) MOVQ DI, 24(R12) MOVQ SI, 32(R12) MOVQ R8, 40(R12) MOVQ R9, 48(R12) MOVQ R10, 56(R12) MOVQ R11, 64(R12) MOVQ X0, 72(R12) MOVQ X1, 80(R12) MOVQ X2, 88(R12) MOVQ X3, 96(R12) MOVQ X4, 104(R12) MOVQ X5, 112(R12) MOVQ X6, 120(R12) MOVQ X7, 128(R12) MOVQ X8, 136(R12) MOVQ X9, 144(R12) MOVQ X10, 152(R12) MOVQ X11, 160(R12) MOVQ X12, 168(R12) MOVQ X13, 176(R12) MOVQ X14, 184(R12) RET // unspillArgs loads args into registers from a *internal/abi.RegArgs in R12. TEXT ·unspillArgs(SB),NOSPLIT,$0-0 MOVQ 0(R12), AX MOVQ 8(R12), BX MOVQ 16(R12), CX MOVQ 24(R12), DI MOVQ 32(R12), SI MOVQ 40(R12), R8 MOVQ 48(R12), R9 MOVQ 56(R12), R10 MOVQ 64(R12), R11 MOVQ 72(R12), X0 MOVQ 80(R12), X1 MOVQ 88(R12), X2 MOVQ 96(R12), X3 MOVQ 104(R12), X4 MOVQ 112(R12), X5 MOVQ 120(R12), X6 MOVQ 128(R12), X7 MOVQ 136(R12), X8 MOVQ 144(R12), X9 MOVQ 152(R12), X10 MOVQ 160(R12), X11 MOVQ 168(R12), X12 MOVQ 176(R12), X13 MOVQ 184(R12), X14 RET // reflectcall: call a function with the given argument list // func call(stackArgsType *_type, f *FuncVal, stackArgs *byte, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs). // we don't have variable-sized frames, so we use a small number // of constant-sized-frame functions to encode a few bits of size in the pc. // Caution: ugly multiline assembly macros in your future! #define DISPATCH(NAME,MAXSIZE) \ CMPQ CX, $MAXSIZE; \ JA 3(PC); \ MOVQ $NAME(SB), AX; \ JMP AX // Note: can't just "JMP NAME(SB)" - bad inlining results. TEXT ·reflectcall(SB), NOSPLIT, $0-48 MOVLQZX frameSize+32(FP), CX DISPATCH(runtime·call16, 16) DISPATCH(runtime·call32, 32) DISPATCH(runtime·call64, 64) DISPATCH(runtime·call128, 128) DISPATCH(runtime·call256, 256) DISPATCH(runtime·call512, 512) DISPATCH(runtime·call1024, 1024) DISPATCH(runtime·call2048, 2048) DISPATCH(runtime·call4096, 4096) DISPATCH(runtime·call8192, 8192) DISPATCH(runtime·call16384, 16384) DISPATCH(runtime·call32768, 32768) DISPATCH(runtime·call65536, 65536) DISPATCH(runtime·call131072, 131072) DISPATCH(runtime·call262144, 262144) DISPATCH(runtime·call524288, 524288) DISPATCH(runtime·call1048576, 1048576) DISPATCH(runtime·call2097152, 2097152) DISPATCH(runtime·call4194304, 4194304) DISPATCH(runtime·call8388608, 8388608) DISPATCH(runtime·call16777216, 16777216) DISPATCH(runtime·call33554432, 33554432) DISPATCH(runtime·call67108864, 67108864) DISPATCH(runtime·call134217728, 134217728) DISPATCH(runtime·call268435456, 268435456) DISPATCH(runtime·call536870912, 536870912) DISPATCH(runtime·call1073741824, 1073741824) MOVQ $runtime·badreflectcall(SB), AX JMP AX #define CALLFN(NAME,MAXSIZE) \ TEXT NAME(SB), WRAPPER, $MAXSIZE-48; \ NO_LOCAL_POINTERS; \ /* copy arguments to stack */ \ MOVQ stackArgs+16(FP), SI; \ MOVLQZX stackArgsSize+24(FP), CX; \ MOVQ SP, DI; \ REP;MOVSB; \ /* set up argument registers */ \ MOVQ regArgs+40(FP), R12; \ CALL ·unspillArgs(SB); \ /* call function */ \ MOVQ f+8(FP), DX; \ PCDATA $PCDATA_StackMapIndex, $0; \ MOVQ (DX), R12; \ CALL R12; \ /* copy register return values back */ \ MOVQ regArgs+40(FP), R12; \ CALL ·spillArgs(SB); \ MOVLQZX stackArgsSize+24(FP), CX; \ MOVLQZX stackRetOffset+28(FP), BX; \ MOVQ stackArgs+16(FP), DI; \ MOVQ stackArgsType+0(FP), DX; \ MOVQ SP, SI; \ ADDQ BX, DI; \ ADDQ BX, SI; \ SUBQ BX, CX; \ CALL callRet<>(SB); \ RET // callRet copies return values back at the end of call*. This is a // separate function so it can allocate stack space for the arguments // to reflectcallmove. It does not follow the Go ABI; it expects its // arguments in registers. TEXT callRet<>(SB), NOSPLIT, $40-0 NO_LOCAL_POINTERS MOVQ DX, 0(SP) MOVQ DI, 8(SP) MOVQ SI, 16(SP) MOVQ CX, 24(SP) MOVQ R12, 32(SP) CALL runtime·reflectcallmove(SB) RET CALLFN(·call16, 16) CALLFN(·call32, 32) CALLFN(·call64, 64) CALLFN(·call128, 128) CALLFN(·call256, 256) CALLFN(·call512, 512) CALLFN(·call1024, 1024) CALLFN(·call2048, 2048) CALLFN(·call4096, 4096) CALLFN(·call8192, 8192) CALLFN(·call16384, 16384) CALLFN(·call32768, 32768) CALLFN(·call65536, 65536) CALLFN(·call131072, 131072) CALLFN(·call262144, 262144) CALLFN(·call524288, 524288) CALLFN(·call1048576, 1048576) CALLFN(·call2097152, 2097152) CALLFN(·call4194304, 4194304) CALLFN(·call8388608, 8388608) CALLFN(·call16777216, 16777216) CALLFN(·call33554432, 33554432) CALLFN(·call67108864, 67108864) CALLFN(·call134217728, 134217728) CALLFN(·call268435456, 268435456) CALLFN(·call536870912, 536870912) CALLFN(·call1073741824, 1073741824) TEXT runtime·procyield(SB),NOSPLIT,$0-0 MOVL cycles+0(FP), AX again: PAUSE SUBL $1, AX JNZ again RET TEXT ·publicationBarrier(SB),NOSPLIT,$0-0 // Stores are already ordered on x86, so this is just a // compile barrier. RET // Save state of caller into g->sched, // but using fake PC from systemstack_switch. // Must only be called from functions with no locals ($0) // or else unwinding from systemstack_switch is incorrect. // Smashes R9. TEXT gosave_systemstack_switch<>(SB),NOSPLIT,$0 MOVQ $runtime·systemstack_switch(SB), R9 MOVQ R9, (g_sched+gobuf_pc)(R14) LEAQ 8(SP), R9 MOVQ R9, (g_sched+gobuf_sp)(R14) MOVQ $0, (g_sched+gobuf_ret)(R14) MOVQ BP, (g_sched+gobuf_bp)(R14) // Assert ctxt is zero. See func save. MOVQ (g_sched+gobuf_ctxt)(R14), R9 TESTQ R9, R9 JZ 2(PC) CALL runtime·abort(SB) RET // func asmcgocall_no_g(fn, arg unsafe.Pointer) // Call fn(arg) aligned appropriately for the gcc ABI. // Called on a system stack, and there may be no g yet (during needm). TEXT ·asmcgocall_no_g(SB),NOSPLIT,$0-16 MOVQ fn+0(FP), AX MOVQ arg+8(FP), BX MOVQ SP, DX SUBQ $32, SP ANDQ $~15, SP // alignment MOVQ DX, 8(SP) MOVQ BX, DI // DI = first argument in AMD64 ABI MOVQ BX, CX // CX = first argument in Win64 CALL AX MOVQ 8(SP), DX MOVQ DX, SP RET // func asmcgocall(fn, arg unsafe.Pointer) int32 // Call fn(arg) on the scheduler stack, // aligned appropriately for the gcc ABI. // See cgocall.go for more details. TEXT ·asmcgocall(SB),NOSPLIT,$0-20 MOVQ fn+0(FP), AX MOVQ arg+8(FP), BX MOVQ SP, DX // Figure out if we need to switch to m->g0 stack. // We get called to create new OS threads too, and those // come in on the m->g0 stack already. Or we might already // be on the m->gsignal stack. get_tls(CX) MOVQ g(CX), DI CMPQ DI, $0 JEQ nosave MOVQ g_m(DI), R8 MOVQ m_gsignal(R8), SI CMPQ DI, SI JEQ nosave MOVQ m_g0(R8), SI CMPQ DI, SI JEQ nosave // Switch to system stack. CALL gosave_systemstack_switch<>(SB) MOVQ SI, g(CX) MOVQ (g_sched+gobuf_sp)(SI), SP // Now on a scheduling stack (a pthread-created stack). // Make sure we have enough room for 4 stack-backed fast-call // registers as per windows amd64 calling convention. SUBQ $64, SP ANDQ $~15, SP // alignment for gcc ABI MOVQ DI, 48(SP) // save g MOVQ (g_stack+stack_hi)(DI), DI SUBQ DX, DI MOVQ DI, 40(SP) // save depth in stack (can't just save SP, as stack might be copied during a callback) MOVQ BX, DI // DI = first argument in AMD64 ABI MOVQ BX, CX // CX = first argument in Win64 CALL AX // Restore registers, g, stack pointer. get_tls(CX) MOVQ 48(SP), DI MOVQ (g_stack+stack_hi)(DI), SI SUBQ 40(SP), SI MOVQ DI, g(CX) MOVQ SI, SP MOVL AX, ret+16(FP) RET nosave: // Running on a system stack, perhaps even without a g. // Having no g can happen during thread creation or thread teardown // (see needm/dropm on Solaris, for example). // This code is like the above sequence but without saving/restoring g // and without worrying about the stack moving out from under us // (because we're on a system stack, not a goroutine stack). // The above code could be used directly if already on a system stack, // but then the only path through this code would be a rare case on Solaris. // Using this code for all "already on system stack" calls exercises it more, // which should help keep it correct. SUBQ $64, SP ANDQ $~15, SP MOVQ $0, 48(SP) // where above code stores g, in case someone looks during debugging MOVQ DX, 40(SP) // save original stack pointer MOVQ BX, DI // DI = first argument in AMD64 ABI MOVQ BX, CX // CX = first argument in Win64 CALL AX MOVQ 40(SP), SI // restore original stack pointer MOVQ SI, SP MOVL AX, ret+16(FP) RET #ifdef GOOS_windows // Dummy TLS that's used on Windows so that we don't crash trying // to restore the G register in needm. needm and its callees are // very careful never to actually use the G, the TLS just can't be // unset since we're in Go code. GLOBL zeroTLS<>(SB),RODATA,$const_tlsSize #endif // func cgocallback(fn, frame unsafe.Pointer, ctxt uintptr) // See cgocall.go for more details. TEXT ·cgocallback(SB),NOSPLIT,$24-24 NO_LOCAL_POINTERS // If g is nil, Go did not create the current thread. // Call needm to obtain one m for temporary use. // In this case, we're running on the thread stack, so there's // lots of space, but the linker doesn't know. Hide the call from // the linker analysis by using an indirect call through AX. get_tls(CX) #ifdef GOOS_windows MOVL $0, BX CMPQ CX, $0 JEQ 2(PC) #endif MOVQ g(CX), BX CMPQ BX, $0 JEQ needm MOVQ g_m(BX), BX MOVQ BX, savedm-8(SP) // saved copy of oldm JMP havem needm: #ifdef GOOS_windows // Set up a dummy TLS value. needm is careful not to use it, // but it needs to be there to prevent autogenerated code from // crashing when it loads from it. // We don't need to clear it or anything later because needm // will set up TLS properly. MOVQ $zeroTLS<>(SB), DI CALL runtime·settls(SB) #endif // On some platforms (Windows) we cannot call needm through // an ABI wrapper because there's no TLS set up, and the ABI // wrapper will try to restore the G register (R14) from TLS. // Clear X15 because Go expects it and we're not calling // through a wrapper, but otherwise avoid setting the G // register in the wrapper and call needm directly. It // takes no arguments and doesn't return any values so // there's no need to handle that. Clear R14 so that there's // a bad value in there, in case needm tries to use it. XORPS X15, X15 XORQ R14, R14 MOVQ $runtime·needm(SB), AX CALL AX MOVQ $0, savedm-8(SP) // dropm on return get_tls(CX) MOVQ g(CX), BX MOVQ g_m(BX), BX // Set m->sched.sp = SP, so that if a panic happens // during the function we are about to execute, it will // have a valid SP to run on the g0 stack. // The next few lines (after the havem label) // will save this SP onto the stack and then write // the same SP back to m->sched.sp. That seems redundant, // but if an unrecovered panic happens, unwindm will // restore the g->sched.sp from the stack location // and then systemstack will try to use it. If we don't set it here, // that restored SP will be uninitialized (typically 0) and // will not be usable. MOVQ m_g0(BX), SI MOVQ SP, (g_sched+gobuf_sp)(SI) havem: // Now there's a valid m, and we're running on its m->g0. // Save current m->g0->sched.sp on stack and then set it to SP. // Save current sp in m->g0->sched.sp in preparation for // switch back to m->curg stack. // NOTE: unwindm knows that the saved g->sched.sp is at 0(SP). MOVQ m_g0(BX), SI MOVQ (g_sched+gobuf_sp)(SI), AX MOVQ AX, 0(SP) MOVQ SP, (g_sched+gobuf_sp)(SI) // Switch to m->curg stack and call runtime.cgocallbackg. // Because we are taking over the execution of m->curg // but *not* resuming what had been running, we need to // save that information (m->curg->sched) so we can restore it. // We can restore m->curg->sched.sp easily, because calling // runtime.cgocallbackg leaves SP unchanged upon return. // To save m->curg->sched.pc, we push it onto the curg stack and // open a frame the same size as cgocallback's g0 frame. // Once we switch to the curg stack, the pushed PC will appear // to be the return PC of cgocallback, so that the traceback // will seamlessly trace back into the earlier calls. MOVQ m_curg(BX), SI MOVQ SI, g(CX) MOVQ (g_sched+gobuf_sp)(SI), DI // prepare stack as DI MOVQ (g_sched+gobuf_pc)(SI), BX MOVQ BX, -8(DI) // "push" return PC on the g stack // Gather our arguments into registers. MOVQ fn+0(FP), BX MOVQ frame+8(FP), CX MOVQ ctxt+16(FP), DX // Compute the size of the frame, including return PC and, if // GOEXPERIMENT=framepointer, the saved base pointer LEAQ fn+0(FP), AX SUBQ SP, AX // AX is our actual frame size SUBQ AX, DI // Allocate the same frame size on the g stack MOVQ DI, SP MOVQ BX, 0(SP) MOVQ CX, 8(SP) MOVQ DX, 16(SP) MOVQ $runtime·cgocallbackg(SB), AX CALL AX // indirect call to bypass nosplit check. We're on a different stack now. // Compute the size of the frame again. FP and SP have // completely different values here than they did above, // but only their difference matters. LEAQ fn+0(FP), AX SUBQ SP, AX // Restore g->sched (== m->curg->sched) from saved values. get_tls(CX) MOVQ g(CX), SI MOVQ SP, DI ADDQ AX, DI MOVQ -8(DI), BX MOVQ BX, (g_sched+gobuf_pc)(SI) MOVQ DI, (g_sched+gobuf_sp)(SI) // Switch back to m->g0's stack and restore m->g0->sched.sp. // (Unlike m->curg, the g0 goroutine never uses sched.pc, // so we do not have to restore it.) MOVQ g(CX), BX MOVQ g_m(BX), BX MOVQ m_g0(BX), SI MOVQ SI, g(CX) MOVQ (g_sched+gobuf_sp)(SI), SP MOVQ 0(SP), AX MOVQ AX, (g_sched+gobuf_sp)(SI) // If the m on entry was nil, we called needm above to borrow an m // for the duration of the call. Since the call is over, return it with dropm. MOVQ savedm-8(SP), BX CMPQ BX, $0 JNE done MOVQ $runtime·dropm(SB), AX CALL AX #ifdef GOOS_windows // We need to clear the TLS pointer in case the next // thread that comes into Go tries to reuse that space // but uses the same M. XORQ DI, DI CALL runtime·settls(SB) #endif done: // Done! RET // func setg(gg *g) // set g. for use by needm. TEXT runtime·setg(SB), NOSPLIT, $0-8 MOVQ gg+0(FP), BX get_tls(CX) MOVQ BX, g(CX) RET // void setg_gcc(G*); set g called from gcc. TEXT setg_gcc<>(SB),NOSPLIT,$0 get_tls(AX) MOVQ DI, g(AX) MOVQ DI, R14 // set the g register RET TEXT runtime·abort(SB),NOSPLIT,$0-0 INT $3 loop: JMP loop // check that SP is in range [g->stack.lo, g->stack.hi) TEXT runtime·stackcheck(SB), NOSPLIT, $0-0 get_tls(CX) MOVQ g(CX), AX CMPQ (g_stack+stack_hi)(AX), SP JHI 2(PC) CALL runtime·abort(SB) CMPQ SP, (g_stack+stack_lo)(AX) JHI 2(PC) CALL runtime·abort(SB) RET // func cputicks() int64 TEXT runtime·cputicks(SB),NOSPLIT,$0-0 CMPB internal∕cpu·X86+const_offsetX86HasRDTSCP(SB), $1 JNE fences // Instruction stream serializing RDTSCP is supported. // RDTSCP is supported by Intel Nehalem (2008) and // AMD K8 Rev. F (2006) and newer. RDTSCP done: SHLQ $32, DX ADDQ DX, AX MOVQ AX, ret+0(FP) RET fences: // MFENCE is instruction stream serializing and flushes the // store buffers on AMD. The serialization semantics of LFENCE on AMD // are dependent on MSR C001_1029 and CPU generation. // LFENCE on Intel does wait for all previous instructions to have executed. // Intel recommends MFENCE;LFENCE in its manuals before RDTSC to have all // previous instructions executed and all previous loads and stores to globally visible. // Using MFENCE;LFENCE here aligns the serializing properties without // runtime detection of CPU manufacturer. MFENCE LFENCE RDTSC JMP done // func memhash(p unsafe.Pointer, h, s uintptr) uintptr // hash function using AES hardware instructions TEXT runtime·memhash(SB),NOSPLIT,$0-32 // AX = ptr to data // BX = seed // CX = size CMPB runtime·useAeshash(SB), $0 JEQ noaes JMP aeshashbody<>(SB) noaes: JMP runtime·memhashFallback(SB) // func strhash(p unsafe.Pointer, h uintptr) uintptr TEXT runtime·strhash(SB),NOSPLIT,$0-24 // AX = ptr to string struct // BX = seed CMPB runtime·useAeshash(SB), $0 JEQ noaes MOVQ 8(AX), CX // length of string MOVQ (AX), AX // string data JMP aeshashbody<>(SB) noaes: JMP runtime·strhashFallback(SB) // AX: data // BX: hash seed // CX: length // At return: AX = return value TEXT aeshashbody<>(SB),NOSPLIT,$0-0 // Fill an SSE register with our seeds. MOVQ BX, X0 // 64 bits of per-table hash seed PINSRW $4, CX, X0 // 16 bits of length PSHUFHW $0, X0, X0 // repeat length 4 times total MOVO X0, X1 // save unscrambled seed PXOR runtime·aeskeysched(SB), X0 // xor in per-process seed AESENC X0, X0 // scramble seed CMPQ CX, $16 JB aes0to15 JE aes16 CMPQ CX, $32 JBE aes17to32 CMPQ CX, $64 JBE aes33to64 CMPQ CX, $128 JBE aes65to128 JMP aes129plus aes0to15: TESTQ CX, CX JE aes0 ADDQ $16, AX TESTW $0xff0, AX JE endofpage // 16 bytes loaded at this address won't cross // a page boundary, so we can load it directly. MOVOU -16(AX), X1 ADDQ CX, CX MOVQ $masks<>(SB), AX PAND (AX)(CX*8), X1 final1: PXOR X0, X1 // xor data with seed AESENC X1, X1 // scramble combo 3 times AESENC X1, X1 AESENC X1, X1 MOVQ X1, AX // return X1 RET endofpage: // address ends in 1111xxxx. Might be up against // a page boundary, so load ending at last byte. // Then shift bytes down using pshufb. MOVOU -32(AX)(CX*1), X1 ADDQ CX, CX MOVQ $shifts<>(SB), AX PSHUFB (AX)(CX*8), X1 JMP final1 aes0: // Return scrambled input seed AESENC X0, X0 MOVQ X0, AX // return X0 RET aes16: MOVOU (AX), X1 JMP final1 aes17to32: // make second starting seed PXOR runtime·aeskeysched+16(SB), X1 AESENC X1, X1 // load data to be hashed MOVOU (AX), X2 MOVOU -16(AX)(CX*1), X3 // xor with seed PXOR X0, X2 PXOR X1, X3 // scramble 3 times AESENC X2, X2 AESENC X3, X3 AESENC X2, X2 AESENC X3, X3 AESENC X2, X2 AESENC X3, X3 // combine results PXOR X3, X2 MOVQ X2, AX // return X2 RET aes33to64: // make 3 more starting seeds MOVO X1, X2 MOVO X1, X3 PXOR runtime·aeskeysched+16(SB), X1 PXOR runtime·aeskeysched+32(SB), X2 PXOR runtime·aeskeysched+48(SB), X3 AESENC X1, X1 AESENC X2, X2 AESENC X3, X3 MOVOU (AX), X4 MOVOU 16(AX), X5 MOVOU -32(AX)(CX*1), X6 MOVOU -16(AX)(CX*1), X7 PXOR X0, X4 PXOR X1, X5 PXOR X2, X6 PXOR X3, X7 AESENC X4, X4 AESENC X5, X5 AESENC X6, X6 AESENC X7, X7 AESENC X4, X4 AESENC X5, X5 AESENC X6, X6 AESENC X7, X7 AESENC X4, X4 AESENC X5, X5 AESENC X6, X6 AESENC X7, X7 PXOR X6, X4 PXOR X7, X5 PXOR X5, X4 MOVQ X4, AX // return X4 RET aes65to128: // make 7 more starting seeds MOVO X1, X2 MOVO X1, X3 MOVO X1, X4 MOVO X1, X5 MOVO X1, X6 MOVO X1, X7 PXOR runtime·aeskeysched+16(SB), X1 PXOR runtime·aeskeysched+32(SB), X2 PXOR runtime·aeskeysched+48(SB), X3 PXOR runtime·aeskeysched+64(SB), X4 PXOR runtime·aeskeysched+80(SB), X5 PXOR runtime·aeskeysched+96(SB), X6 PXOR runtime·aeskeysched+112(SB), X7 AESENC X1, X1 AESENC X2, X2 AESENC X3, X3 AESENC X4, X4 AESENC X5, X5 AESENC X6, X6 AESENC X7, X7 // load data MOVOU (AX), X8 MOVOU 16(AX), X9 MOVOU 32(AX), X10 MOVOU 48(AX), X11 MOVOU -64(AX)(CX*1), X12 MOVOU -48(AX)(CX*1), X13 MOVOU -32(AX)(CX*1), X14 MOVOU -16(AX)(CX*1), X15 // xor with seed PXOR X0, X8 PXOR X1, X9 PXOR X2, X10 PXOR X3, X11 PXOR X4, X12 PXOR X5, X13 PXOR X6, X14 PXOR X7, X15 // scramble 3 times AESENC X8, X8 AESENC X9, X9 AESENC X10, X10 AESENC X11, X11 AESENC X12, X12 AESENC X13, X13 AESENC X14, X14 AESENC X15, X15 AESENC X8, X8 AESENC X9, X9 AESENC X10, X10 AESENC X11, X11 AESENC X12, X12 AESENC X13, X13 AESENC X14, X14 AESENC X15, X15 AESENC X8, X8 AESENC X9, X9 AESENC X10, X10 AESENC X11, X11 AESENC X12, X12 AESENC X13, X13 AESENC X14, X14 AESENC X15, X15 // combine results PXOR X12, X8 PXOR X13, X9 PXOR X14, X10 PXOR X15, X11 PXOR X10, X8 PXOR X11, X9 PXOR X9, X8 // X15 must be zero on return PXOR X15, X15 MOVQ X8, AX // return X8 RET aes129plus: // make 7 more starting seeds MOVO X1, X2 MOVO X1, X3 MOVO X1, X4 MOVO X1, X5 MOVO X1, X6 MOVO X1, X7 PXOR runtime·aeskeysched+16(SB), X1 PXOR runtime·aeskeysched+32(SB), X2 PXOR runtime·aeskeysched+48(SB), X3 PXOR runtime·aeskeysched+64(SB), X4 PXOR runtime·aeskeysched+80(SB), X5 PXOR runtime·aeskeysched+96(SB), X6 PXOR runtime·aeskeysched+112(SB), X7 AESENC X1, X1 AESENC X2, X2 AESENC X3, X3 AESENC X4, X4 AESENC X5, X5 AESENC X6, X6 AESENC X7, X7 // start with last (possibly overlapping) block MOVOU -128(AX)(CX*1), X8 MOVOU -112(AX)(CX*1), X9 MOVOU -96(AX)(CX*1), X10 MOVOU -80(AX)(CX*1), X11 MOVOU -64(AX)(CX*1), X12 MOVOU -48(AX)(CX*1), X13 MOVOU -32(AX)(CX*1), X14 MOVOU -16(AX)(CX*1), X15 // xor in seed PXOR X0, X8 PXOR X1, X9 PXOR X2, X10 PXOR X3, X11 PXOR X4, X12 PXOR X5, X13 PXOR X6, X14 PXOR X7, X15 // compute number of remaining 128-byte blocks DECQ CX SHRQ $7, CX aesloop: // scramble state AESENC X8, X8 AESENC X9, X9 AESENC X10, X10 AESENC X11, X11 AESENC X12, X12 AESENC X13, X13 AESENC X14, X14 AESENC X15, X15 // scramble state, xor in a block MOVOU (AX), X0 MOVOU 16(AX), X1 MOVOU 32(AX), X2 MOVOU 48(AX), X3 AESENC X0, X8 AESENC X1, X9 AESENC X2, X10 AESENC X3, X11 MOVOU 64(AX), X4 MOVOU 80(AX), X5 MOVOU 96(AX), X6 MOVOU 112(AX), X7 AESENC X4, X12 AESENC X5, X13 AESENC X6, X14 AESENC X7, X15 ADDQ $128, AX DECQ CX JNE aesloop // 3 more scrambles to finish AESENC X8, X8 AESENC X9, X9 AESENC X10, X10 AESENC X11, X11 AESENC X12, X12 AESENC X13, X13 AESENC X14, X14 AESENC X15, X15 AESENC X8, X8 AESENC X9, X9 AESENC X10, X10 AESENC X11, X11 AESENC X12, X12 AESENC X13, X13 AESENC X14, X14 AESENC X15, X15 AESENC X8, X8 AESENC X9, X9 AESENC X10, X10 AESENC X11, X11 AESENC X12, X12 AESENC X13, X13 AESENC X14, X14 AESENC X15, X15 PXOR X12, X8 PXOR X13, X9 PXOR X14, X10 PXOR X15, X11 PXOR X10, X8 PXOR X11, X9 PXOR X9, X8 // X15 must be zero on return PXOR X15, X15 MOVQ X8, AX // return X8 RET // func memhash32(p unsafe.Pointer, h uintptr) uintptr // ABIInternal for performance. TEXT runtime·memhash32(SB),NOSPLIT,$0-24 // AX = ptr to data // BX = seed CMPB runtime·useAeshash(SB), $0 JEQ noaes MOVQ BX, X0 // X0 = seed PINSRD $2, (AX), X0 // data AESENC runtime·aeskeysched+0(SB), X0 AESENC runtime·aeskeysched+16(SB), X0 AESENC runtime·aeskeysched+32(SB), X0 MOVQ X0, AX // return X0 RET noaes: JMP runtime·memhash32Fallback(SB) // func memhash64(p unsafe.Pointer, h uintptr) uintptr // ABIInternal for performance. TEXT runtime·memhash64(SB),NOSPLIT,$0-24 // AX = ptr to data // BX = seed CMPB runtime·useAeshash(SB), $0 JEQ noaes MOVQ BX, X0 // X0 = seed PINSRQ $1, (AX), X0 // data AESENC runtime·aeskeysched+0(SB), X0 AESENC runtime·aeskeysched+16(SB), X0 AESENC runtime·aeskeysched+32(SB), X0 MOVQ X0, AX // return X0 RET noaes: JMP runtime·memhash64Fallback(SB) // simple mask to get rid of data in the high part of the register. DATA masks<>+0x00(SB)/8, $0x0000000000000000 DATA masks<>+0x08(SB)/8, $0x0000000000000000 DATA masks<>+0x10(SB)/8, $0x00000000000000ff DATA masks<>+0x18(SB)/8, $0x0000000000000000 DATA masks<>+0x20(SB)/8, $0x000000000000ffff DATA masks<>+0x28(SB)/8, $0x0000000000000000 DATA masks<>+0x30(SB)/8, $0x0000000000ffffff DATA masks<>+0x38(SB)/8, $0x0000000000000000 DATA masks<>+0x40(SB)/8, $0x00000000ffffffff DATA masks<>+0x48(SB)/8, $0x0000000000000000 DATA masks<>+0x50(SB)/8, $0x000000ffffffffff DATA masks<>+0x58(SB)/8, $0x0000000000000000 DATA masks<>+0x60(SB)/8, $0x0000ffffffffffff DATA masks<>+0x68(SB)/8, $0x0000000000000000 DATA masks<>+0x70(SB)/8, $0x00ffffffffffffff DATA masks<>+0x78(SB)/8, $0x0000000000000000 DATA masks<>+0x80(SB)/8, $0xffffffffffffffff DATA masks<>+0x88(SB)/8, $0x0000000000000000 DATA masks<>+0x90(SB)/8, $0xffffffffffffffff DATA masks<>+0x98(SB)/8, $0x00000000000000ff DATA masks<>+0xa0(SB)/8, $0xffffffffffffffff DATA masks<>+0xa8(SB)/8, $0x000000000000ffff DATA masks<>+0xb0(SB)/8, $0xffffffffffffffff DATA masks<>+0xb8(SB)/8, $0x0000000000ffffff DATA masks<>+0xc0(SB)/8, $0xffffffffffffffff DATA masks<>+0xc8(SB)/8, $0x00000000ffffffff DATA masks<>+0xd0(SB)/8, $0xffffffffffffffff DATA masks<>+0xd8(SB)/8, $0x000000ffffffffff DATA masks<>+0xe0(SB)/8, $0xffffffffffffffff DATA masks<>+0xe8(SB)/8, $0x0000ffffffffffff DATA masks<>+0xf0(SB)/8, $0xffffffffffffffff DATA masks<>+0xf8(SB)/8, $0x00ffffffffffffff GLOBL masks<>(SB),RODATA,$256 // func checkASM() bool TEXT ·checkASM(SB),NOSPLIT,$0-1 // check that masks<>(SB) and shifts<>(SB) are aligned to 16-byte MOVQ $masks<>(SB), AX MOVQ $shifts<>(SB), BX ORQ BX, AX TESTQ $15, AX SETEQ ret+0(FP) RET // these are arguments to pshufb. They move data down from // the high bytes of the register to the low bytes of the register. // index is how many bytes to move. DATA shifts<>+0x00(SB)/8, $0x0000000000000000 DATA shifts<>+0x08(SB)/8, $0x0000000000000000 DATA shifts<>+0x10(SB)/8, $0xffffffffffffff0f DATA shifts<>+0x18(SB)/8, $0xffffffffffffffff DATA shifts<>+0x20(SB)/8, $0xffffffffffff0f0e DATA shifts<>+0x28(SB)/8, $0xffffffffffffffff DATA shifts<>+0x30(SB)/8, $0xffffffffff0f0e0d DATA shifts<>+0x38(SB)/8, $0xffffffffffffffff DATA shifts<>+0x40(SB)/8, $0xffffffff0f0e0d0c DATA shifts<>+0x48(SB)/8, $0xffffffffffffffff DATA shifts<>+0x50(SB)/8, $0xffffff0f0e0d0c0b DATA shifts<>+0x58(SB)/8, $0xffffffffffffffff DATA shifts<>+0x60(SB)/8, $0xffff0f0e0d0c0b0a DATA shifts<>+0x68(SB)/8, $0xffffffffffffffff DATA shifts<>+0x70(SB)/8, $0xff0f0e0d0c0b0a09 DATA shifts<>+0x78(SB)/8, $0xffffffffffffffff DATA shifts<>+0x80(SB)/8, $0x0f0e0d0c0b0a0908 DATA shifts<>+0x88(SB)/8, $0xffffffffffffffff DATA shifts<>+0x90(SB)/8, $0x0e0d0c0b0a090807 DATA shifts<>+0x98(SB)/8, $0xffffffffffffff0f DATA shifts<>+0xa0(SB)/8, $0x0d0c0b0a09080706 DATA shifts<>+0xa8(SB)/8, $0xffffffffffff0f0e DATA shifts<>+0xb0(SB)/8, $0x0c0b0a0908070605 DATA shifts<>+0xb8(SB)/8, $0xffffffffff0f0e0d DATA shifts<>+0xc0(SB)/8, $0x0b0a090807060504 DATA shifts<>+0xc8(SB)/8, $0xffffffff0f0e0d0c DATA shifts<>+0xd0(SB)/8, $0x0a09080706050403 DATA shifts<>+0xd8(SB)/8, $0xffffff0f0e0d0c0b DATA shifts<>+0xe0(SB)/8, $0x0908070605040302 DATA shifts<>+0xe8(SB)/8, $0xffff0f0e0d0c0b0a DATA shifts<>+0xf0(SB)/8, $0x0807060504030201 DATA shifts<>+0xf8(SB)/8, $0xff0f0e0d0c0b0a09 GLOBL shifts<>(SB),RODATA,$256 TEXT runtime·return0(SB), NOSPLIT, $0 MOVL $0, AX RET // Called from cgo wrappers, this function returns g->m->curg.stack.hi. // Must obey the gcc calling convention. TEXT _cgo_topofstack(SB),NOSPLIT,$0 get_tls(CX) MOVQ g(CX), AX MOVQ g_m(AX), AX MOVQ m_curg(AX), AX MOVQ (g_stack+stack_hi)(AX), AX RET // The top-most function running on a goroutine // returns to goexit+PCQuantum. TEXT runtime·goexit(SB),NOSPLIT|TOPFRAME,$0-0 BYTE $0x90 // NOP CALL runtime·goexit1(SB) // does not return // traceback from goexit1 must hit code range of goexit BYTE $0x90 // NOP // This is called from .init_array and follows the platform, not Go, ABI. TEXT runtime·addmoduledata(SB),NOSPLIT,$0-0 PUSHQ R15 // The access to global variables below implicitly uses R15, which is callee-save MOVQ runtime·lastmoduledatap(SB), AX MOVQ DI, moduledata_next(AX) MOVQ DI, runtime·lastmoduledatap(SB) POPQ R15 RET // Initialize special registers then jump to sigpanic. // This function is injected from the signal handler for panicking // signals. It is quite painful to set X15 in the signal context, // so we do it here. TEXT ·sigpanic0(SB),NOSPLIT,$0-0 get_tls(R14) MOVQ g(R14), R14 #ifndef GOOS_plan9 XORPS X15, X15 #endif JMP ·sigpanic(SB) // gcWriteBarrier performs a heap pointer write and informs the GC. // // gcWriteBarrier does NOT follow the Go ABI. It takes two arguments: // - DI is the destination of the write // - AX is the value being written at DI // It clobbers FLAGS. It does not clobber any general-purpose registers, // but may clobber others (e.g., SSE registers). // Defined as ABIInternal since it does not use the stack-based Go ABI. TEXT runtime·gcWriteBarrier(SB),NOSPLIT,$112 // Save the registers clobbered by the fast path. This is slightly // faster than having the caller spill these. MOVQ R12, 96(SP) MOVQ R13, 104(SP) // TODO: Consider passing g.m.p in as an argument so they can be shared // across a sequence of write barriers. MOVQ g_m(R14), R13 MOVQ m_p(R13), R13 MOVQ (p_wbBuf+wbBuf_next)(R13), R12 // Increment wbBuf.next position. LEAQ 16(R12), R12 MOVQ R12, (p_wbBuf+wbBuf_next)(R13) CMPQ R12, (p_wbBuf+wbBuf_end)(R13) // Record the write. MOVQ AX, -16(R12) // Record value // Note: This turns bad pointer writes into bad // pointer reads, which could be confusing. We could avoid // reading from obviously bad pointers, which would // take care of the vast majority of these. We could // patch this up in the signal handler, or use XCHG to // combine the read and the write. MOVQ (DI), R13 MOVQ R13, -8(R12) // Record *slot // Is the buffer full? (flags set in CMPQ above) JEQ flush ret: MOVQ 96(SP), R12 MOVQ 104(SP), R13 // Do the write. MOVQ AX, (DI) RET flush: // Save all general purpose registers since these could be // clobbered by wbBufFlush and were not saved by the caller. // It is possible for wbBufFlush to clobber other registers // (e.g., SSE registers), but the compiler takes care of saving // those in the caller if necessary. This strikes a balance // with registers that are likely to be used. // // We don't have type information for these, but all code under // here is NOSPLIT, so nothing will observe these. // // TODO: We could strike a different balance; e.g., saving X0 // and not saving GP registers that are less likely to be used. MOVQ DI, 0(SP) // Also first argument to wbBufFlush MOVQ AX, 8(SP) // Also second argument to wbBufFlush MOVQ BX, 16(SP) MOVQ CX, 24(SP) MOVQ DX, 32(SP) // DI already saved MOVQ SI, 40(SP) MOVQ BP, 48(SP) MOVQ R8, 56(SP) MOVQ R9, 64(SP) MOVQ R10, 72(SP) MOVQ R11, 80(SP) // R12 already saved // R13 already saved // R14 is g MOVQ R15, 88(SP) // This takes arguments DI and AX CALL runtime·wbBufFlush(SB) MOVQ 0(SP), DI MOVQ 8(SP), AX MOVQ 16(SP), BX MOVQ 24(SP), CX MOVQ 32(SP), DX MOVQ 40(SP), SI MOVQ 48(SP), BP MOVQ 56(SP), R8 MOVQ 64(SP), R9 MOVQ 72(SP), R10 MOVQ 80(SP), R11 MOVQ 88(SP), R15 JMP ret // gcWriteBarrierCX is gcWriteBarrier, but with args in DI and CX. // Defined as ABIInternal since it does not use the stable Go ABI. TEXT runtime·gcWriteBarrierCX(SB),NOSPLIT,$0 XCHGQ CX, AX CALL runtime·gcWriteBarrier(SB) XCHGQ CX, AX RET // gcWriteBarrierDX is gcWriteBarrier, but with args in DI and DX. // Defined as ABIInternal since it does not use the stable Go ABI. TEXT runtime·gcWriteBarrierDX(SB),NOSPLIT,$0 XCHGQ DX, AX CALL runtime·gcWriteBarrier(SB) XCHGQ DX, AX RET // gcWriteBarrierBX is gcWriteBarrier, but with args in DI and BX. // Defined as ABIInternal since it does not use the stable Go ABI. TEXT runtime·gcWriteBarrierBX(SB),NOSPLIT,$0 XCHGQ BX, AX CALL runtime·gcWriteBarrier(SB) XCHGQ BX, AX RET // gcWriteBarrierBP is gcWriteBarrier, but with args in DI and BP. // Defined as ABIInternal since it does not use the stable Go ABI. TEXT runtime·gcWriteBarrierBP(SB),NOSPLIT,$0 XCHGQ BP, AX CALL runtime·gcWriteBarrier(SB) XCHGQ BP, AX RET // gcWriteBarrierSI is gcWriteBarrier, but with args in DI and SI. // Defined as ABIInternal since it does not use the stable Go ABI. TEXT runtime·gcWriteBarrierSI(SB),NOSPLIT,$0 XCHGQ SI, AX CALL runtime·gcWriteBarrier(SB) XCHGQ SI, AX RET // gcWriteBarrierR8 is gcWriteBarrier, but with args in DI and R8. // Defined as ABIInternal since it does not use the stable Go ABI. TEXT runtime·gcWriteBarrierR8(SB),NOSPLIT,$0 XCHGQ R8, AX CALL runtime·gcWriteBarrier(SB) XCHGQ R8, AX RET // gcWriteBarrierR9 is gcWriteBarrier, but with args in DI and R9. // Defined as ABIInternal since it does not use the stable Go ABI. TEXT runtime·gcWriteBarrierR9(SB),NOSPLIT,$0 XCHGQ R9, AX CALL runtime·gcWriteBarrier(SB) XCHGQ R9, AX RET DATA debugCallFrameTooLarge<>+0x00(SB)/20, $"call frame too large" GLOBL debugCallFrameTooLarge<>(SB), RODATA, $20 // Size duplicated below // debugCallV2 is the entry point for debugger-injected function // calls on running goroutines. It informs the runtime that a // debug call has been injected and creates a call frame for the // debugger to fill in. // // To inject a function call, a debugger should: // 1. Check that the goroutine is in state _Grunning and that // there are at least 256 bytes free on the stack. // 2. Push the current PC on the stack (updating SP). // 3. Write the desired argument frame size at SP-16 (using the SP // after step 2). // 4. Save all machine registers (including flags and XMM registers) // so they can be restored later by the debugger. // 5. Set the PC to debugCallV2 and resume execution. // // If the goroutine is in state _Grunnable, then it's not generally // safe to inject a call because it may return out via other runtime // operations. Instead, the debugger should unwind the stack to find // the return to non-runtime code, add a temporary breakpoint there, // and inject the call once that breakpoint is hit. // // If the goroutine is in any other state, it's not safe to inject a call. // // This function communicates back to the debugger by setting R12 and // invoking INT3 to raise a breakpoint signal. See the comments in the // implementation for the protocol the debugger is expected to // follow. InjectDebugCall in the runtime tests demonstrates this protocol. // // The debugger must ensure that any pointers passed to the function // obey escape analysis requirements. Specifically, it must not pass // a stack pointer to an escaping argument. debugCallV2 cannot check // this invariant. // // This is ABIInternal because Go code injects its PC directly into new // goroutine stacks. TEXT runtime·debugCallV2(SB),NOSPLIT,$152-0 // Save all registers that may contain pointers so they can be // conservatively scanned. // // We can't do anything that might clobber any of these // registers before this. MOVQ R15, r15-(14*8+8)(SP) MOVQ R14, r14-(13*8+8)(SP) MOVQ R13, r13-(12*8+8)(SP) MOVQ R12, r12-(11*8+8)(SP) MOVQ R11, r11-(10*8+8)(SP) MOVQ R10, r10-(9*8+8)(SP) MOVQ R9, r9-(8*8+8)(SP) MOVQ R8, r8-(7*8+8)(SP) MOVQ DI, di-(6*8+8)(SP) MOVQ SI, si-(5*8+8)(SP) MOVQ BP, bp-(4*8+8)(SP) MOVQ BX, bx-(3*8+8)(SP) MOVQ DX, dx-(2*8+8)(SP) // Save the frame size before we clobber it. Either of the last // saves could clobber this depending on whether there's a saved BP. MOVQ frameSize-24(FP), DX // aka -16(RSP) before prologue MOVQ CX, cx-(1*8+8)(SP) MOVQ AX, ax-(0*8+8)(SP) // Save the argument frame size. MOVQ DX, frameSize-128(SP) // Perform a safe-point check. MOVQ retpc-8(FP), AX // Caller's PC MOVQ AX, 0(SP) CALL runtime·debugCallCheck(SB) MOVQ 8(SP), AX TESTQ AX, AX JZ good // The safety check failed. Put the reason string at the top // of the stack. MOVQ AX, 0(SP) MOVQ 16(SP), AX MOVQ AX, 8(SP) // Set R12 to 8 and invoke INT3. The debugger should get the // reason a call can't be injected from the top of the stack // and resume execution. MOVQ $8, R12 BYTE $0xcc JMP restore good: // Registers are saved and it's safe to make a call. // Open up a call frame, moving the stack if necessary. // // Once the frame is allocated, this will set R12 to 0 and // invoke INT3. The debugger should write the argument // frame for the call at SP, set up argument registers, push // the trapping PC on the stack, set the PC to the function to // call, set RDX to point to the closure (if a closure call), // and resume execution. // // If the function returns, this will set R12 to 1 and invoke // INT3. The debugger can then inspect any return value saved // on the stack at SP and in registers and resume execution again. // // If the function panics, this will set R12 to 2 and invoke INT3. // The interface{} value of the panic will be at SP. The debugger // can inspect the panic value and resume execution again. #define DEBUG_CALL_DISPATCH(NAME,MAXSIZE) \ CMPQ AX, $MAXSIZE; \ JA 5(PC); \ MOVQ $NAME(SB), AX; \ MOVQ AX, 0(SP); \ CALL runtime·debugCallWrap(SB); \ JMP restore MOVQ frameSize-128(SP), AX DEBUG_CALL_DISPATCH(debugCall32<>, 32) DEBUG_CALL_DISPATCH(debugCall64<>, 64) DEBUG_CALL_DISPATCH(debugCall128<>, 128) DEBUG_CALL_DISPATCH(debugCall256<>, 256) DEBUG_CALL_DISPATCH(debugCall512<>, 512) DEBUG_CALL_DISPATCH(debugCall1024<>, 1024) DEBUG_CALL_DISPATCH(debugCall2048<>, 2048) DEBUG_CALL_DISPATCH(debugCall4096<>, 4096) DEBUG_CALL_DISPATCH(debugCall8192<>, 8192) DEBUG_CALL_DISPATCH(debugCall16384<>, 16384) DEBUG_CALL_DISPATCH(debugCall32768<>, 32768) DEBUG_CALL_DISPATCH(debugCall65536<>, 65536) // The frame size is too large. Report the error. MOVQ $debugCallFrameTooLarge<>(SB), AX MOVQ AX, 0(SP) MOVQ $20, 8(SP) // length of debugCallFrameTooLarge string MOVQ $8, R12 BYTE $0xcc JMP restore restore: // Calls and failures resume here. // // Set R12 to 16 and invoke INT3. The debugger should restore // all registers except RIP and RSP and resume execution. MOVQ $16, R12 BYTE $0xcc // We must not modify flags after this point. // Restore pointer-containing registers, which may have been // modified from the debugger's copy by stack copying. MOVQ ax-(0*8+8)(SP), AX MOVQ cx-(1*8+8)(SP), CX MOVQ dx-(2*8+8)(SP), DX MOVQ bx-(3*8+8)(SP), BX MOVQ bp-(4*8+8)(SP), BP MOVQ si-(5*8+8)(SP), SI MOVQ di-(6*8+8)(SP), DI MOVQ r8-(7*8+8)(SP), R8 MOVQ r9-(8*8+8)(SP), R9 MOVQ r10-(9*8+8)(SP), R10 MOVQ r11-(10*8+8)(SP), R11 MOVQ r12-(11*8+8)(SP), R12 MOVQ r13-(12*8+8)(SP), R13 MOVQ r14-(13*8+8)(SP), R14 MOVQ r15-(14*8+8)(SP), R15 RET // runtime.debugCallCheck assumes that functions defined with the // DEBUG_CALL_FN macro are safe points to inject calls. #define DEBUG_CALL_FN(NAME,MAXSIZE) \ TEXT NAME(SB),WRAPPER,$MAXSIZE-0; \ NO_LOCAL_POINTERS; \ MOVQ $0, R12; \ BYTE $0xcc; \ MOVQ $1, R12; \ BYTE $0xcc; \ RET DEBUG_CALL_FN(debugCall32<>, 32) DEBUG_CALL_FN(debugCall64<>, 64) DEBUG_CALL_FN(debugCall128<>, 128) DEBUG_CALL_FN(debugCall256<>, 256) DEBUG_CALL_FN(debugCall512<>, 512) DEBUG_CALL_FN(debugCall1024<>, 1024) DEBUG_CALL_FN(debugCall2048<>, 2048) DEBUG_CALL_FN(debugCall4096<>, 4096) DEBUG_CALL_FN(debugCall8192<>, 8192) DEBUG_CALL_FN(debugCall16384<>, 16384) DEBUG_CALL_FN(debugCall32768<>, 32768) DEBUG_CALL_FN(debugCall65536<>, 65536) // func debugCallPanicked(val interface{}) TEXT runtime·debugCallPanicked(SB),NOSPLIT,$16-16 // Copy the panic value to the top of stack. MOVQ val_type+0(FP), AX MOVQ AX, 0(SP) MOVQ val_data+8(FP), AX MOVQ AX, 8(SP) MOVQ $2, R12 BYTE $0xcc RET // Note: these functions use a special calling convention to save generated code space. // Arguments are passed in registers, but the space for those arguments are allocated // in the caller's stack frame. These stubs write the args into that stack space and // then tail call to the corresponding runtime handler. // The tail call makes these stubs disappear in backtraces. // Defined as ABIInternal since they do not use the stack-based Go ABI. TEXT runtime·panicIndex(SB),NOSPLIT,$0-16 MOVQ CX, BX JMP runtime·goPanicIndex(SB) TEXT runtime·panicIndexU(SB),NOSPLIT,$0-16 MOVQ CX, BX JMP runtime·goPanicIndexU(SB) TEXT runtime·panicSliceAlen(SB),NOSPLIT,$0-16 MOVQ CX, AX MOVQ DX, BX JMP runtime·goPanicSliceAlen(SB) TEXT runtime·panicSliceAlenU(SB),NOSPLIT,$0-16 MOVQ CX, AX MOVQ DX, BX JMP runtime·goPanicSliceAlenU(SB) TEXT runtime·panicSliceAcap(SB),NOSPLIT,$0-16 MOVQ CX, AX MOVQ DX, BX JMP runtime·goPanicSliceAcap(SB) TEXT runtime·panicSliceAcapU(SB),NOSPLIT,$0-16 MOVQ CX, AX MOVQ DX, BX JMP runtime·goPanicSliceAcapU(SB) TEXT runtime·panicSliceB(SB),NOSPLIT,$0-16 MOVQ CX, BX JMP runtime·goPanicSliceB(SB) TEXT runtime·panicSliceBU(SB),NOSPLIT,$0-16 MOVQ CX, BX JMP runtime·goPanicSliceBU(SB) TEXT runtime·panicSlice3Alen(SB),NOSPLIT,$0-16 MOVQ DX, AX JMP runtime·goPanicSlice3Alen(SB) TEXT runtime·panicSlice3AlenU(SB),NOSPLIT,$0-16 MOVQ DX, AX JMP runtime·goPanicSlice3AlenU(SB) TEXT runtime·panicSlice3Acap(SB),NOSPLIT,$0-16 MOVQ DX, AX JMP runtime·goPanicSlice3Acap(SB) TEXT runtime·panicSlice3AcapU(SB),NOSPLIT,$0-16 MOVQ DX, AX JMP runtime·goPanicSlice3AcapU(SB) TEXT runtime·panicSlice3B(SB),NOSPLIT,$0-16 MOVQ CX, AX MOVQ DX, BX JMP runtime·goPanicSlice3B(SB) TEXT runtime·panicSlice3BU(SB),NOSPLIT,$0-16 MOVQ CX, AX MOVQ DX, BX JMP runtime·goPanicSlice3BU(SB) TEXT runtime·panicSlice3C(SB),NOSPLIT,$0-16 MOVQ CX, BX JMP runtime·goPanicSlice3C(SB) TEXT runtime·panicSlice3CU(SB),NOSPLIT,$0-16 MOVQ CX, BX JMP runtime·goPanicSlice3CU(SB) TEXT runtime·panicSliceConvert(SB),NOSPLIT,$0-16 MOVQ DX, AX JMP runtime·goPanicSliceConvert(SB) #ifdef GOOS_android // Use the free TLS_SLOT_APP slot #2 on Android Q. // Earlier androids are set up in gcc_android.c. DATA runtime·tls_g+0(SB)/8, $16 GLOBL runtime·tls_g+0(SB), NOPTR, $8 #endif // The compiler and assembler's -spectre=ret mode rewrites // all indirect CALL AX / JMP AX instructions to be // CALL retpolineAX / JMP retpolineAX. // See https://support.google.com/faqs/answer/7625886. #define RETPOLINE(reg) \ /* CALL setup */ BYTE $0xE8; BYTE $(2+2); BYTE $0; BYTE $0; BYTE $0; \ /* nospec: */ \ /* PAUSE */ BYTE $0xF3; BYTE $0x90; \ /* JMP nospec */ BYTE $0xEB; BYTE $-(2+2); \ /* setup: */ \ /* MOVQ AX, 0(SP) */ BYTE $0x48|((reg&8)>>1); BYTE $0x89; \ BYTE $0x04|((reg&7)<<3); BYTE $0x24; \ /* RET */ BYTE $0xC3 TEXT runtime·retpolineAX(SB),NOSPLIT,$0; RETPOLINE(0) TEXT runtime·retpolineCX(SB),NOSPLIT,$0; RETPOLINE(1) TEXT runtime·retpolineDX(SB),NOSPLIT,$0; RETPOLINE(2) TEXT runtime·retpolineBX(SB),NOSPLIT,$0; RETPOLINE(3) /* SP is 4, can't happen / magic encodings */ TEXT runtime·retpolineBP(SB),NOSPLIT,$0; RETPOLINE(5) TEXT runtime·retpolineSI(SB),NOSPLIT,$0; RETPOLINE(6) TEXT runtime·retpolineDI(SB),NOSPLIT,$0; RETPOLINE(7) TEXT runtime·retpolineR8(SB),NOSPLIT,$0; RETPOLINE(8) TEXT runtime·retpolineR9(SB),NOSPLIT,$0; RETPOLINE(9) TEXT runtime·retpolineR10(SB),NOSPLIT,$0; RETPOLINE(10) TEXT runtime·retpolineR11(SB),NOSPLIT,$0; RETPOLINE(11) TEXT runtime·retpolineR12(SB),NOSPLIT,$0; RETPOLINE(12) TEXT runtime·retpolineR13(SB),NOSPLIT,$0; RETPOLINE(13) TEXT runtime·retpolineR14(SB),NOSPLIT,$0; RETPOLINE(14) TEXT runtime·retpolineR15(SB),NOSPLIT,$0; RETPOLINE(15)