summaryrefslogtreecommitdiffstats
path: root/include/import/eb64tree.h
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 09:35:11 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 09:35:11 +0000
commitda76459dc21b5af2449af2d36eb95226cb186ce2 (patch)
tree542ebb3c1e796fac2742495b8437331727bbbfa0 /include/import/eb64tree.h
parentInitial commit. (diff)
downloadhaproxy-da76459dc21b5af2449af2d36eb95226cb186ce2.tar.xz
haproxy-da76459dc21b5af2449af2d36eb95226cb186ce2.zip
Adding upstream version 2.6.12.upstream/2.6.12upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'include/import/eb64tree.h')
-rw-r--r--include/import/eb64tree.h575
1 files changed, 575 insertions, 0 deletions
diff --git a/include/import/eb64tree.h b/include/import/eb64tree.h
new file mode 100644
index 0000000..d6e5db4
--- /dev/null
+++ b/include/import/eb64tree.h
@@ -0,0 +1,575 @@
+/*
+ * Elastic Binary Trees - macros and structures for operations on 64bit nodes.
+ * Version 6.0.6
+ * (C) 2002-2011 - Willy Tarreau <w@1wt.eu>
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation, version 2.1
+ * exclusively.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+#ifndef _EB64TREE_H
+#define _EB64TREE_H
+
+#include "ebtree.h"
+
+
+/* Return the structure of type <type> whose member <member> points to <ptr> */
+#define eb64_entry(ptr, type, member) container_of(ptr, type, member)
+
+/*
+ * Exported functions and macros.
+ * Many of them are always inlined because they are extremely small, and
+ * are generally called at most once or twice in a program.
+ */
+
+/* Return leftmost node in the tree, or NULL if none */
+static inline struct eb64_node *eb64_first(struct eb_root *root)
+{
+ return eb64_entry(eb_first(root), struct eb64_node, node);
+}
+
+/* Return rightmost node in the tree, or NULL if none */
+static inline struct eb64_node *eb64_last(struct eb_root *root)
+{
+ return eb64_entry(eb_last(root), struct eb64_node, node);
+}
+
+/* Return next node in the tree, or NULL if none */
+static inline struct eb64_node *eb64_next(struct eb64_node *eb64)
+{
+ return eb64_entry(eb_next(&eb64->node), struct eb64_node, node);
+}
+
+/* Return previous node in the tree, or NULL if none */
+static inline struct eb64_node *eb64_prev(struct eb64_node *eb64)
+{
+ return eb64_entry(eb_prev(&eb64->node), struct eb64_node, node);
+}
+
+/* Return next leaf node within a duplicate sub-tree, or NULL if none. */
+static inline struct eb64_node *eb64_next_dup(struct eb64_node *eb64)
+{
+ return eb64_entry(eb_next_dup(&eb64->node), struct eb64_node, node);
+}
+
+/* Return previous leaf node within a duplicate sub-tree, or NULL if none. */
+static inline struct eb64_node *eb64_prev_dup(struct eb64_node *eb64)
+{
+ return eb64_entry(eb_prev_dup(&eb64->node), struct eb64_node, node);
+}
+
+/* Return next node in the tree, skipping duplicates, or NULL if none */
+static inline struct eb64_node *eb64_next_unique(struct eb64_node *eb64)
+{
+ return eb64_entry(eb_next_unique(&eb64->node), struct eb64_node, node);
+}
+
+/* Return previous node in the tree, skipping duplicates, or NULL if none */
+static inline struct eb64_node *eb64_prev_unique(struct eb64_node *eb64)
+{
+ return eb64_entry(eb_prev_unique(&eb64->node), struct eb64_node, node);
+}
+
+/* Delete node from the tree if it was linked in. Mark the node unused. Note
+ * that this function relies on a non-inlined generic function: eb_delete.
+ */
+static inline void eb64_delete(struct eb64_node *eb64)
+{
+ eb_delete(&eb64->node);
+}
+
+/*
+ * The following functions are not inlined by default. They are declared
+ * in eb64tree.c, which simply relies on their inline version.
+ */
+struct eb64_node *eb64_lookup(struct eb_root *root, u64 x);
+struct eb64_node *eb64i_lookup(struct eb_root *root, s64 x);
+struct eb64_node *eb64_lookup_le(struct eb_root *root, u64 x);
+struct eb64_node *eb64_lookup_ge(struct eb_root *root, u64 x);
+struct eb64_node *eb64_insert(struct eb_root *root, struct eb64_node *new);
+struct eb64_node *eb64i_insert(struct eb_root *root, struct eb64_node *new);
+
+/*
+ * The following functions are less likely to be used directly, because their
+ * code is larger. The non-inlined version is preferred.
+ */
+
+/* Delete node from the tree if it was linked in. Mark the node unused. */
+static forceinline void __eb64_delete(struct eb64_node *eb64)
+{
+ __eb_delete(&eb64->node);
+}
+
+/*
+ * Find the first occurrence of a key in the tree <root>. If none can be
+ * found, return NULL.
+ */
+static forceinline struct eb64_node *__eb64_lookup(struct eb_root *root, u64 x)
+{
+ struct eb64_node *node;
+ eb_troot_t *troot;
+ u64 y;
+
+ troot = root->b[EB_LEFT];
+ if (unlikely(troot == NULL))
+ return NULL;
+
+ while (1) {
+ if ((eb_gettag(troot) == EB_LEAF)) {
+ node = container_of(eb_untag(troot, EB_LEAF),
+ struct eb64_node, node.branches);
+ if (node->key == x)
+ return node;
+ else
+ return NULL;
+ }
+ node = container_of(eb_untag(troot, EB_NODE),
+ struct eb64_node, node.branches);
+
+ y = node->key ^ x;
+ if (!y) {
+ /* Either we found the node which holds the key, or
+ * we have a dup tree. In the later case, we have to
+ * walk it down left to get the first entry.
+ */
+ if (node->node.bit < 0) {
+ troot = node->node.branches.b[EB_LEFT];
+ while (eb_gettag(troot) != EB_LEAF)
+ troot = (eb_untag(troot, EB_NODE))->b[EB_LEFT];
+ node = container_of(eb_untag(troot, EB_LEAF),
+ struct eb64_node, node.branches);
+ }
+ return node;
+ }
+
+ if ((y >> node->node.bit) >= EB_NODE_BRANCHES)
+ return NULL; /* no more common bits */
+
+ troot = node->node.branches.b[(x >> node->node.bit) & EB_NODE_BRANCH_MASK];
+ }
+}
+
+/*
+ * Find the first occurrence of a signed key in the tree <root>. If none can
+ * be found, return NULL.
+ */
+static forceinline struct eb64_node *__eb64i_lookup(struct eb_root *root, s64 x)
+{
+ struct eb64_node *node;
+ eb_troot_t *troot;
+ u64 key = x ^ (1ULL << 63);
+ u64 y;
+
+ troot = root->b[EB_LEFT];
+ if (unlikely(troot == NULL))
+ return NULL;
+
+ while (1) {
+ if ((eb_gettag(troot) == EB_LEAF)) {
+ node = container_of(eb_untag(troot, EB_LEAF),
+ struct eb64_node, node.branches);
+ if (node->key == (u64)x)
+ return node;
+ else
+ return NULL;
+ }
+ node = container_of(eb_untag(troot, EB_NODE),
+ struct eb64_node, node.branches);
+
+ y = node->key ^ x;
+ if (!y) {
+ /* Either we found the node which holds the key, or
+ * we have a dup tree. In the later case, we have to
+ * walk it down left to get the first entry.
+ */
+ if (node->node.bit < 0) {
+ troot = node->node.branches.b[EB_LEFT];
+ while (eb_gettag(troot) != EB_LEAF)
+ troot = (eb_untag(troot, EB_NODE))->b[EB_LEFT];
+ node = container_of(eb_untag(troot, EB_LEAF),
+ struct eb64_node, node.branches);
+ }
+ return node;
+ }
+
+ if ((y >> node->node.bit) >= EB_NODE_BRANCHES)
+ return NULL; /* no more common bits */
+
+ troot = node->node.branches.b[(key >> node->node.bit) & EB_NODE_BRANCH_MASK];
+ }
+}
+
+/* Insert eb64_node <new> into subtree starting at node root <root>.
+ * Only new->key needs be set with the key. The eb64_node is returned.
+ * If root->b[EB_RGHT]==1, the tree may only contain unique keys.
+ */
+static forceinline struct eb64_node *
+__eb64_insert(struct eb_root *root, struct eb64_node *new) {
+ struct eb64_node *old;
+ unsigned int side;
+ eb_troot_t *troot;
+ u64 newkey; /* caching the key saves approximately one cycle */
+ eb_troot_t *root_right;
+ int old_node_bit;
+
+ side = EB_LEFT;
+ troot = root->b[EB_LEFT];
+ root_right = root->b[EB_RGHT];
+ if (unlikely(troot == NULL)) {
+ /* Tree is empty, insert the leaf part below the left branch */
+ root->b[EB_LEFT] = eb_dotag(&new->node.branches, EB_LEAF);
+ new->node.leaf_p = eb_dotag(root, EB_LEFT);
+ new->node.node_p = NULL; /* node part unused */
+ return new;
+ }
+
+ /* The tree descent is fairly easy :
+ * - first, check if we have reached a leaf node
+ * - second, check if we have gone too far
+ * - third, reiterate
+ * Everywhere, we use <new> for the node node we are inserting, <root>
+ * for the node we attach it to, and <old> for the node we are
+ * displacing below <new>. <troot> will always point to the future node
+ * (tagged with its type). <side> carries the side the node <new> is
+ * attached to below its parent, which is also where previous node
+ * was attached. <newkey> carries the key being inserted.
+ */
+ newkey = new->key;
+
+ while (1) {
+ if (unlikely(eb_gettag(troot) == EB_LEAF)) {
+ eb_troot_t *new_left, *new_rght;
+ eb_troot_t *new_leaf, *old_leaf;
+
+ old = container_of(eb_untag(troot, EB_LEAF),
+ struct eb64_node, node.branches);
+
+ new_left = eb_dotag(&new->node.branches, EB_LEFT);
+ new_rght = eb_dotag(&new->node.branches, EB_RGHT);
+ new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
+ old_leaf = eb_dotag(&old->node.branches, EB_LEAF);
+
+ new->node.node_p = old->node.leaf_p;
+
+ /* Right here, we have 3 possibilities :
+ - the tree does not contain the key, and we have
+ new->key < old->key. We insert new above old, on
+ the left ;
+
+ - the tree does not contain the key, and we have
+ new->key > old->key. We insert new above old, on
+ the right ;
+
+ - the tree does contain the key, which implies it
+ is alone. We add the new key next to it as a
+ first duplicate.
+
+ The last two cases can easily be partially merged.
+ */
+
+ if (new->key < old->key) {
+ new->node.leaf_p = new_left;
+ old->node.leaf_p = new_rght;
+ new->node.branches.b[EB_LEFT] = new_leaf;
+ new->node.branches.b[EB_RGHT] = old_leaf;
+ } else {
+ /* we may refuse to duplicate this key if the tree is
+ * tagged as containing only unique keys.
+ */
+ if ((new->key == old->key) && eb_gettag(root_right))
+ return old;
+
+ /* new->key >= old->key, new goes the right */
+ old->node.leaf_p = new_left;
+ new->node.leaf_p = new_rght;
+ new->node.branches.b[EB_LEFT] = old_leaf;
+ new->node.branches.b[EB_RGHT] = new_leaf;
+
+ if (new->key == old->key) {
+ new->node.bit = -1;
+ root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
+ return new;
+ }
+ }
+ break;
+ }
+
+ /* OK we're walking down this link */
+ old = container_of(eb_untag(troot, EB_NODE),
+ struct eb64_node, node.branches);
+ old_node_bit = old->node.bit;
+
+ /* Stop going down when we don't have common bits anymore. We
+ * also stop in front of a duplicates tree because it means we
+ * have to insert above.
+ */
+
+ if ((old_node_bit < 0) || /* we're above a duplicate tree, stop here */
+ (((new->key ^ old->key) >> old_node_bit) >= EB_NODE_BRANCHES)) {
+ /* The tree did not contain the key, so we insert <new> before the node
+ * <old>, and set ->bit to designate the lowest bit position in <new>
+ * which applies to ->branches.b[].
+ */
+ eb_troot_t *new_left, *new_rght;
+ eb_troot_t *new_leaf, *old_node;
+
+ new_left = eb_dotag(&new->node.branches, EB_LEFT);
+ new_rght = eb_dotag(&new->node.branches, EB_RGHT);
+ new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
+ old_node = eb_dotag(&old->node.branches, EB_NODE);
+
+ new->node.node_p = old->node.node_p;
+
+ if (new->key < old->key) {
+ new->node.leaf_p = new_left;
+ old->node.node_p = new_rght;
+ new->node.branches.b[EB_LEFT] = new_leaf;
+ new->node.branches.b[EB_RGHT] = old_node;
+ }
+ else if (new->key > old->key) {
+ old->node.node_p = new_left;
+ new->node.leaf_p = new_rght;
+ new->node.branches.b[EB_LEFT] = old_node;
+ new->node.branches.b[EB_RGHT] = new_leaf;
+ }
+ else {
+ struct eb_node *ret;
+ ret = eb_insert_dup(&old->node, &new->node);
+ return container_of(ret, struct eb64_node, node);
+ }
+ break;
+ }
+
+ /* walk down */
+ root = &old->node.branches;
+
+ if (sizeof(long) >= 8) {
+ side = newkey >> old_node_bit;
+ } else {
+ /* note: provides the best code on low-register count archs
+ * such as i386.
+ */
+ side = newkey;
+ side >>= old_node_bit;
+ if (old_node_bit >= 32) {
+ side = newkey >> 32;
+ side >>= old_node_bit & 0x1F;
+ }
+ }
+ side &= EB_NODE_BRANCH_MASK;
+ troot = root->b[side];
+ }
+
+ /* Ok, now we are inserting <new> between <root> and <old>. <old>'s
+ * parent is already set to <new>, and the <root>'s branch is still in
+ * <side>. Update the root's leaf till we have it. Note that we can also
+ * find the side by checking the side of new->node.node_p.
+ */
+
+ /* We need the common higher bits between new->key and old->key.
+ * What differences are there between new->key and the node here ?
+ * NOTE that bit(new) is always < bit(root) because highest
+ * bit of new->key and old->key are identical here (otherwise they
+ * would sit on different branches).
+ */
+ // note that if EB_NODE_BITS > 1, we should check that it's still >= 0
+ new->node.bit = fls64(new->key ^ old->key) - EB_NODE_BITS;
+ root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
+
+ return new;
+}
+
+/* Insert eb64_node <new> into subtree starting at node root <root>, using
+ * signed keys. Only new->key needs be set with the key. The eb64_node
+ * is returned. If root->b[EB_RGHT]==1, the tree may only contain unique keys.
+ */
+static forceinline struct eb64_node *
+__eb64i_insert(struct eb_root *root, struct eb64_node *new) {
+ struct eb64_node *old;
+ unsigned int side;
+ eb_troot_t *troot;
+ u64 newkey; /* caching the key saves approximately one cycle */
+ eb_troot_t *root_right;
+ int old_node_bit;
+
+ side = EB_LEFT;
+ troot = root->b[EB_LEFT];
+ root_right = root->b[EB_RGHT];
+ if (unlikely(troot == NULL)) {
+ /* Tree is empty, insert the leaf part below the left branch */
+ root->b[EB_LEFT] = eb_dotag(&new->node.branches, EB_LEAF);
+ new->node.leaf_p = eb_dotag(root, EB_LEFT);
+ new->node.node_p = NULL; /* node part unused */
+ return new;
+ }
+
+ /* The tree descent is fairly easy :
+ * - first, check if we have reached a leaf node
+ * - second, check if we have gone too far
+ * - third, reiterate
+ * Everywhere, we use <new> for the node node we are inserting, <root>
+ * for the node we attach it to, and <old> for the node we are
+ * displacing below <new>. <troot> will always point to the future node
+ * (tagged with its type). <side> carries the side the node <new> is
+ * attached to below its parent, which is also where previous node
+ * was attached. <newkey> carries a high bit shift of the key being
+ * inserted in order to have negative keys stored before positive
+ * ones.
+ */
+ newkey = new->key ^ (1ULL << 63);
+
+ while (1) {
+ if (unlikely(eb_gettag(troot) == EB_LEAF)) {
+ eb_troot_t *new_left, *new_rght;
+ eb_troot_t *new_leaf, *old_leaf;
+
+ old = container_of(eb_untag(troot, EB_LEAF),
+ struct eb64_node, node.branches);
+
+ new_left = eb_dotag(&new->node.branches, EB_LEFT);
+ new_rght = eb_dotag(&new->node.branches, EB_RGHT);
+ new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
+ old_leaf = eb_dotag(&old->node.branches, EB_LEAF);
+
+ new->node.node_p = old->node.leaf_p;
+
+ /* Right here, we have 3 possibilities :
+ - the tree does not contain the key, and we have
+ new->key < old->key. We insert new above old, on
+ the left ;
+
+ - the tree does not contain the key, and we have
+ new->key > old->key. We insert new above old, on
+ the right ;
+
+ - the tree does contain the key, which implies it
+ is alone. We add the new key next to it as a
+ first duplicate.
+
+ The last two cases can easily be partially merged.
+ */
+
+ if ((s64)new->key < (s64)old->key) {
+ new->node.leaf_p = new_left;
+ old->node.leaf_p = new_rght;
+ new->node.branches.b[EB_LEFT] = new_leaf;
+ new->node.branches.b[EB_RGHT] = old_leaf;
+ } else {
+ /* we may refuse to duplicate this key if the tree is
+ * tagged as containing only unique keys.
+ */
+ if ((new->key == old->key) && eb_gettag(root_right))
+ return old;
+
+ /* new->key >= old->key, new goes the right */
+ old->node.leaf_p = new_left;
+ new->node.leaf_p = new_rght;
+ new->node.branches.b[EB_LEFT] = old_leaf;
+ new->node.branches.b[EB_RGHT] = new_leaf;
+
+ if (new->key == old->key) {
+ new->node.bit = -1;
+ root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
+ return new;
+ }
+ }
+ break;
+ }
+
+ /* OK we're walking down this link */
+ old = container_of(eb_untag(troot, EB_NODE),
+ struct eb64_node, node.branches);
+ old_node_bit = old->node.bit;
+
+ /* Stop going down when we don't have common bits anymore. We
+ * also stop in front of a duplicates tree because it means we
+ * have to insert above.
+ */
+
+ if ((old_node_bit < 0) || /* we're above a duplicate tree, stop here */
+ (((new->key ^ old->key) >> old_node_bit) >= EB_NODE_BRANCHES)) {
+ /* The tree did not contain the key, so we insert <new> before the node
+ * <old>, and set ->bit to designate the lowest bit position in <new>
+ * which applies to ->branches.b[].
+ */
+ eb_troot_t *new_left, *new_rght;
+ eb_troot_t *new_leaf, *old_node;
+
+ new_left = eb_dotag(&new->node.branches, EB_LEFT);
+ new_rght = eb_dotag(&new->node.branches, EB_RGHT);
+ new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
+ old_node = eb_dotag(&old->node.branches, EB_NODE);
+
+ new->node.node_p = old->node.node_p;
+
+ if ((s64)new->key < (s64)old->key) {
+ new->node.leaf_p = new_left;
+ old->node.node_p = new_rght;
+ new->node.branches.b[EB_LEFT] = new_leaf;
+ new->node.branches.b[EB_RGHT] = old_node;
+ }
+ else if ((s64)new->key > (s64)old->key) {
+ old->node.node_p = new_left;
+ new->node.leaf_p = new_rght;
+ new->node.branches.b[EB_LEFT] = old_node;
+ new->node.branches.b[EB_RGHT] = new_leaf;
+ }
+ else {
+ struct eb_node *ret;
+ ret = eb_insert_dup(&old->node, &new->node);
+ return container_of(ret, struct eb64_node, node);
+ }
+ break;
+ }
+
+ /* walk down */
+ root = &old->node.branches;
+
+ if (sizeof(long) >= 8) {
+ side = newkey >> old_node_bit;
+ } else {
+ /* note: provides the best code on low-register count archs
+ * such as i386.
+ */
+ side = newkey;
+ side >>= old_node_bit;
+ if (old_node_bit >= 32) {
+ side = newkey >> 32;
+ side >>= old_node_bit & 0x1F;
+ }
+ }
+ side &= EB_NODE_BRANCH_MASK;
+ troot = root->b[side];
+ }
+
+ /* Ok, now we are inserting <new> between <root> and <old>. <old>'s
+ * parent is already set to <new>, and the <root>'s branch is still in
+ * <side>. Update the root's leaf till we have it. Note that we can also
+ * find the side by checking the side of new->node.node_p.
+ */
+
+ /* We need the common higher bits between new->key and old->key.
+ * What differences are there between new->key and the node here ?
+ * NOTE that bit(new) is always < bit(root) because highest
+ * bit of new->key and old->key are identical here (otherwise they
+ * would sit on different branches).
+ */
+ // note that if EB_NODE_BITS > 1, we should check that it's still >= 0
+ new->node.bit = fls64(new->key ^ old->key) - EB_NODE_BITS;
+ root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
+
+ return new;
+}
+
+#endif /* _EB64_TREE_H */