summaryrefslogtreecommitdiffstats
path: root/src/stream.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 09:35:11 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 09:35:11 +0000
commitda76459dc21b5af2449af2d36eb95226cb186ce2 (patch)
tree542ebb3c1e796fac2742495b8437331727bbbfa0 /src/stream.c
parentInitial commit. (diff)
downloadhaproxy-da76459dc21b5af2449af2d36eb95226cb186ce2.tar.xz
haproxy-da76459dc21b5af2449af2d36eb95226cb186ce2.zip
Adding upstream version 2.6.12.upstream/2.6.12upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/stream.c')
-rw-r--r--src/stream.c3976
1 files changed, 3976 insertions, 0 deletions
diff --git a/src/stream.c b/src/stream.c
new file mode 100644
index 0000000..224b9b8
--- /dev/null
+++ b/src/stream.c
@@ -0,0 +1,3976 @@
+/*
+ * Stream management functions.
+ *
+ * Copyright 2000-2012 Willy Tarreau <w@1wt.eu>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version
+ * 2 of the License, or (at your option) any later version.
+ *
+ */
+
+#include <stdlib.h>
+#include <unistd.h>
+
+#include <import/ebistree.h>
+
+#include <haproxy/acl.h>
+#include <haproxy/action.h>
+#include <haproxy/activity.h>
+#include <haproxy/api.h>
+#include <haproxy/applet.h>
+#include <haproxy/arg.h>
+#include <haproxy/backend.h>
+#include <haproxy/capture.h>
+#include <haproxy/cfgparse.h>
+#include <haproxy/channel.h>
+#include <haproxy/check.h>
+#include <haproxy/cli.h>
+#include <haproxy/connection.h>
+#include <haproxy/dict.h>
+#include <haproxy/dynbuf.h>
+#include <haproxy/fd.h>
+#include <haproxy/filters.h>
+#include <haproxy/freq_ctr.h>
+#include <haproxy/frontend.h>
+#include <haproxy/global.h>
+#include <haproxy/hlua.h>
+#include <haproxy/http_ana.h>
+#include <haproxy/http_rules.h>
+#include <haproxy/htx.h>
+#include <haproxy/istbuf.h>
+#include <haproxy/log.h>
+#include <haproxy/pipe.h>
+#include <haproxy/pool.h>
+#include <haproxy/proxy.h>
+#include <haproxy/queue.h>
+#include <haproxy/sc_strm.h>
+#include <haproxy/server.h>
+#include <haproxy/resolvers.h>
+#include <haproxy/sample.h>
+#include <haproxy/session.h>
+#include <haproxy/stats-t.h>
+#include <haproxy/stconn.h>
+#include <haproxy/stick_table.h>
+#include <haproxy/stream.h>
+#include <haproxy/task.h>
+#include <haproxy/tcp_rules.h>
+#include <haproxy/thread.h>
+#include <haproxy/trace.h>
+#include <haproxy/vars.h>
+
+
+DECLARE_POOL(pool_head_stream, "stream", sizeof(struct stream));
+DECLARE_POOL(pool_head_uniqueid, "uniqueid", UNIQUEID_LEN);
+
+/* incremented by each "show sess" to fix a delimiter between streams */
+unsigned stream_epoch = 0;
+
+/* List of all use-service keywords. */
+static struct list service_keywords = LIST_HEAD_INIT(service_keywords);
+
+
+/* trace source and events */
+static void strm_trace(enum trace_level level, uint64_t mask,
+ const struct trace_source *src,
+ const struct ist where, const struct ist func,
+ const void *a1, const void *a2, const void *a3, const void *a4);
+
+/* The event representation is split like this :
+ * strm - stream
+ * sc - stream connector
+ * http - http analyzis
+ * tcp - tcp analyzis
+ *
+ * STRM_EV_* macros are defined in <proto/stream.h>
+ */
+static const struct trace_event strm_trace_events[] = {
+ { .mask = STRM_EV_STRM_NEW, .name = "strm_new", .desc = "new stream" },
+ { .mask = STRM_EV_STRM_FREE, .name = "strm_free", .desc = "release stream" },
+ { .mask = STRM_EV_STRM_ERR, .name = "strm_err", .desc = "error during stream processing" },
+ { .mask = STRM_EV_STRM_ANA, .name = "strm_ana", .desc = "stream analyzers" },
+ { .mask = STRM_EV_STRM_PROC, .name = "strm_proc", .desc = "stream processing" },
+
+ { .mask = STRM_EV_CS_ST, .name = "sc_state", .desc = "processing connector states" },
+
+ { .mask = STRM_EV_HTTP_ANA, .name = "http_ana", .desc = "HTTP analyzers" },
+ { .mask = STRM_EV_HTTP_ERR, .name = "http_err", .desc = "error during HTTP analyzis" },
+
+ { .mask = STRM_EV_TCP_ANA, .name = "tcp_ana", .desc = "TCP analyzers" },
+ { .mask = STRM_EV_TCP_ERR, .name = "tcp_err", .desc = "error during TCP analyzis" },
+
+ { .mask = STRM_EV_FLT_ANA, .name = "flt_ana", .desc = "Filter analyzers" },
+ { .mask = STRM_EV_FLT_ERR, .name = "flt_err", .desc = "error during filter analyzis" },
+ {}
+};
+
+static const struct name_desc strm_trace_lockon_args[4] = {
+ /* arg1 */ { /* already used by the stream */ },
+ /* arg2 */ { },
+ /* arg3 */ { },
+ /* arg4 */ { }
+};
+
+static const struct name_desc strm_trace_decoding[] = {
+#define STRM_VERB_CLEAN 1
+ { .name="clean", .desc="only user-friendly stuff, generally suitable for level \"user\"" },
+#define STRM_VERB_MINIMAL 2
+ { .name="minimal", .desc="report info on streams and connectors" },
+#define STRM_VERB_SIMPLE 3
+ { .name="simple", .desc="add info on request and response channels" },
+#define STRM_VERB_ADVANCED 4
+ { .name="advanced", .desc="add info on channel's buffer for data and developer levels only" },
+#define STRM_VERB_COMPLETE 5
+ { .name="complete", .desc="add info on channel's buffer" },
+ { /* end */ }
+};
+
+struct trace_source trace_strm = {
+ .name = IST("stream"),
+ .desc = "Applicative stream",
+ .arg_def = TRC_ARG1_STRM, // TRACE()'s first argument is always a stream
+ .default_cb = strm_trace,
+ .known_events = strm_trace_events,
+ .lockon_args = strm_trace_lockon_args,
+ .decoding = strm_trace_decoding,
+ .report_events = ~0, // report everything by default
+};
+
+#define TRACE_SOURCE &trace_strm
+INITCALL1(STG_REGISTER, trace_register_source, TRACE_SOURCE);
+
+/* the stream traces always expect that arg1, if non-null, is of a stream (from
+ * which we can derive everything), that arg2, if non-null, is an http
+ * transaction, that arg3, if non-null, is an http message.
+ */
+static void strm_trace(enum trace_level level, uint64_t mask, const struct trace_source *src,
+ const struct ist where, const struct ist func,
+ const void *a1, const void *a2, const void *a3, const void *a4)
+{
+ const struct stream *s = a1;
+ const struct http_txn *txn = a2;
+ const struct http_msg *msg = a3;
+ struct task *task;
+ const struct channel *req, *res;
+ struct htx *htx;
+
+ if (!s || src->verbosity < STRM_VERB_CLEAN)
+ return;
+
+ task = s->task;
+ req = &s->req;
+ res = &s->res;
+ htx = (msg ? htxbuf(&msg->chn->buf) : NULL);
+
+ /* General info about the stream (htx/tcp, id...) */
+ chunk_appendf(&trace_buf, " : [%u,%s]",
+ s->uniq_id, ((s->flags & SF_HTX) ? "HTX" : "TCP"));
+ if (isttest(s->unique_id)) {
+ chunk_appendf(&trace_buf, " id=");
+ b_putist(&trace_buf, s->unique_id);
+ }
+
+ /* Front and back stream connector state */
+ chunk_appendf(&trace_buf, " SC=(%s,%s)",
+ sc_state_str(s->scf->state), sc_state_str(s->scb->state));
+
+ /* If txn is defined, HTTP req/rep states */
+ if (txn)
+ chunk_appendf(&trace_buf, " HTTP=(%s,%s)",
+ h1_msg_state_str(txn->req.msg_state), h1_msg_state_str(txn->rsp.msg_state));
+ if (msg)
+ chunk_appendf(&trace_buf, " %s", ((msg->chn->flags & CF_ISRESP) ? "RESPONSE" : "REQUEST"));
+
+ if (src->verbosity == STRM_VERB_CLEAN)
+ return;
+
+ /* If msg defined, display status-line if possible (verbosity > MINIMAL) */
+ if (src->verbosity > STRM_VERB_MINIMAL && htx && htx_nbblks(htx)) {
+ const struct htx_blk *blk = __htx_get_head_blk(htx);
+ const struct htx_sl *sl = htx_get_blk_ptr(htx, blk);
+ enum htx_blk_type type = htx_get_blk_type(blk);
+
+ if (type == HTX_BLK_REQ_SL || type == HTX_BLK_RES_SL)
+ chunk_appendf(&trace_buf, " - \"%.*s %.*s %.*s\"",
+ HTX_SL_P1_LEN(sl), HTX_SL_P1_PTR(sl),
+ HTX_SL_P2_LEN(sl), HTX_SL_P2_PTR(sl),
+ HTX_SL_P3_LEN(sl), HTX_SL_P3_PTR(sl));
+ }
+
+
+ /* If txn defined info about HTTP msgs, otherwise info about SI. */
+ if (txn) {
+ chunk_appendf(&trace_buf, " - t=%p s=(%p,0x%08x,0x%x) txn.flags=0x%08x, http.flags=(0x%08x,0x%08x) status=%d",
+ task, s, s->flags, s->conn_err_type, txn->flags, txn->req.flags, txn->rsp.flags, txn->status);
+ }
+ else {
+ chunk_appendf(&trace_buf, " - t=%p s=(%p,0x%08x,0x%x) scf=(%p,%d,0x%08x) scb=(%p,%d,0x%08x) retries=%d",
+ task, s, s->flags, s->conn_err_type,
+ s->scf, s->scf->state, s->scf->flags,
+ s->scb, s->scb->state, s->scb->flags,
+ s->conn_retries);
+ }
+
+ if (src->verbosity == STRM_VERB_MINIMAL)
+ return;
+
+
+ /* If txn defined, don't display all channel info */
+ if (src->verbosity == STRM_VERB_SIMPLE || txn) {
+ chunk_appendf(&trace_buf, " req=(%p .fl=0x%08x .exp(r,w,a)=(%u,%u,%u))",
+ req, req->flags, req->rex, req->wex, req->analyse_exp);
+ chunk_appendf(&trace_buf, " res=(%p .fl=0x%08x .exp(r,w,a)=(%u,%u,%u))",
+ res, res->flags, res->rex, res->wex, res->analyse_exp);
+ }
+ else {
+ chunk_appendf(&trace_buf, " req=(%p .fl=0x%08x .ana=0x%08x .exp(r,w,a)=(%u,%u,%u) .o=%lu .tot=%llu .to_fwd=%u)",
+ req, req->flags, req->analysers, req->rex, req->wex, req->analyse_exp,
+ (long)req->output, req->total, req->to_forward);
+ chunk_appendf(&trace_buf, " res=(%p .fl=0x%08x .ana=0x%08x .exp(r,w,a)=(%u,%u,%u) .o=%lu .tot=%llu .to_fwd=%u)",
+ res, res->flags, res->analysers, res->rex, res->wex, res->analyse_exp,
+ (long)res->output, res->total, res->to_forward);
+ }
+
+ if (src->verbosity == STRM_VERB_SIMPLE ||
+ (src->verbosity == STRM_VERB_ADVANCED && src->level < TRACE_LEVEL_DATA))
+ return;
+
+ /* channels' buffer info */
+ if (s->flags & SF_HTX) {
+ struct htx *rqhtx = htxbuf(&req->buf);
+ struct htx *rphtx = htxbuf(&res->buf);
+
+ chunk_appendf(&trace_buf, " htx=(%u/%u#%u, %u/%u#%u)",
+ rqhtx->data, rqhtx->size, htx_nbblks(rqhtx),
+ rphtx->data, rphtx->size, htx_nbblks(rphtx));
+ }
+ else {
+ chunk_appendf(&trace_buf, " buf=(%u@%p+%u/%u, %u@%p+%u/%u)",
+ (unsigned int)b_data(&req->buf), b_orig(&req->buf),
+ (unsigned int)b_head_ofs(&req->buf), (unsigned int)b_size(&req->buf),
+ (unsigned int)b_data(&res->buf), b_orig(&res->buf),
+ (unsigned int)b_head_ofs(&res->buf), (unsigned int)b_size(&res->buf));
+ }
+
+ /* If msg defined, display htx info if defined (level > USER) */
+ if (src->level > TRACE_LEVEL_USER && htx && htx_nbblks(htx)) {
+ int full = 0;
+
+ /* Full htx info (level > STATE && verbosity > SIMPLE) */
+ if (src->level > TRACE_LEVEL_STATE) {
+ if (src->verbosity == STRM_VERB_COMPLETE)
+ full = 1;
+ }
+
+ chunk_memcat(&trace_buf, "\n\t", 2);
+ htx_dump(&trace_buf, htx, full);
+ }
+}
+
+/* Upgrade an existing stream for stream connector <sc>. Return < 0 on error. This
+ * is only valid right after a TCP to H1 upgrade. The stream should be
+ * "reativated" by removing SF_IGNORE flag. And the right mode must be set. On
+ * success, <input> buffer is transferred to the stream and thus points to
+ * BUF_NULL. On error, it is unchanged and it is the caller responsibility to
+ * release it (this never happens for now).
+ */
+int stream_upgrade_from_sc(struct stconn *sc, struct buffer *input)
+{
+ struct stream *s = __sc_strm(sc);
+ const struct mux_ops *mux = sc_mux_ops(sc);
+
+ if (mux) {
+ if (mux->flags & MX_FL_HTX)
+ s->flags |= SF_HTX;
+ }
+
+ if (!b_is_null(input)) {
+ /* Xfer the input buffer to the request channel. <input> will
+ * than point to BUF_NULL. From this point, it is the stream
+ * responsibility to release it.
+ */
+ s->req.buf = *input;
+ *input = BUF_NULL;
+ s->req.total = (IS_HTX_STRM(s) ? htxbuf(&s->req.buf)->data : b_data(&s->req.buf));
+ s->req.flags |= (s->req.total ? CF_READ_PARTIAL : 0);
+ }
+
+ s->flags &= ~SF_IGNORE;
+
+ task_wakeup(s->task, TASK_WOKEN_INIT);
+ return 0;
+}
+
+/* Callback used to wake up a stream when an input buffer is available. The
+ * stream <s>'s stream connectors are checked for a failed buffer allocation
+ * as indicated by the presence of the SC_FL_NEED_BUFF flag and the lack of a
+ * buffer, and and input buffer is assigned there (at most one). The function
+ * returns 1 and wakes the stream up if a buffer was taken, otherwise zero.
+ * It's designed to be called from __offer_buffer().
+ */
+int stream_buf_available(void *arg)
+{
+ struct stream *s = arg;
+
+ if (!s->req.buf.size && !s->req.pipe && s->scf->flags & SC_FL_NEED_BUFF &&
+ b_alloc(&s->req.buf))
+ sc_have_buff(s->scf);
+ else if (!s->res.buf.size && !s->res.pipe && s->scb->flags & SC_FL_NEED_BUFF &&
+ b_alloc(&s->res.buf))
+ sc_have_buff(s->scb);
+ else
+ return 0;
+
+ task_wakeup(s->task, TASK_WOKEN_RES);
+ return 1;
+
+}
+
+/* This function is called from the session handler which detects the end of
+ * handshake, in order to complete initialization of a valid stream. It must be
+ * called with a completely initialized session. It returns the pointer to
+ * the newly created stream, or NULL in case of fatal error. The client-facing
+ * end point is assigned to <origin>, which must be valid. The stream's task
+ * is configured with a nice value inherited from the listener's nice if any.
+ * The task's context is set to the new stream, and its function is set to
+ * process_stream(). Target and analysers are null. <input> is used as input
+ * buffer for the request channel and may contain data. On success, it is
+ * transfer to the stream and <input> is set to BUF_NULL. On error, <input>
+ * buffer is unchanged and it is the caller responsibility to release it.
+ */
+struct stream *stream_new(struct session *sess, struct stconn *sc, struct buffer *input)
+{
+ struct stream *s;
+ struct task *t;
+
+ DBG_TRACE_ENTER(STRM_EV_STRM_NEW);
+ if (unlikely((s = pool_alloc(pool_head_stream)) == NULL))
+ goto out_fail_alloc;
+
+ /* minimum stream initialization required for an embryonic stream is
+ * fairly low. We need very little to execute L4 ACLs, then we need a
+ * task to make the client-side connection live on its own.
+ * - flags
+ * - stick-entry tracking
+ */
+ s->flags = 0;
+ s->logs.logwait = sess->fe->to_log;
+ s->logs.level = 0;
+ tv_zero(&s->logs.tv_request);
+ s->logs.t_queue = -1;
+ s->logs.t_connect = -1;
+ s->logs.t_data = -1;
+ s->logs.t_close = 0;
+ s->logs.bytes_in = s->logs.bytes_out = 0;
+ s->logs.prx_queue_pos = 0; /* we get the number of pending conns before us */
+ s->logs.srv_queue_pos = 0; /* we will get this number soon */
+ s->obj_type = OBJ_TYPE_STREAM;
+
+ s->logs.accept_date = sess->accept_date;
+ s->logs.tv_accept = sess->tv_accept;
+ s->logs.t_handshake = sess->t_handshake;
+ s->logs.t_idle = sess->t_idle;
+
+ /* default logging function */
+ s->do_log = strm_log;
+
+ /* default error reporting function, may be changed by analysers */
+ s->srv_error = default_srv_error;
+
+ /* Initialise the current rule list pointer to NULL. We are sure that
+ * any rulelist match the NULL pointer.
+ */
+ s->current_rule_list = NULL;
+ s->current_rule = NULL;
+ s->rules_exp = TICK_ETERNITY;
+ s->last_rule_file = NULL;
+ s->last_rule_line = 0;
+
+ /* Copy SC counters for the stream. We don't touch refcounts because
+ * any reference we have is inherited from the session. Since the stream
+ * doesn't exist without the session, the session's existence guarantees
+ * we don't lose the entry. During the store operation, the stream won't
+ * touch these ones.
+ */
+ memcpy(s->stkctr, sess->stkctr, sizeof(s->stkctr));
+
+ s->sess = sess;
+
+ s->stream_epoch = _HA_ATOMIC_LOAD(&stream_epoch);
+ s->uniq_id = _HA_ATOMIC_FETCH_ADD(&global.req_count, 1);
+
+ /* OK, we're keeping the stream, so let's properly initialize the stream */
+ LIST_INIT(&s->back_refs);
+
+ LIST_INIT(&s->buffer_wait.list);
+ s->buffer_wait.target = s;
+ s->buffer_wait.wakeup_cb = stream_buf_available;
+
+ s->call_rate.curr_tick = s->call_rate.curr_ctr = s->call_rate.prev_ctr = 0;
+ s->pcli_next_pid = 0;
+ s->pcli_flags = 0;
+ s->unique_id = IST_NULL;
+
+ if ((t = task_new_here()) == NULL)
+ goto out_fail_alloc;
+
+ s->task = t;
+ s->pending_events = 0;
+ s->conn_retries = 0;
+ s->conn_exp = TICK_ETERNITY;
+ s->conn_err_type = STRM_ET_NONE;
+ s->prev_conn_state = SC_ST_INI;
+ t->process = process_stream;
+ t->context = s;
+ t->expire = TICK_ETERNITY;
+ if (sess->listener)
+ t->nice = sess->listener->nice;
+
+ /* Note: initially, the stream's backend points to the frontend.
+ * This changes later when switching rules are executed or
+ * when the default backend is assigned.
+ */
+ s->be = sess->fe;
+ s->req_cap = NULL;
+ s->res_cap = NULL;
+
+ /* Initialize all the variables contexts even if not used.
+ * This permits to prune these contexts without errors.
+ *
+ * We need to make sure that those lists are not re-initialized
+ * by stream-dependant underlying code because we could lose
+ * track of already defined variables, leading to data inconsistency
+ * and memory leaks...
+ *
+ * For reference: we had a very old bug caused by vars_txn and
+ * vars_reqres being accidentally re-initialized in http_create_txn()
+ * (https://github.com/haproxy/haproxy/issues/1935)
+ */
+ vars_init_head(&s->vars_txn, SCOPE_TXN);
+ vars_init_head(&s->vars_reqres, SCOPE_REQ);
+
+ /* Set SF_HTX flag for HTTP frontends. */
+ if (sess->fe->mode == PR_MODE_HTTP)
+ s->flags |= SF_HTX;
+
+ s->scf = sc;
+ if (sc_attach_strm(s->scf, s) < 0)
+ goto out_fail_attach_scf;
+
+ s->scb = sc_new_from_strm(s, SC_FL_ISBACK);
+ if (!s->scb)
+ goto out_fail_alloc_scb;
+
+ sc_set_state(s->scf, SC_ST_EST);
+ s->scf->hcto = sess->fe->timeout.clientfin;
+
+ if (likely(sess->fe->options2 & PR_O2_INDEPSTR))
+ s->scf->flags |= SC_FL_INDEP_STR;
+
+ s->scb->hcto = TICK_ETERNITY;
+ if (likely(sess->fe->options2 & PR_O2_INDEPSTR))
+ s->scb->flags |= SC_FL_INDEP_STR;
+
+ if (sc_ep_test(sc, SE_FL_WEBSOCKET))
+ s->flags |= SF_WEBSOCKET;
+ if (sc_conn(sc)) {
+ const struct mux_ops *mux = sc_mux_ops(sc);
+
+ if (mux && mux->flags & MX_FL_HTX)
+ s->flags |= SF_HTX;
+ }
+
+ stream_init_srv_conn(s);
+ s->target = sess->listener ? sess->listener->default_target : NULL;
+
+ s->pend_pos = NULL;
+ s->priority_class = 0;
+ s->priority_offset = 0;
+
+ /* init store persistence */
+ s->store_count = 0;
+
+ channel_init(&s->req);
+ s->req.flags |= CF_READ_ATTACHED; /* the producer is already connected */
+ s->req.analysers = sess->listener ? sess->listener->analysers : sess->fe->fe_req_ana;
+
+ if (IS_HTX_STRM(s)) {
+ /* Be sure to have HTTP analysers because in case of
+ * "destructive" stream upgrade, they may be missing (e.g
+ * TCP>H2)
+ */
+ s->req.analysers |= AN_REQ_WAIT_HTTP|AN_REQ_HTTP_PROCESS_FE;
+ }
+
+ if (!sess->fe->fe_req_ana) {
+ channel_auto_connect(&s->req); /* don't wait to establish connection */
+ channel_auto_close(&s->req); /* let the producer forward close requests */
+ }
+
+ s->req.rto = sess->fe->timeout.client;
+ s->req.wto = TICK_ETERNITY;
+ s->req.rex = TICK_ETERNITY;
+ s->req.wex = TICK_ETERNITY;
+ s->req.analyse_exp = TICK_ETERNITY;
+
+ channel_init(&s->res);
+ s->res.flags |= CF_ISRESP;
+ s->res.analysers = 0;
+
+ if (sess->fe->options2 & PR_O2_NODELAY) {
+ s->req.flags |= CF_NEVER_WAIT;
+ s->res.flags |= CF_NEVER_WAIT;
+ }
+
+ s->res.wto = sess->fe->timeout.client;
+ s->res.rto = TICK_ETERNITY;
+ s->res.rex = TICK_ETERNITY;
+ s->res.wex = TICK_ETERNITY;
+ s->res.analyse_exp = TICK_ETERNITY;
+
+ s->txn = NULL;
+ s->hlua = NULL;
+
+ s->resolv_ctx.requester = NULL;
+ s->resolv_ctx.hostname_dn = NULL;
+ s->resolv_ctx.hostname_dn_len = 0;
+ s->resolv_ctx.parent = NULL;
+
+ s->tunnel_timeout = TICK_ETERNITY;
+
+ LIST_APPEND(&th_ctx->streams, &s->list);
+
+ if (flt_stream_init(s) < 0 || flt_stream_start(s) < 0)
+ goto out_fail_accept;
+
+ /* just in case the caller would have pre-disabled it */
+ se_will_consume(s->scf->sedesc);
+
+ if (sess->fe->accept && sess->fe->accept(s) < 0)
+ goto out_fail_accept;
+
+ if (!b_is_null(input)) {
+ /* Xfer the input buffer to the request channel. <input> will
+ * than point to BUF_NULL. From this point, it is the stream
+ * responsibility to release it.
+ */
+ s->req.buf = *input;
+ *input = BUF_NULL;
+ s->req.total = (IS_HTX_STRM(s) ? htxbuf(&s->req.buf)->data : b_data(&s->req.buf));
+ s->req.flags |= (s->req.total ? CF_READ_PARTIAL : 0);
+ }
+
+ /* it is important not to call the wakeup function directly but to
+ * pass through task_wakeup(), because this one knows how to apply
+ * priorities to tasks. Using multi thread we must be sure that
+ * stream is fully initialized before calling task_wakeup. So
+ * the caller must handle the task_wakeup
+ */
+ DBG_TRACE_LEAVE(STRM_EV_STRM_NEW, s);
+ task_wakeup(s->task, TASK_WOKEN_INIT);
+ return s;
+
+ /* Error unrolling */
+ out_fail_accept:
+ flt_stream_release(s, 0);
+ LIST_DELETE(&s->list);
+ sc_free(s->scb);
+ out_fail_alloc_scb:
+ out_fail_attach_scf:
+ task_destroy(t);
+ out_fail_alloc:
+ pool_free(pool_head_stream, s);
+ DBG_TRACE_DEVEL("leaving on error", STRM_EV_STRM_NEW|STRM_EV_STRM_ERR);
+ return NULL;
+}
+
+/*
+ * frees the context associated to a stream. It must have been removed first.
+ */
+void stream_free(struct stream *s)
+{
+ struct session *sess = strm_sess(s);
+ struct proxy *fe = sess->fe;
+ struct bref *bref, *back;
+ int i;
+
+ DBG_TRACE_POINT(STRM_EV_STRM_FREE, s);
+
+ /* detach the stream from its own task before even releasing it so
+ * that walking over a task list never exhibits a dying stream.
+ */
+ s->task->context = NULL;
+ __ha_barrier_store();
+
+ pendconn_free(s);
+
+ if (objt_server(s->target)) { /* there may be requests left pending in queue */
+ if (s->flags & SF_CURR_SESS) {
+ s->flags &= ~SF_CURR_SESS;
+ _HA_ATOMIC_DEC(&__objt_server(s->target)->cur_sess);
+ }
+ if (may_dequeue_tasks(__objt_server(s->target), s->be))
+ process_srv_queue(__objt_server(s->target));
+ }
+
+ if (unlikely(s->srv_conn)) {
+ /* the stream still has a reserved slot on a server, but
+ * it should normally be only the same as the one above,
+ * so this should not happen in fact.
+ */
+ sess_change_server(s, NULL);
+ }
+
+ if (s->req.pipe)
+ put_pipe(s->req.pipe);
+
+ if (s->res.pipe)
+ put_pipe(s->res.pipe);
+
+ /* We may still be present in the buffer wait queue */
+ if (LIST_INLIST(&s->buffer_wait.list))
+ LIST_DEL_INIT(&s->buffer_wait.list);
+
+ if (s->req.buf.size || s->res.buf.size) {
+ int count = !!s->req.buf.size + !!s->res.buf.size;
+
+ b_free(&s->req.buf);
+ b_free(&s->res.buf);
+ offer_buffers(NULL, count);
+ }
+
+ pool_free(pool_head_uniqueid, s->unique_id.ptr);
+ s->unique_id = IST_NULL;
+
+ flt_stream_stop(s);
+ flt_stream_release(s, 0);
+
+ hlua_ctx_destroy(s->hlua);
+ s->hlua = NULL;
+ if (s->txn)
+ http_destroy_txn(s);
+
+ /* ensure the client-side transport layer is destroyed */
+ /* Be sure it is useless !! */
+ /* if (cli_cs) */
+ /* cs_close(cli_cs); */
+
+ for (i = 0; i < s->store_count; i++) {
+ if (!s->store[i].ts)
+ continue;
+ stksess_free(s->store[i].table, s->store[i].ts);
+ s->store[i].ts = NULL;
+ }
+
+ if (s->resolv_ctx.requester) {
+ __decl_thread(struct resolvers *resolvers = s->resolv_ctx.parent->arg.resolv.resolvers);
+
+ HA_SPIN_LOCK(DNS_LOCK, &resolvers->lock);
+ ha_free(&s->resolv_ctx.hostname_dn);
+ s->resolv_ctx.hostname_dn_len = 0;
+ resolv_unlink_resolution(s->resolv_ctx.requester);
+ HA_SPIN_UNLOCK(DNS_LOCK, &resolvers->lock);
+
+ pool_free(resolv_requester_pool, s->resolv_ctx.requester);
+ s->resolv_ctx.requester = NULL;
+ }
+
+ if (fe) {
+ if (s->req_cap) {
+ struct cap_hdr *h;
+ for (h = fe->req_cap; h; h = h->next)
+ pool_free(h->pool, s->req_cap[h->index]);
+ }
+
+ if (s->res_cap) {
+ struct cap_hdr *h;
+ for (h = fe->rsp_cap; h; h = h->next)
+ pool_free(h->pool, s->res_cap[h->index]);
+ }
+
+ pool_free(fe->rsp_cap_pool, s->res_cap);
+ pool_free(fe->req_cap_pool, s->req_cap);
+ }
+
+ /* Cleanup all variable contexts. */
+ if (!LIST_ISEMPTY(&s->vars_txn.head))
+ vars_prune(&s->vars_txn, s->sess, s);
+ if (!LIST_ISEMPTY(&s->vars_reqres.head))
+ vars_prune(&s->vars_reqres, s->sess, s);
+
+ stream_store_counters(s);
+
+ list_for_each_entry_safe(bref, back, &s->back_refs, users) {
+ /* we have to unlink all watchers. We must not relink them if
+ * this stream was the last one in the list. This is safe to do
+ * here because we're touching our thread's list so we know
+ * that other streams are not active, and the watchers will
+ * only touch their node under thread isolation.
+ */
+ LIST_DEL_INIT(&bref->users);
+ if (s->list.n != &th_ctx->streams)
+ LIST_APPEND(&LIST_ELEM(s->list.n, struct stream *, list)->back_refs, &bref->users);
+ bref->ref = s->list.n;
+ __ha_barrier_store();
+ }
+ LIST_DELETE(&s->list);
+
+ sc_destroy(s->scb);
+ sc_destroy(s->scf);
+
+ pool_free(pool_head_stream, s);
+
+ /* We may want to free the maximum amount of pools if the proxy is stopping */
+ if (fe && unlikely(fe->flags & (PR_FL_DISABLED|PR_FL_STOPPED))) {
+ pool_flush(pool_head_buffer);
+ pool_flush(pool_head_http_txn);
+ pool_flush(pool_head_requri);
+ pool_flush(pool_head_capture);
+ pool_flush(pool_head_stream);
+ pool_flush(pool_head_session);
+ pool_flush(pool_head_connection);
+ pool_flush(pool_head_pendconn);
+ pool_flush(fe->req_cap_pool);
+ pool_flush(fe->rsp_cap_pool);
+ }
+}
+
+
+/* Allocates a work buffer for stream <s>. It is meant to be called inside
+ * process_stream(). It will only allocate the side needed for the function
+ * to work fine, which is the response buffer so that an error message may be
+ * built and returned. Response buffers may be allocated from the reserve, this
+ * is critical to ensure that a response may always flow and will never block a
+ * server from releasing a connection. Returns 0 in case of failure, non-zero
+ * otherwise.
+ */
+static int stream_alloc_work_buffer(struct stream *s)
+{
+ if (b_alloc(&s->res.buf))
+ return 1;
+ return 0;
+}
+
+/* releases unused buffers after processing. Typically used at the end of the
+ * update() functions. It will try to wake up as many tasks/applets as the
+ * number of buffers that it releases. In practice, most often streams are
+ * blocked on a single buffer, so it makes sense to try to wake two up when two
+ * buffers are released at once.
+ */
+void stream_release_buffers(struct stream *s)
+{
+ int offer = 0;
+
+ if (c_size(&s->req) && c_empty(&s->req)) {
+ offer++;
+ b_free(&s->req.buf);
+ }
+ if (c_size(&s->res) && c_empty(&s->res)) {
+ offer++;
+ b_free(&s->res.buf);
+ }
+
+ /* if we're certain to have at least 1 buffer available, and there is
+ * someone waiting, we can wake up a waiter and offer them.
+ */
+ if (offer)
+ offer_buffers(s, offer);
+}
+
+void stream_process_counters(struct stream *s)
+{
+ struct session *sess = s->sess;
+ unsigned long long bytes;
+ int i;
+
+ bytes = s->req.total - s->logs.bytes_in;
+ s->logs.bytes_in = s->req.total;
+ if (bytes) {
+ _HA_ATOMIC_ADD(&sess->fe->fe_counters.bytes_in, bytes);
+ _HA_ATOMIC_ADD(&s->be->be_counters.bytes_in, bytes);
+
+ if (objt_server(s->target))
+ _HA_ATOMIC_ADD(&__objt_server(s->target)->counters.bytes_in, bytes);
+
+ if (sess->listener && sess->listener->counters)
+ _HA_ATOMIC_ADD(&sess->listener->counters->bytes_in, bytes);
+
+ for (i = 0; i < MAX_SESS_STKCTR; i++) {
+ if (!stkctr_inc_bytes_in_ctr(&s->stkctr[i], bytes))
+ stkctr_inc_bytes_in_ctr(&sess->stkctr[i], bytes);
+ }
+ }
+
+ bytes = s->res.total - s->logs.bytes_out;
+ s->logs.bytes_out = s->res.total;
+ if (bytes) {
+ _HA_ATOMIC_ADD(&sess->fe->fe_counters.bytes_out, bytes);
+ _HA_ATOMIC_ADD(&s->be->be_counters.bytes_out, bytes);
+
+ if (objt_server(s->target))
+ _HA_ATOMIC_ADD(&__objt_server(s->target)->counters.bytes_out, bytes);
+
+ if (sess->listener && sess->listener->counters)
+ _HA_ATOMIC_ADD(&sess->listener->counters->bytes_out, bytes);
+
+ for (i = 0; i < MAX_SESS_STKCTR; i++) {
+ if (!stkctr_inc_bytes_out_ctr(&s->stkctr[i], bytes))
+ stkctr_inc_bytes_out_ctr(&sess->stkctr[i], bytes);
+ }
+ }
+}
+
+/*
+ * Returns a message to the client ; the connection is shut down for read,
+ * and the request is cleared so that no server connection can be initiated.
+ * The buffer is marked for read shutdown on the other side to protect the
+ * message, and the buffer write is enabled. The message is contained in a
+ * "chunk". If it is null, then an empty message is used. The reply buffer does
+ * not need to be empty before this, and its contents will not be overwritten.
+ * The primary goal of this function is to return error messages to a client.
+ */
+void stream_retnclose(struct stream *s, const struct buffer *msg)
+{
+ struct channel *ic = &s->req;
+ struct channel *oc = &s->res;
+
+ channel_auto_read(ic);
+ channel_abort(ic);
+ channel_auto_close(ic);
+ channel_erase(ic);
+ channel_truncate(oc);
+
+ if (likely(msg && msg->data))
+ co_inject(oc, msg->area, msg->data);
+
+ oc->wex = tick_add_ifset(now_ms, oc->wto);
+ channel_auto_read(oc);
+ channel_auto_close(oc);
+ channel_shutr_now(oc);
+}
+
+int stream_set_timeout(struct stream *s, enum act_timeout_name name, int timeout)
+{
+ switch (name) {
+ case ACT_TIMEOUT_SERVER:
+ s->req.wto = timeout;
+ s->res.rto = timeout;
+ return 1;
+
+ case ACT_TIMEOUT_TUNNEL:
+ s->tunnel_timeout = timeout;
+ return 1;
+
+ default:
+ return 0;
+ }
+}
+
+/*
+ * This function handles the transition between the SC_ST_CON state and the
+ * SC_ST_EST state. It must only be called after switching from SC_ST_CON (or
+ * SC_ST_INI or SC_ST_RDY) to SC_ST_EST, but only when a ->proto is defined.
+ * Note that it will switch the interface to SC_ST_DIS if we already have
+ * the CF_SHUTR flag, it means we were able to forward the request, and
+ * receive the response, before process_stream() had the opportunity to
+ * make the switch from SC_ST_CON to SC_ST_EST. When that happens, we want
+ * to go through back_establish() anyway, to make sure the analysers run.
+ * Timeouts are cleared. Error are reported on the channel so that analysers
+ * can handle them.
+ */
+static void back_establish(struct stream *s)
+{
+ struct connection *conn = sc_conn(s->scb);
+ struct channel *req = &s->req;
+ struct channel *rep = &s->res;
+
+ DBG_TRACE_ENTER(STRM_EV_STRM_PROC|STRM_EV_CS_ST, s);
+ /* First, centralize the timers information, and clear any irrelevant
+ * timeout.
+ */
+ s->logs.t_connect = tv_ms_elapsed(&s->logs.tv_accept, &now);
+ s->conn_exp = TICK_ETERNITY;
+ s->flags &= ~SF_CONN_EXP;
+
+ /* errors faced after sending data need to be reported */
+ if (sc_ep_test(s->scb, SE_FL_ERROR) && req->flags & CF_WROTE_DATA) {
+ /* Don't add CF_WRITE_ERROR if we're here because
+ * early data were rejected by the server, or
+ * http_wait_for_response() will never be called
+ * to send a 425.
+ */
+ if (conn && conn->err_code != CO_ER_SSL_EARLY_FAILED)
+ req->flags |= CF_WRITE_ERROR;
+ rep->flags |= CF_READ_ERROR;
+ s->conn_err_type = STRM_ET_DATA_ERR;
+ DBG_TRACE_STATE("read/write error", STRM_EV_STRM_PROC|STRM_EV_CS_ST|STRM_EV_STRM_ERR, s);
+ }
+
+ if (objt_server(s->target))
+ health_adjust(__objt_server(s->target), HANA_STATUS_L4_OK);
+
+ if (!IS_HTX_STRM(s)) { /* let's allow immediate data connection in this case */
+ /* if the user wants to log as soon as possible, without counting
+ * bytes from the server, then this is the right moment. */
+ if (!LIST_ISEMPTY(&strm_fe(s)->logformat) && !(s->logs.logwait & LW_BYTES)) {
+ /* note: no pend_pos here, session is established */
+ s->logs.t_close = s->logs.t_connect; /* to get a valid end date */
+ s->do_log(s);
+ }
+ }
+ else {
+ rep->flags |= CF_READ_DONTWAIT; /* a single read is enough to get response headers */
+ }
+
+ rep->analysers |= strm_fe(s)->fe_rsp_ana | s->be->be_rsp_ana;
+
+ se_have_more_data(s->scb->sedesc);
+ rep->flags |= CF_READ_ATTACHED; /* producer is now attached */
+ if (conn) {
+ /* real connections have timeouts
+ * if already defined, it means that a set-timeout rule has
+ * been executed so do not overwrite them
+ */
+ if (!tick_isset(req->wto))
+ req->wto = s->be->timeout.server;
+ if (!tick_isset(rep->rto))
+ rep->rto = s->be->timeout.server;
+ if (!tick_isset(s->tunnel_timeout))
+ s->tunnel_timeout = s->be->timeout.tunnel;
+
+ /* The connection is now established, try to read data from the
+ * underlying layer, and subscribe to recv events. We use a
+ * delayed recv here to give a chance to the data to flow back
+ * by the time we process other tasks.
+ */
+ sc_chk_rcv(s->scb);
+ }
+ req->wex = TICK_ETERNITY;
+ /* If we managed to get the whole response, and we don't have anything
+ * left to send, or can't, switch to SC_ST_DIS now. */
+ if (rep->flags & (CF_SHUTR | CF_SHUTW)) {
+ s->scb->state = SC_ST_DIS;
+ DBG_TRACE_STATE("response channel shutdwn for read/write", STRM_EV_STRM_PROC|STRM_EV_CS_ST|STRM_EV_STRM_ERR, s);
+ }
+
+ DBG_TRACE_LEAVE(STRM_EV_STRM_PROC|STRM_EV_CS_ST, s);
+}
+
+/* Set correct stream termination flags in case no analyser has done it. It
+ * also counts a failed request if the server state has not reached the request
+ * stage.
+ */
+static void sess_set_term_flags(struct stream *s)
+{
+ if (!(s->flags & SF_FINST_MASK)) {
+ if (s->scb->state == SC_ST_INI) {
+ /* anything before REQ in fact */
+ _HA_ATOMIC_INC(&strm_fe(s)->fe_counters.failed_req);
+ if (strm_li(s) && strm_li(s)->counters)
+ _HA_ATOMIC_INC(&strm_li(s)->counters->failed_req);
+
+ s->flags |= SF_FINST_R;
+ }
+ else if (s->scb->state == SC_ST_QUE)
+ s->flags |= SF_FINST_Q;
+ else if (sc_state_in(s->scb->state, SC_SB_REQ|SC_SB_TAR|SC_SB_ASS|SC_SB_CON|SC_SB_CER|SC_SB_RDY))
+ s->flags |= SF_FINST_C;
+ else if (s->scb->state == SC_ST_EST || s->prev_conn_state == SC_ST_EST)
+ s->flags |= SF_FINST_D;
+ else
+ s->flags |= SF_FINST_L;
+ }
+}
+
+/* This function parses the use-service action ruleset. It executes
+ * the associated ACL and set an applet as a stream or txn final node.
+ * it returns ACT_RET_ERR if an error occurs, the proxy left in
+ * consistent state. It returns ACT_RET_STOP in success case because
+ * use-service must be a terminal action. Returns ACT_RET_YIELD
+ * if the initialisation function require more data.
+ */
+enum act_return process_use_service(struct act_rule *rule, struct proxy *px,
+ struct session *sess, struct stream *s, int flags)
+
+{
+ struct appctx *appctx;
+
+ /* Initialises the applet if it is required. */
+ if (flags & ACT_OPT_FIRST) {
+ /* Register applet. this function schedules the applet. */
+ s->target = &rule->applet.obj_type;
+ appctx = sc_applet_create(s->scb, objt_applet(s->target));
+ if (unlikely(!appctx))
+ return ACT_RET_ERR;
+
+ /* Finish initialisation of the context. */
+ appctx->rule = rule;
+ if (appctx_init(appctx) == -1)
+ return ACT_RET_ERR;
+ }
+ else
+ appctx = __sc_appctx(s->scb);
+
+ if (rule->from != ACT_F_HTTP_REQ) {
+ if (sess->fe == s->be) /* report it if the request was intercepted by the frontend */
+ _HA_ATOMIC_INC(&sess->fe->fe_counters.intercepted_req);
+
+ /* The flag SF_ASSIGNED prevent from server assignment. */
+ s->flags |= SF_ASSIGNED;
+ }
+
+ /* Now we can schedule the applet. */
+ applet_need_more_data(appctx);
+ appctx_wakeup(appctx);
+ return ACT_RET_STOP;
+}
+
+/* This stream analyser checks the switching rules and changes the backend
+ * if appropriate. The default_backend rule is also considered, then the
+ * target backend's forced persistence rules are also evaluated last if any.
+ * It returns 1 if the processing can continue on next analysers, or zero if it
+ * either needs more data or wants to immediately abort the request.
+ */
+static int process_switching_rules(struct stream *s, struct channel *req, int an_bit)
+{
+ struct persist_rule *prst_rule;
+ struct session *sess = s->sess;
+ struct proxy *fe = sess->fe;
+
+ req->analysers &= ~an_bit;
+ req->analyse_exp = TICK_ETERNITY;
+
+ DBG_TRACE_ENTER(STRM_EV_STRM_ANA, s);
+
+ /* now check whether we have some switching rules for this request */
+ if (!(s->flags & SF_BE_ASSIGNED)) {
+ struct switching_rule *rule;
+
+ list_for_each_entry(rule, &fe->switching_rules, list) {
+ int ret = 1;
+
+ if (rule->cond) {
+ ret = acl_exec_cond(rule->cond, fe, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
+ ret = acl_pass(ret);
+ if (rule->cond->pol == ACL_COND_UNLESS)
+ ret = !ret;
+ }
+
+ if (ret) {
+ /* If the backend name is dynamic, try to resolve the name.
+ * If we can't resolve the name, or if any error occurs, break
+ * the loop and fallback to the default backend.
+ */
+ struct proxy *backend = NULL;
+
+ if (rule->dynamic) {
+ struct buffer *tmp;
+
+ tmp = alloc_trash_chunk();
+ if (!tmp)
+ goto sw_failed;
+
+ if (build_logline(s, tmp->area, tmp->size, &rule->be.expr))
+ backend = proxy_be_by_name(tmp->area);
+
+ free_trash_chunk(tmp);
+ tmp = NULL;
+
+ if (!backend)
+ break;
+ }
+ else
+ backend = rule->be.backend;
+
+ if (!stream_set_backend(s, backend))
+ goto sw_failed;
+ break;
+ }
+ }
+
+ /* To ensure correct connection accounting on the backend, we
+ * have to assign one if it was not set (eg: a listen). This
+ * measure also takes care of correctly setting the default
+ * backend if any. Don't do anything if an upgrade is already in
+ * progress.
+ */
+ if (!(s->flags & (SF_BE_ASSIGNED|SF_IGNORE)))
+ if (!stream_set_backend(s, fe->defbe.be ? fe->defbe.be : s->be))
+ goto sw_failed;
+
+ /* No backend assigned but no error reported. It happens when a
+ * TCP stream is upgraded to HTTP/2.
+ */
+ if ((s->flags & (SF_BE_ASSIGNED|SF_IGNORE)) == SF_IGNORE) {
+ DBG_TRACE_DEVEL("leaving with no backend because of a destructive upgrade", STRM_EV_STRM_ANA, s);
+ return 0;
+ }
+
+ }
+
+ /* we don't want to run the TCP or HTTP filters again if the backend has not changed */
+ if (fe == s->be) {
+ s->req.analysers &= ~AN_REQ_INSPECT_BE;
+ s->req.analysers &= ~AN_REQ_HTTP_PROCESS_BE;
+ s->req.analysers &= ~AN_REQ_FLT_START_BE;
+ }
+
+ /* as soon as we know the backend, we must check if we have a matching forced or ignored
+ * persistence rule, and report that in the stream.
+ */
+ list_for_each_entry(prst_rule, &s->be->persist_rules, list) {
+ int ret = 1;
+
+ if (prst_rule->cond) {
+ ret = acl_exec_cond(prst_rule->cond, s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
+ ret = acl_pass(ret);
+ if (prst_rule->cond->pol == ACL_COND_UNLESS)
+ ret = !ret;
+ }
+
+ if (ret) {
+ /* no rule, or the rule matches */
+ if (prst_rule->type == PERSIST_TYPE_FORCE) {
+ s->flags |= SF_FORCE_PRST;
+ } else {
+ s->flags |= SF_IGNORE_PRST;
+ }
+ break;
+ }
+ }
+
+ DBG_TRACE_LEAVE(STRM_EV_STRM_ANA, s);
+ return 1;
+
+ sw_failed:
+ /* immediately abort this request in case of allocation failure */
+ channel_abort(&s->req);
+ channel_abort(&s->res);
+
+ if (!(s->flags & SF_ERR_MASK))
+ s->flags |= SF_ERR_RESOURCE;
+ if (!(s->flags & SF_FINST_MASK))
+ s->flags |= SF_FINST_R;
+
+ if (s->txn)
+ s->txn->status = 500;
+ s->req.analysers &= AN_REQ_FLT_END;
+ s->req.analyse_exp = TICK_ETERNITY;
+ DBG_TRACE_DEVEL("leaving on error", STRM_EV_STRM_ANA|STRM_EV_STRM_ERR, s);
+ return 0;
+}
+
+/* This stream analyser works on a request. It applies all use-server rules on
+ * it then returns 1. The data must already be present in the buffer otherwise
+ * they won't match. It always returns 1.
+ */
+static int process_server_rules(struct stream *s, struct channel *req, int an_bit)
+{
+ struct proxy *px = s->be;
+ struct session *sess = s->sess;
+ struct server_rule *rule;
+
+ DBG_TRACE_ENTER(STRM_EV_STRM_ANA, s);
+
+ if (!(s->flags & SF_ASSIGNED)) {
+ list_for_each_entry(rule, &px->server_rules, list) {
+ int ret;
+
+ ret = acl_exec_cond(rule->cond, s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
+ ret = acl_pass(ret);
+ if (rule->cond->pol == ACL_COND_UNLESS)
+ ret = !ret;
+
+ if (ret) {
+ struct server *srv;
+
+ if (rule->dynamic) {
+ struct buffer *tmp = get_trash_chunk();
+
+ if (!build_logline(s, tmp->area, tmp->size, &rule->expr))
+ break;
+
+ srv = findserver(s->be, tmp->area);
+ if (!srv)
+ break;
+ }
+ else
+ srv = rule->srv.ptr;
+
+ if ((srv->cur_state != SRV_ST_STOPPED) ||
+ (px->options & PR_O_PERSIST) ||
+ (s->flags & SF_FORCE_PRST)) {
+ s->flags |= SF_DIRECT | SF_ASSIGNED;
+ s->target = &srv->obj_type;
+ break;
+ }
+ /* if the server is not UP, let's go on with next rules
+ * just in case another one is suited.
+ */
+ }
+ }
+ }
+
+ req->analysers &= ~an_bit;
+ req->analyse_exp = TICK_ETERNITY;
+ DBG_TRACE_LEAVE(STRM_EV_STRM_ANA, s);
+ return 1;
+}
+
+static inline void sticking_rule_find_target(struct stream *s,
+ struct stktable *t, struct stksess *ts)
+{
+ struct proxy *px = s->be;
+ struct eb32_node *node;
+ struct dict_entry *de;
+ void *ptr;
+ struct server *srv;
+
+ /* Look for the server name previously stored in <t> stick-table */
+ HA_RWLOCK_RDLOCK(STK_SESS_LOCK, &ts->lock);
+ ptr = __stktable_data_ptr(t, ts, STKTABLE_DT_SERVER_KEY);
+ de = stktable_data_cast(ptr, std_t_dict);
+ HA_RWLOCK_RDUNLOCK(STK_SESS_LOCK, &ts->lock);
+
+ if (de) {
+ struct ebpt_node *node;
+
+ if (t->server_key_type == STKTABLE_SRV_NAME) {
+ node = ebis_lookup(&px->conf.used_server_name, de->value.key);
+ if (node) {
+ srv = container_of(node, struct server, conf.name);
+ goto found;
+ }
+ } else if (t->server_key_type == STKTABLE_SRV_ADDR) {
+ HA_RWLOCK_RDLOCK(PROXY_LOCK, &px->lock);
+ node = ebis_lookup(&px->used_server_addr, de->value.key);
+ HA_RWLOCK_RDUNLOCK(PROXY_LOCK, &px->lock);
+ if (node) {
+ srv = container_of(node, struct server, addr_node);
+ goto found;
+ }
+ }
+ }
+
+ /* Look for the server ID */
+ HA_RWLOCK_RDLOCK(STK_SESS_LOCK, &ts->lock);
+ ptr = __stktable_data_ptr(t, ts, STKTABLE_DT_SERVER_ID);
+ node = eb32_lookup(&px->conf.used_server_id, stktable_data_cast(ptr, std_t_sint));
+ HA_RWLOCK_RDUNLOCK(STK_SESS_LOCK, &ts->lock);
+
+ if (!node)
+ return;
+
+ srv = container_of(node, struct server, conf.id);
+ found:
+ if ((srv->cur_state != SRV_ST_STOPPED) ||
+ (px->options & PR_O_PERSIST) || (s->flags & SF_FORCE_PRST)) {
+ s->flags |= SF_DIRECT | SF_ASSIGNED;
+ s->target = &srv->obj_type;
+ }
+}
+
+/* This stream analyser works on a request. It applies all sticking rules on
+ * it then returns 1. The data must already be present in the buffer otherwise
+ * they won't match. It always returns 1.
+ */
+static int process_sticking_rules(struct stream *s, struct channel *req, int an_bit)
+{
+ struct proxy *px = s->be;
+ struct session *sess = s->sess;
+ struct sticking_rule *rule;
+
+ DBG_TRACE_ENTER(STRM_EV_STRM_ANA, s);
+
+ list_for_each_entry(rule, &px->sticking_rules, list) {
+ int ret = 1 ;
+ int i;
+
+ /* Only the first stick store-request of each table is applied
+ * and other ones are ignored. The purpose is to allow complex
+ * configurations which look for multiple entries by decreasing
+ * order of precision and to stop at the first which matches.
+ * An example could be a store of the IP address from an HTTP
+ * header first, then from the source if not found.
+ */
+ if (rule->flags & STK_IS_STORE) {
+ for (i = 0; i < s->store_count; i++) {
+ if (rule->table.t == s->store[i].table)
+ break;
+ }
+
+ if (i != s->store_count)
+ continue;
+ }
+
+ if (rule->cond) {
+ ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
+ ret = acl_pass(ret);
+ if (rule->cond->pol == ACL_COND_UNLESS)
+ ret = !ret;
+ }
+
+ if (ret) {
+ struct stktable_key *key;
+
+ key = stktable_fetch_key(rule->table.t, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->expr, NULL);
+ if (!key)
+ continue;
+
+ if (rule->flags & STK_IS_MATCH) {
+ struct stksess *ts;
+
+ if ((ts = stktable_lookup_key(rule->table.t, key)) != NULL) {
+ if (!(s->flags & SF_ASSIGNED))
+ sticking_rule_find_target(s, rule->table.t, ts);
+ stktable_touch_local(rule->table.t, ts, 1);
+ }
+ }
+ if (rule->flags & STK_IS_STORE) {
+ if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) {
+ struct stksess *ts;
+
+ ts = stksess_new(rule->table.t, key);
+ if (ts) {
+ s->store[s->store_count].table = rule->table.t;
+ s->store[s->store_count++].ts = ts;
+ }
+ }
+ }
+ }
+ }
+
+ req->analysers &= ~an_bit;
+ req->analyse_exp = TICK_ETERNITY;
+ DBG_TRACE_LEAVE(STRM_EV_STRM_ANA, s);
+ return 1;
+}
+
+/* This stream analyser works on a response. It applies all store rules on it
+ * then returns 1. The data must already be present in the buffer otherwise
+ * they won't match. It always returns 1.
+ */
+static int process_store_rules(struct stream *s, struct channel *rep, int an_bit)
+{
+ struct proxy *px = s->be;
+ struct session *sess = s->sess;
+ struct sticking_rule *rule;
+ int i;
+ int nbreq = s->store_count;
+
+ DBG_TRACE_ENTER(STRM_EV_STRM_ANA, s);
+
+ list_for_each_entry(rule, &px->storersp_rules, list) {
+ int ret = 1 ;
+
+ /* Only the first stick store-response of each table is applied
+ * and other ones are ignored. The purpose is to allow complex
+ * configurations which look for multiple entries by decreasing
+ * order of precision and to stop at the first which matches.
+ * An example could be a store of a set-cookie value, with a
+ * fallback to a parameter found in a 302 redirect.
+ *
+ * The store-response rules are not allowed to override the
+ * store-request rules for the same table, but they may coexist.
+ * Thus we can have up to one store-request entry and one store-
+ * response entry for the same table at any time.
+ */
+ for (i = nbreq; i < s->store_count; i++) {
+ if (rule->table.t == s->store[i].table)
+ break;
+ }
+
+ /* skip existing entries for this table */
+ if (i < s->store_count)
+ continue;
+
+ if (rule->cond) {
+ ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL);
+ ret = acl_pass(ret);
+ if (rule->cond->pol == ACL_COND_UNLESS)
+ ret = !ret;
+ }
+
+ if (ret) {
+ struct stktable_key *key;
+
+ key = stktable_fetch_key(rule->table.t, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL, rule->expr, NULL);
+ if (!key)
+ continue;
+
+ if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) {
+ struct stksess *ts;
+
+ ts = stksess_new(rule->table.t, key);
+ if (ts) {
+ s->store[s->store_count].table = rule->table.t;
+ s->store[s->store_count++].ts = ts;
+ }
+ }
+ }
+ }
+
+ /* process store request and store response */
+ for (i = 0; i < s->store_count; i++) {
+ struct stksess *ts;
+ void *ptr;
+ char *key;
+ struct dict_entry *de;
+ struct stktable *t = s->store[i].table;
+
+ if (!objt_server(s->target) || (__objt_server(s->target)->flags & SRV_F_NON_STICK)) {
+ stksess_free(s->store[i].table, s->store[i].ts);
+ s->store[i].ts = NULL;
+ continue;
+ }
+
+ ts = stktable_set_entry(t, s->store[i].ts);
+ if (ts != s->store[i].ts) {
+ /* the entry already existed, we can free ours */
+ stksess_free(t, s->store[i].ts);
+ }
+ s->store[i].ts = NULL;
+
+ if (t->server_key_type == STKTABLE_SRV_NAME)
+ key = __objt_server(s->target)->id;
+ else if (t->server_key_type == STKTABLE_SRV_ADDR)
+ key = __objt_server(s->target)->addr_node.key;
+ else
+ key = NULL;
+
+ HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock);
+ ptr = __stktable_data_ptr(t, ts, STKTABLE_DT_SERVER_ID);
+ stktable_data_cast(ptr, std_t_sint) = __objt_server(s->target)->puid;
+
+ if (key) {
+ de = dict_insert(&server_key_dict, key);
+ if (de) {
+ ptr = __stktable_data_ptr(t, ts, STKTABLE_DT_SERVER_KEY);
+ stktable_data_cast(ptr, std_t_dict) = de;
+ }
+ }
+
+ HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock);
+
+ stktable_touch_local(t, ts, 1);
+ }
+ s->store_count = 0; /* everything is stored */
+
+ rep->analysers &= ~an_bit;
+ rep->analyse_exp = TICK_ETERNITY;
+
+ DBG_TRACE_LEAVE(STRM_EV_STRM_ANA, s);
+ return 1;
+}
+
+/* Set the stream to HTTP mode, if necessary. The minimal request HTTP analysers
+ * are set and the client mux is upgraded. It returns 1 if the stream processing
+ * may continue or 0 if it should be stopped. It happens on error or if the
+ * upgrade required a new stream. The mux protocol may be specified.
+ */
+int stream_set_http_mode(struct stream *s, const struct mux_proto_list *mux_proto)
+{
+ struct stconn *sc = s->scf;
+ struct connection *conn;
+
+ /* Already an HTTP stream */
+ if (IS_HTX_STRM(s))
+ return 1;
+
+ s->req.analysers |= AN_REQ_WAIT_HTTP|AN_REQ_HTTP_PROCESS_FE;
+
+ if (unlikely(!s->txn && !http_create_txn(s)))
+ return 0;
+
+ conn = sc_conn(sc);
+ if (conn) {
+ se_have_more_data(s->scf->sedesc);
+ /* Make sure we're unsubscribed, the the new
+ * mux will probably want to subscribe to
+ * the underlying XPRT
+ */
+ if (s->scf->wait_event.events)
+ conn->mux->unsubscribe(sc, s->scf->wait_event.events, &(s->scf->wait_event));
+
+ if (conn->mux->flags & MX_FL_NO_UPG)
+ return 0;
+
+ sc_conn_prepare_endp_upgrade(sc);
+ if (conn_upgrade_mux_fe(conn, sc, &s->req.buf,
+ (mux_proto ? mux_proto->token : ist("")),
+ PROTO_MODE_HTTP) == -1) {
+ sc_conn_abort_endp_upgrade(sc);
+ return 0;
+ }
+ sc_conn_commit_endp_upgrade(sc);
+
+ s->req.flags &= ~(CF_READ_PARTIAL|CF_AUTO_CONNECT);
+ s->req.total = 0;
+ s->flags |= SF_IGNORE;
+ if (sc_ep_test(sc, SE_FL_DETACHED)) {
+ /* If stream connector is detached, it means it was not
+ * reused by the new mux. Son destroy it, disable
+ * logging, and abort the stream process. Thus the
+ * stream will be silently destroyed. The new mux will
+ * create new streams.
+ */
+ s->logs.logwait = 0;
+ s->logs.level = 0;
+ channel_abort(&s->req);
+ channel_abort(&s->res);
+ s->req.analysers &= AN_REQ_FLT_END;
+ s->req.analyse_exp = TICK_ETERNITY;
+ }
+ }
+
+ return 1;
+}
+
+
+/* Updates at once the channel flags, and timers of both stream connectors of a
+ * same stream, to complete the work after the analysers, then updates the data
+ * layer below. This will ensure that any synchronous update performed at the
+ * data layer will be reflected in the channel flags and/or stream connector.
+ * Note that this does not change the stream connector's current state, though
+ * it updates the previous state to the current one.
+ */
+static void stream_update_both_sc(struct stream *s)
+{
+ struct stconn *scf = s->scf;
+ struct stconn *scb = s->scb;
+ struct channel *req = &s->req;
+ struct channel *res = &s->res;
+
+ req->flags &= ~(CF_READ_NULL|CF_READ_PARTIAL|CF_READ_ATTACHED|CF_WRITE_NULL|CF_WRITE_PARTIAL);
+ res->flags &= ~(CF_READ_NULL|CF_READ_PARTIAL|CF_READ_ATTACHED|CF_WRITE_NULL|CF_WRITE_PARTIAL);
+
+ s->prev_conn_state = scb->state;
+
+ /* let's recompute both sides states */
+ if (sc_state_in(scf->state, SC_SB_RDY|SC_SB_EST))
+ sc_update(scf);
+
+ if (sc_state_in(scb->state, SC_SB_RDY|SC_SB_EST))
+ sc_update(scb);
+
+ /* stream connectors are processed outside of process_stream() and must be
+ * handled at the latest moment.
+ */
+ if (sc_appctx(scf)) {
+ if (sc_is_recv_allowed(scf) || sc_is_send_allowed(scf))
+ appctx_wakeup(__sc_appctx(scf));
+ }
+ if (sc_appctx(scb)) {
+ if (sc_is_recv_allowed(scb) || sc_is_send_allowed(scb))
+ appctx_wakeup(__sc_appctx(scb));
+ }
+}
+
+/* if the current task's wake_date was set, it's being profiled, thus we may
+ * report latencies and CPU usages in logs, so it's desirable to do that before
+ * logging in order to report accurate CPU usage. In this case we count that
+ * final part and reset the wake date so that the scheduler doesn't do it a
+ * second time, and by doing so we also avoid an extra call to clock_gettime().
+ * The CPU usage will be off by the little time needed to run over stream_free()
+ * but that's only marginal.
+ */
+static void stream_cond_update_cpu_usage(struct stream *s)
+{
+ uint32_t cpu;
+
+ /* stats are only registered for non-zero wake dates */
+ if (likely(!th_ctx->sched_wake_date))
+ return;
+
+ cpu = (uint32_t)now_mono_time() - th_ctx->sched_call_date;
+ s->task->cpu_time += cpu;
+ HA_ATOMIC_ADD(&th_ctx->sched_profile_entry->cpu_time, cpu);
+ th_ctx->sched_wake_date = 0;
+}
+
+/* This macro is very specific to the function below. See the comments in
+ * process_stream() below to understand the logic and the tests.
+ */
+#define UPDATE_ANALYSERS(real, list, back, flag) { \
+ list = (((list) & ~(flag)) | ~(back)) & (real); \
+ back = real; \
+ if (!(list)) \
+ break; \
+ if (((list) ^ ((list) & ((list) - 1))) < (flag)) \
+ continue; \
+}
+
+/* These 2 following macros call an analayzer for the specified channel if the
+ * right flag is set. The first one is used for "filterable" analyzers. If a
+ * stream has some registered filters, pre and post analyaze callbacks are
+ * called. The second are used for other analyzers (AN_REQ/RES_FLT_* and
+ * AN_REQ/RES_HTTP_XFER_BODY) */
+#define FLT_ANALYZE(strm, chn, fun, list, back, flag, ...) \
+ { \
+ if ((list) & (flag)) { \
+ if (HAS_FILTERS(strm)) { \
+ if (!flt_pre_analyze((strm), (chn), (flag))) \
+ break; \
+ if (!fun((strm), (chn), (flag), ##__VA_ARGS__)) \
+ break; \
+ if (!flt_post_analyze((strm), (chn), (flag))) \
+ break; \
+ } \
+ else { \
+ if (!fun((strm), (chn), (flag), ##__VA_ARGS__)) \
+ break; \
+ } \
+ UPDATE_ANALYSERS((chn)->analysers, (list), \
+ (back), (flag)); \
+ } \
+ }
+
+#define ANALYZE(strm, chn, fun, list, back, flag, ...) \
+ { \
+ if ((list) & (flag)) { \
+ if (!fun((strm), (chn), (flag), ##__VA_ARGS__)) \
+ break; \
+ UPDATE_ANALYSERS((chn)->analysers, (list), \
+ (back), (flag)); \
+ } \
+ }
+
+/* Processes the client, server, request and response jobs of a stream task,
+ * then puts it back to the wait queue in a clean state, or cleans up its
+ * resources if it must be deleted. Returns in <next> the date the task wants
+ * to be woken up, or TICK_ETERNITY. In order not to call all functions for
+ * nothing too many times, the request and response buffers flags are monitored
+ * and each function is called only if at least another function has changed at
+ * least one flag it is interested in.
+ */
+struct task *process_stream(struct task *t, void *context, unsigned int state)
+{
+ struct server *srv;
+ struct stream *s = context;
+ struct session *sess = s->sess;
+ unsigned int rqf_last, rpf_last;
+ unsigned int rq_prod_last, rq_cons_last;
+ unsigned int rp_cons_last, rp_prod_last;
+ unsigned int req_ana_back;
+ struct channel *req, *res;
+ struct stconn *scf, *scb;
+ unsigned int rate;
+
+ DBG_TRACE_ENTER(STRM_EV_STRM_PROC, s);
+
+ activity[tid].stream_calls++;
+
+ req = &s->req;
+ res = &s->res;
+
+ scf = s->scf;
+ scb = s->scb;
+
+ /* First, attempt to receive pending data from I/O layers */
+ sc_conn_sync_recv(scf);
+ sc_conn_sync_recv(scb);
+
+ /* Let's check if we're looping without making any progress, e.g. due
+ * to a bogus analyser or the fact that we're ignoring a read0. The
+ * call_rate counter only counts calls with no progress made.
+ */
+ if (!((req->flags | res->flags) & (CF_READ_PARTIAL|CF_WRITE_PARTIAL))) {
+ rate = update_freq_ctr(&s->call_rate, 1);
+ if (rate >= 100000 && s->call_rate.prev_ctr) // make sure to wait at least a full second
+ stream_dump_and_crash(&s->obj_type, read_freq_ctr(&s->call_rate));
+ }
+
+ /* this data may be no longer valid, clear it */
+ if (s->txn)
+ memset(&s->txn->auth, 0, sizeof(s->txn->auth));
+
+ /* This flag must explicitly be set every time */
+ req->flags &= ~(CF_READ_NOEXP|CF_WAKE_WRITE);
+ res->flags &= ~(CF_READ_NOEXP|CF_WAKE_WRITE);
+
+ /* Keep a copy of req/rep flags so that we can detect shutdowns */
+ rqf_last = req->flags & ~CF_MASK_ANALYSER;
+ rpf_last = res->flags & ~CF_MASK_ANALYSER;
+
+ /* we don't want the stream connector functions to recursively wake us up */
+ scf->flags |= SC_FL_DONT_WAKE;
+ scb->flags |= SC_FL_DONT_WAKE;
+
+ /* update pending events */
+ s->pending_events |= (state & TASK_WOKEN_ANY);
+
+ /* 1a: Check for low level timeouts if needed. We just set a flag on
+ * stream connectors when their timeouts have expired.
+ */
+ if (unlikely(s->pending_events & TASK_WOKEN_TIMER)) {
+ stream_check_conn_timeout(s);
+
+ /* check channel timeouts, and close the corresponding stream connectors
+ * for future reads or writes. Note: this will also concern upper layers
+ * but we do not touch any other flag. We must be careful and correctly
+ * detect state changes when calling them.
+ */
+
+ channel_check_timeouts(req);
+
+ if (unlikely((req->flags & (CF_SHUTW|CF_WRITE_TIMEOUT)) == CF_WRITE_TIMEOUT)) {
+ scb->flags |= SC_FL_NOLINGER;
+ sc_shutw(scb);
+ }
+
+ if (unlikely((req->flags & (CF_SHUTR|CF_READ_TIMEOUT)) == CF_READ_TIMEOUT)) {
+ if (scf->flags & SC_FL_NOHALF)
+ scf->flags |= SC_FL_NOLINGER;
+ sc_shutr(scf);
+ }
+
+ channel_check_timeouts(res);
+
+ if (unlikely((res->flags & (CF_SHUTW|CF_WRITE_TIMEOUT)) == CF_WRITE_TIMEOUT)) {
+ scf->flags |= SC_FL_NOLINGER;
+ sc_shutw(scf);
+ }
+
+ if (unlikely((res->flags & (CF_SHUTR|CF_READ_TIMEOUT)) == CF_READ_TIMEOUT)) {
+ if (scb->flags & SC_FL_NOHALF)
+ scb->flags |= SC_FL_NOLINGER;
+ sc_shutr(scb);
+ }
+
+ if (HAS_FILTERS(s))
+ flt_stream_check_timeouts(s);
+
+ /* Once in a while we're woken up because the task expires. But
+ * this does not necessarily mean that a timeout has been reached.
+ * So let's not run a whole stream processing if only an expiration
+ * timeout needs to be refreshed.
+ */
+ if (!((req->flags | res->flags) &
+ (CF_SHUTR|CF_READ_ACTIVITY|CF_READ_TIMEOUT|CF_SHUTW|
+ CF_WRITE_ACTIVITY|CF_WRITE_TIMEOUT|CF_ANA_TIMEOUT)) &&
+ !(s->flags & SF_CONN_EXP) &&
+ !((sc_ep_get(scf) | scb->flags) & SE_FL_ERROR) &&
+ ((s->pending_events & TASK_WOKEN_ANY) == TASK_WOKEN_TIMER)) {
+ scf->flags &= ~SC_FL_DONT_WAKE;
+ scb->flags &= ~SC_FL_DONT_WAKE;
+ goto update_exp_and_leave;
+ }
+ }
+
+ resync_stconns:
+ /* below we may emit error messages so we have to ensure that we have
+ * our buffers properly allocated. If the allocation failed, an error is
+ * triggered.
+ *
+ * NOTE: An error is returned because the mechanism to queue entities
+ * waiting for a buffer is totally broken for now. However, this
+ * part must be refactored. When it will be handled, this part
+ * must be be reviewed too.
+ */
+ if (!stream_alloc_work_buffer(s)) {
+ sc_ep_set(s->scf, SE_FL_ERROR);
+ s->conn_err_type = STRM_ET_CONN_RES;
+
+ sc_ep_set(s->scb, SE_FL_ERROR);
+ s->conn_err_type = STRM_ET_CONN_RES;
+
+ if (!(s->flags & SF_ERR_MASK))
+ s->flags |= SF_ERR_RESOURCE;
+ sess_set_term_flags(s);
+ }
+
+ /* 1b: check for low-level errors reported at the stream connector.
+ * First we check if it's a retryable error (in which case we don't
+ * want to tell the buffer). Otherwise we report the error one level
+ * upper by setting flags into the buffers. Note that the side towards
+ * the client cannot have connect (hence retryable) errors. Also, the
+ * connection setup code must be able to deal with any type of abort.
+ */
+ srv = objt_server(s->target);
+ if (unlikely(sc_ep_test(scf, SE_FL_ERROR))) {
+ if (sc_state_in(scf->state, SC_SB_EST|SC_SB_DIS)) {
+ sc_shutr(scf);
+ sc_shutw(scf);
+ sc_report_error(scf);
+ if (!(req->analysers) && !(res->analysers)) {
+ _HA_ATOMIC_INC(&s->be->be_counters.cli_aborts);
+ _HA_ATOMIC_INC(&sess->fe->fe_counters.cli_aborts);
+ if (sess->listener && sess->listener->counters)
+ _HA_ATOMIC_INC(&sess->listener->counters->cli_aborts);
+ if (srv)
+ _HA_ATOMIC_INC(&srv->counters.cli_aborts);
+ if (!(s->flags & SF_ERR_MASK))
+ s->flags |= SF_ERR_CLICL;
+ if (!(s->flags & SF_FINST_MASK))
+ s->flags |= SF_FINST_D;
+ }
+ }
+ }
+
+ if (unlikely(sc_ep_test(scb, SE_FL_ERROR))) {
+ if (sc_state_in(scb->state, SC_SB_EST|SC_SB_DIS)) {
+ sc_shutr(scb);
+ sc_shutw(scb);
+ sc_report_error(scb);
+ _HA_ATOMIC_INC(&s->be->be_counters.failed_resp);
+ if (srv)
+ _HA_ATOMIC_INC(&srv->counters.failed_resp);
+ if (!(req->analysers) && !(res->analysers)) {
+ _HA_ATOMIC_INC(&s->be->be_counters.srv_aborts);
+ _HA_ATOMIC_INC(&sess->fe->fe_counters.srv_aborts);
+ if (sess->listener && sess->listener->counters)
+ _HA_ATOMIC_INC(&sess->listener->counters->srv_aborts);
+ if (srv)
+ _HA_ATOMIC_INC(&srv->counters.srv_aborts);
+ if (!(s->flags & SF_ERR_MASK))
+ s->flags |= SF_ERR_SRVCL;
+ if (!(s->flags & SF_FINST_MASK))
+ s->flags |= SF_FINST_D;
+ }
+ }
+ /* note: maybe we should process connection errors here ? */
+ }
+
+ if (sc_state_in(scb->state, SC_SB_CON|SC_SB_RDY)) {
+ /* we were trying to establish a connection on the server side,
+ * maybe it succeeded, maybe it failed, maybe we timed out, ...
+ */
+ if (scb->state == SC_ST_RDY)
+ back_handle_st_rdy(s);
+ else if (s->scb->state == SC_ST_CON)
+ back_handle_st_con(s);
+
+ if (scb->state == SC_ST_CER)
+ back_handle_st_cer(s);
+ else if (scb->state == SC_ST_EST)
+ back_establish(s);
+
+ /* state is now one of SC_ST_CON (still in progress), SC_ST_EST
+ * (established), SC_ST_DIS (abort), SC_ST_CLO (last error),
+ * SC_ST_ASS/SC_ST_TAR/SC_ST_REQ for retryable errors.
+ */
+ }
+
+ rq_prod_last = scf->state;
+ rq_cons_last = scb->state;
+ rp_cons_last = scf->state;
+ rp_prod_last = scb->state;
+
+ /* Check for connection closure */
+ DBG_TRACE_POINT(STRM_EV_STRM_PROC, s);
+
+ /* nothing special to be done on client side */
+ if (unlikely(scf->state == SC_ST_DIS)) {
+ scf->state = SC_ST_CLO;
+
+ /* This is needed only when debugging is enabled, to indicate
+ * client-side close.
+ */
+ if (unlikely((global.mode & MODE_DEBUG) &&
+ (!(global.mode & MODE_QUIET) ||
+ (global.mode & MODE_VERBOSE)))) {
+ chunk_printf(&trash, "%08x:%s.clicls[%04x:%04x]\n",
+ s->uniq_id, s->be->id,
+ (unsigned short)conn_fd(sc_conn(scf)),
+ (unsigned short)conn_fd(sc_conn(scb)));
+ DISGUISE(write(1, trash.area, trash.data));
+ }
+ }
+
+ /* When a server-side connection is released, we have to count it and
+ * check for pending connections on this server.
+ */
+ if (unlikely(scb->state == SC_ST_DIS)) {
+ scb->state = SC_ST_CLO;
+ srv = objt_server(s->target);
+ if (srv) {
+ if (s->flags & SF_CURR_SESS) {
+ s->flags &= ~SF_CURR_SESS;
+ _HA_ATOMIC_DEC(&srv->cur_sess);
+ }
+ sess_change_server(s, NULL);
+ if (may_dequeue_tasks(srv, s->be))
+ process_srv_queue(srv);
+ }
+
+ /* This is needed only when debugging is enabled, to indicate
+ * server-side close.
+ */
+ if (unlikely((global.mode & MODE_DEBUG) &&
+ (!(global.mode & MODE_QUIET) ||
+ (global.mode & MODE_VERBOSE)))) {
+ if (s->prev_conn_state == SC_ST_EST) {
+ chunk_printf(&trash, "%08x:%s.srvcls[%04x:%04x]\n",
+ s->uniq_id, s->be->id,
+ (unsigned short)conn_fd(sc_conn(scf)),
+ (unsigned short)conn_fd(sc_conn(scb)));
+ DISGUISE(write(1, trash.area, trash.data));
+ }
+ }
+ }
+
+ /*
+ * Note: of the transient states (REQ, CER, DIS), only REQ may remain
+ * at this point.
+ */
+
+ resync_request:
+ /* Analyse request */
+ if (((req->flags & ~rqf_last) & CF_MASK_ANALYSER) ||
+ ((req->flags ^ rqf_last) & CF_MASK_STATIC) ||
+ (req->analysers && (req->flags & CF_SHUTW)) ||
+ scf->state != rq_prod_last ||
+ scb->state != rq_cons_last ||
+ s->pending_events & TASK_WOKEN_MSG) {
+ unsigned int flags = req->flags;
+
+ if (sc_state_in(scf->state, SC_SB_EST|SC_SB_DIS|SC_SB_CLO)) {
+ int max_loops = global.tune.maxpollevents;
+ unsigned int ana_list;
+ unsigned int ana_back;
+
+ /* it's up to the analysers to stop new connections,
+ * disable reading or closing. Note: if an analyser
+ * disables any of these bits, it is responsible for
+ * enabling them again when it disables itself, so
+ * that other analysers are called in similar conditions.
+ */
+ channel_auto_read(req);
+ channel_auto_connect(req);
+ channel_auto_close(req);
+
+ /* We will call all analysers for which a bit is set in
+ * req->analysers, following the bit order from LSB
+ * to MSB. The analysers must remove themselves from
+ * the list when not needed. Any analyser may return 0
+ * to break out of the loop, either because of missing
+ * data to take a decision, or because it decides to
+ * kill the stream. We loop at least once through each
+ * analyser, and we may loop again if other analysers
+ * are added in the middle.
+ *
+ * We build a list of analysers to run. We evaluate all
+ * of these analysers in the order of the lower bit to
+ * the higher bit. This ordering is very important.
+ * An analyser will often add/remove other analysers,
+ * including itself. Any changes to itself have no effect
+ * on the loop. If it removes any other analysers, we
+ * want those analysers not to be called anymore during
+ * this loop. If it adds an analyser that is located
+ * after itself, we want it to be scheduled for being
+ * processed during the loop. If it adds an analyser
+ * which is located before it, we want it to switch to
+ * it immediately, even if it has already been called
+ * once but removed since.
+ *
+ * In order to achieve this, we compare the analyser
+ * list after the call with a copy of it before the
+ * call. The work list is fed with analyser bits that
+ * appeared during the call. Then we compare previous
+ * work list with the new one, and check the bits that
+ * appeared. If the lowest of these bits is lower than
+ * the current bit, it means we have enabled a previous
+ * analyser and must immediately loop again.
+ */
+
+ ana_list = ana_back = req->analysers;
+ while (ana_list && max_loops--) {
+ /* Warning! ensure that analysers are always placed in ascending order! */
+ ANALYZE (s, req, flt_start_analyze, ana_list, ana_back, AN_REQ_FLT_START_FE);
+ FLT_ANALYZE(s, req, tcp_inspect_request, ana_list, ana_back, AN_REQ_INSPECT_FE);
+ FLT_ANALYZE(s, req, http_wait_for_request, ana_list, ana_back, AN_REQ_WAIT_HTTP);
+ FLT_ANALYZE(s, req, http_wait_for_request_body, ana_list, ana_back, AN_REQ_HTTP_BODY);
+ FLT_ANALYZE(s, req, http_process_req_common, ana_list, ana_back, AN_REQ_HTTP_PROCESS_FE, sess->fe);
+ FLT_ANALYZE(s, req, process_switching_rules, ana_list, ana_back, AN_REQ_SWITCHING_RULES);
+ ANALYZE (s, req, flt_start_analyze, ana_list, ana_back, AN_REQ_FLT_START_BE);
+ FLT_ANALYZE(s, req, tcp_inspect_request, ana_list, ana_back, AN_REQ_INSPECT_BE);
+ FLT_ANALYZE(s, req, http_process_req_common, ana_list, ana_back, AN_REQ_HTTP_PROCESS_BE, s->be);
+ FLT_ANALYZE(s, req, http_process_tarpit, ana_list, ana_back, AN_REQ_HTTP_TARPIT);
+ FLT_ANALYZE(s, req, process_server_rules, ana_list, ana_back, AN_REQ_SRV_RULES);
+ FLT_ANALYZE(s, req, http_process_request, ana_list, ana_back, AN_REQ_HTTP_INNER);
+ FLT_ANALYZE(s, req, tcp_persist_rdp_cookie, ana_list, ana_back, AN_REQ_PRST_RDP_COOKIE);
+ FLT_ANALYZE(s, req, process_sticking_rules, ana_list, ana_back, AN_REQ_STICKING_RULES);
+ ANALYZE (s, req, flt_analyze_http_headers, ana_list, ana_back, AN_REQ_FLT_HTTP_HDRS);
+ ANALYZE (s, req, http_request_forward_body, ana_list, ana_back, AN_REQ_HTTP_XFER_BODY);
+ ANALYZE (s, req, pcli_wait_for_request, ana_list, ana_back, AN_REQ_WAIT_CLI);
+ ANALYZE (s, req, flt_xfer_data, ana_list, ana_back, AN_REQ_FLT_XFER_DATA);
+ ANALYZE (s, req, flt_end_analyze, ana_list, ana_back, AN_REQ_FLT_END);
+ break;
+ }
+ }
+
+ rq_prod_last = scf->state;
+ rq_cons_last = scb->state;
+ req->flags &= ~CF_WAKE_ONCE;
+ rqf_last = req->flags;
+
+ if ((req->flags ^ flags) & (CF_SHUTR|CF_SHUTW))
+ goto resync_request;
+ }
+
+ /* we'll monitor the request analysers while parsing the response,
+ * because some response analysers may indirectly enable new request
+ * analysers (eg: HTTP keep-alive).
+ */
+ req_ana_back = req->analysers;
+
+ resync_response:
+ /* Analyse response */
+
+ if (((res->flags & ~rpf_last) & CF_MASK_ANALYSER) ||
+ (res->flags ^ rpf_last) & CF_MASK_STATIC ||
+ (res->analysers && (res->flags & CF_SHUTW)) ||
+ scf->state != rp_cons_last ||
+ scb->state != rp_prod_last ||
+ s->pending_events & TASK_WOKEN_MSG) {
+ unsigned int flags = res->flags;
+
+ if (sc_state_in(scb->state, SC_SB_EST|SC_SB_DIS|SC_SB_CLO)) {
+ int max_loops = global.tune.maxpollevents;
+ unsigned int ana_list;
+ unsigned int ana_back;
+
+ /* it's up to the analysers to stop disable reading or
+ * closing. Note: if an analyser disables any of these
+ * bits, it is responsible for enabling them again when
+ * it disables itself, so that other analysers are called
+ * in similar conditions.
+ */
+ channel_auto_read(res);
+ channel_auto_close(res);
+
+ /* We will call all analysers for which a bit is set in
+ * res->analysers, following the bit order from LSB
+ * to MSB. The analysers must remove themselves from
+ * the list when not needed. Any analyser may return 0
+ * to break out of the loop, either because of missing
+ * data to take a decision, or because it decides to
+ * kill the stream. We loop at least once through each
+ * analyser, and we may loop again if other analysers
+ * are added in the middle.
+ */
+
+ ana_list = ana_back = res->analysers;
+ while (ana_list && max_loops--) {
+ /* Warning! ensure that analysers are always placed in ascending order! */
+ ANALYZE (s, res, flt_start_analyze, ana_list, ana_back, AN_RES_FLT_START_FE);
+ ANALYZE (s, res, flt_start_analyze, ana_list, ana_back, AN_RES_FLT_START_BE);
+ FLT_ANALYZE(s, res, tcp_inspect_response, ana_list, ana_back, AN_RES_INSPECT);
+ FLT_ANALYZE(s, res, http_wait_for_response, ana_list, ana_back, AN_RES_WAIT_HTTP);
+ FLT_ANALYZE(s, res, process_store_rules, ana_list, ana_back, AN_RES_STORE_RULES);
+ FLT_ANALYZE(s, res, http_process_res_common, ana_list, ana_back, AN_RES_HTTP_PROCESS_BE, s->be);
+ ANALYZE (s, res, flt_analyze_http_headers, ana_list, ana_back, AN_RES_FLT_HTTP_HDRS);
+ ANALYZE (s, res, http_response_forward_body, ana_list, ana_back, AN_RES_HTTP_XFER_BODY);
+ ANALYZE (s, res, pcli_wait_for_response, ana_list, ana_back, AN_RES_WAIT_CLI);
+ ANALYZE (s, res, flt_xfer_data, ana_list, ana_back, AN_RES_FLT_XFER_DATA);
+ ANALYZE (s, res, flt_end_analyze, ana_list, ana_back, AN_RES_FLT_END);
+ break;
+ }
+ }
+
+ rp_cons_last = scf->state;
+ rp_prod_last = scb->state;
+ res->flags &= ~CF_WAKE_ONCE;
+ rpf_last = res->flags;
+
+ if ((res->flags ^ flags) & (CF_SHUTR|CF_SHUTW))
+ goto resync_response;
+ }
+
+ /* maybe someone has added some request analysers, so we must check and loop */
+ if (req->analysers & ~req_ana_back)
+ goto resync_request;
+
+ if ((req->flags & ~rqf_last) & CF_MASK_ANALYSER)
+ goto resync_request;
+
+ /* FIXME: here we should call protocol handlers which rely on
+ * both buffers.
+ */
+
+
+ /*
+ * Now we propagate unhandled errors to the stream. Normally
+ * we're just in a data phase here since it means we have not
+ * seen any analyser who could set an error status.
+ */
+ srv = objt_server(s->target);
+ if (unlikely(!(s->flags & SF_ERR_MASK))) {
+ if (req->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) {
+ /* Report it if the client got an error or a read timeout expired */
+ req->analysers &= AN_REQ_FLT_END;
+ if (req->flags & CF_READ_ERROR) {
+ _HA_ATOMIC_INC(&s->be->be_counters.cli_aborts);
+ _HA_ATOMIC_INC(&sess->fe->fe_counters.cli_aborts);
+ if (sess->listener && sess->listener->counters)
+ _HA_ATOMIC_INC(&sess->listener->counters->cli_aborts);
+ if (srv)
+ _HA_ATOMIC_INC(&srv->counters.cli_aborts);
+ s->flags |= SF_ERR_CLICL;
+ }
+ else if (req->flags & CF_READ_TIMEOUT) {
+ _HA_ATOMIC_INC(&s->be->be_counters.cli_aborts);
+ _HA_ATOMIC_INC(&sess->fe->fe_counters.cli_aborts);
+ if (sess->listener && sess->listener->counters)
+ _HA_ATOMIC_INC(&sess->listener->counters->cli_aborts);
+ if (srv)
+ _HA_ATOMIC_INC(&srv->counters.cli_aborts);
+ s->flags |= SF_ERR_CLITO;
+ }
+ else if (req->flags & CF_WRITE_ERROR) {
+ _HA_ATOMIC_INC(&s->be->be_counters.srv_aborts);
+ _HA_ATOMIC_INC(&sess->fe->fe_counters.srv_aborts);
+ if (sess->listener && sess->listener->counters)
+ _HA_ATOMIC_INC(&sess->listener->counters->srv_aborts);
+ if (srv)
+ _HA_ATOMIC_INC(&srv->counters.srv_aborts);
+ s->flags |= SF_ERR_SRVCL;
+ }
+ else {
+ _HA_ATOMIC_INC(&s->be->be_counters.srv_aborts);
+ _HA_ATOMIC_INC(&sess->fe->fe_counters.srv_aborts);
+ if (sess->listener && sess->listener->counters)
+ _HA_ATOMIC_INC(&sess->listener->counters->srv_aborts);
+ if (srv)
+ _HA_ATOMIC_INC(&srv->counters.srv_aborts);
+ s->flags |= SF_ERR_SRVTO;
+ }
+ sess_set_term_flags(s);
+
+ /* Abort the request if a client error occurred while
+ * the backend stream connector is in the SC_ST_INI
+ * state. It is switched into the SC_ST_CLO state and
+ * the request channel is erased. */
+ if (scb->state == SC_ST_INI) {
+ s->scb->state = SC_ST_CLO;
+ channel_abort(req);
+ if (IS_HTX_STRM(s))
+ channel_htx_erase(req, htxbuf(&req->buf));
+ else
+ channel_erase(req);
+ }
+ }
+ else if (res->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) {
+ /* Report it if the server got an error or a read timeout expired */
+ res->analysers &= AN_RES_FLT_END;
+ if (res->flags & CF_READ_ERROR) {
+ _HA_ATOMIC_INC(&s->be->be_counters.srv_aborts);
+ _HA_ATOMIC_INC(&sess->fe->fe_counters.srv_aborts);
+ if (sess->listener && sess->listener->counters)
+ _HA_ATOMIC_INC(&sess->listener->counters->srv_aborts);
+ if (srv)
+ _HA_ATOMIC_INC(&srv->counters.srv_aborts);
+ s->flags |= SF_ERR_SRVCL;
+ }
+ else if (res->flags & CF_READ_TIMEOUT) {
+ _HA_ATOMIC_INC(&s->be->be_counters.srv_aborts);
+ _HA_ATOMIC_INC(&sess->fe->fe_counters.srv_aborts);
+ if (sess->listener && sess->listener->counters)
+ _HA_ATOMIC_INC(&sess->listener->counters->srv_aborts);
+ if (srv)
+ _HA_ATOMIC_INC(&srv->counters.srv_aborts);
+ s->flags |= SF_ERR_SRVTO;
+ }
+ else if (res->flags & CF_WRITE_ERROR) {
+ _HA_ATOMIC_INC(&s->be->be_counters.cli_aborts);
+ _HA_ATOMIC_INC(&sess->fe->fe_counters.cli_aborts);
+ if (sess->listener && sess->listener->counters)
+ _HA_ATOMIC_INC(&sess->listener->counters->cli_aborts);
+ if (srv)
+ _HA_ATOMIC_INC(&srv->counters.cli_aborts);
+ s->flags |= SF_ERR_CLICL;
+ }
+ else {
+ _HA_ATOMIC_INC(&s->be->be_counters.cli_aborts);
+ _HA_ATOMIC_INC(&sess->fe->fe_counters.cli_aborts);
+ if (sess->listener && sess->listener->counters)
+ _HA_ATOMIC_INC(&sess->listener->counters->cli_aborts);
+ if (srv)
+ _HA_ATOMIC_INC(&srv->counters.cli_aborts);
+ s->flags |= SF_ERR_CLITO;
+ }
+ sess_set_term_flags(s);
+ }
+ }
+
+ /*
+ * Here we take care of forwarding unhandled data. This also includes
+ * connection establishments and shutdown requests.
+ */
+
+
+ /* If no one is interested in analysing data, it's time to forward
+ * everything. We configure the buffer to forward indefinitely.
+ * Note that we're checking CF_SHUTR_NOW as an indication of a possible
+ * recent call to channel_abort().
+ */
+ if (unlikely((!req->analysers || (req->analysers == AN_REQ_FLT_END && !(req->flags & CF_FLT_ANALYZE))) &&
+ !(req->flags & (CF_SHUTW|CF_SHUTR_NOW)) &&
+ (sc_state_in(scf->state, SC_SB_EST|SC_SB_DIS|SC_SB_CLO)) &&
+ (req->to_forward != CHN_INFINITE_FORWARD))) {
+ /* This buffer is freewheeling, there's no analyser
+ * attached to it. If any data are left in, we'll permit them to
+ * move.
+ */
+ channel_auto_read(req);
+ channel_auto_connect(req);
+ channel_auto_close(req);
+
+ if (IS_HTX_STRM(s)) {
+ struct htx *htx = htxbuf(&req->buf);
+
+ /* We'll let data flow between the producer (if still connected)
+ * to the consumer.
+ */
+ co_set_data(req, htx->data);
+ if (!(req->flags & (CF_SHUTR|CF_SHUTW_NOW)))
+ channel_htx_forward_forever(req, htx);
+ }
+ else {
+ /* We'll let data flow between the producer (if still connected)
+ * to the consumer (which might possibly not be connected yet).
+ */
+ c_adv(req, ci_data(req));
+ if (!(req->flags & (CF_SHUTR|CF_SHUTW_NOW)))
+ channel_forward_forever(req);
+ }
+ }
+
+ /* check if it is wise to enable kernel splicing to forward request data */
+ if (!(req->flags & (CF_KERN_SPLICING|CF_SHUTR)) &&
+ req->to_forward &&
+ (global.tune.options & GTUNE_USE_SPLICE) &&
+ (sc_conn(scf) && __sc_conn(scf)->xprt && __sc_conn(scf)->xprt->rcv_pipe &&
+ __sc_conn(scf)->mux && __sc_conn(scf)->mux->rcv_pipe) &&
+ (sc_conn(scb) && __sc_conn(scb)->xprt && __sc_conn(scb)->xprt->snd_pipe &&
+ __sc_conn(scb)->mux && __sc_conn(scb)->mux->snd_pipe) &&
+ (pipes_used < global.maxpipes) &&
+ (((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_REQ) ||
+ (((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_AUT) &&
+ (req->flags & CF_STREAMER_FAST)))) {
+ req->flags |= CF_KERN_SPLICING;
+ }
+
+ /* reflect what the L7 analysers have seen last */
+ rqf_last = req->flags;
+
+ /* it's possible that an upper layer has requested a connection setup or abort.
+ * There are 2 situations where we decide to establish a new connection :
+ * - there are data scheduled for emission in the buffer
+ * - the CF_AUTO_CONNECT flag is set (active connection)
+ */
+ if (scb->state == SC_ST_INI) {
+ if (!(req->flags & CF_SHUTW)) {
+ if ((req->flags & CF_AUTO_CONNECT) || !channel_is_empty(req)) {
+ /* If we have an appctx, there is no connect method, so we
+ * immediately switch to the connected state, otherwise we
+ * perform a connection request.
+ */
+ scb->state = SC_ST_REQ; /* new connection requested */
+ s->conn_retries = 0;
+ if ((s->be->retry_type &~ PR_RE_CONN_FAILED) &&
+ (s->be->mode == PR_MODE_HTTP) &&
+ !(s->txn->flags & TX_D_L7_RETRY))
+ s->txn->flags |= TX_L7_RETRY;
+ }
+ }
+ else {
+ s->scb->state = SC_ST_CLO; /* shutw+ini = abort */
+ channel_shutw_now(req); /* fix buffer flags upon abort */
+ channel_shutr_now(res);
+ }
+ }
+
+
+ /* we may have a pending connection request, or a connection waiting
+ * for completion.
+ */
+ if (sc_state_in(scb->state, SC_SB_REQ|SC_SB_QUE|SC_SB_TAR|SC_SB_ASS)) {
+ /* prune the request variables and swap to the response variables. */
+ if (s->vars_reqres.scope != SCOPE_RES) {
+ if (!LIST_ISEMPTY(&s->vars_reqres.head))
+ vars_prune(&s->vars_reqres, s->sess, s);
+ vars_init_head(&s->vars_reqres, SCOPE_RES);
+ }
+
+ do {
+ /* nb: step 1 might switch from QUE to ASS, but we first want
+ * to give a chance to step 2 to perform a redirect if needed.
+ */
+ if (scb->state != SC_ST_REQ)
+ back_try_conn_req(s);
+ if (scb->state == SC_ST_REQ)
+ back_handle_st_req(s);
+
+ /* get a chance to complete an immediate connection setup */
+ if (scb->state == SC_ST_RDY)
+ goto resync_stconns;
+
+ /* applets directly go to the ESTABLISHED state. Similarly,
+ * servers experience the same fate when their connection
+ * is reused.
+ */
+ if (unlikely(scb->state == SC_ST_EST))
+ back_establish(s);
+
+ srv = objt_server(s->target);
+ if (scb->state == SC_ST_ASS && srv && srv->rdr_len && (s->flags & SF_REDIRECTABLE))
+ http_perform_server_redirect(s, scb);
+ } while (scb->state == SC_ST_ASS);
+ }
+
+ /* Let's see if we can send the pending request now */
+ sc_conn_sync_send(scb);
+
+ /*
+ * Now forward all shutdown requests between both sides of the request buffer
+ */
+
+ /* first, let's check if the request buffer needs to shutdown(write), which may
+ * happen either because the input is closed or because we want to force a close
+ * once the server has begun to respond. If a half-closed timeout is set, we adjust
+ * the other side's timeout as well. However this doesn't have effect during the
+ * connection setup unless the backend has abortonclose set.
+ */
+ if (unlikely((req->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_AUTO_CLOSE|CF_SHUTR)) ==
+ (CF_AUTO_CLOSE|CF_SHUTR) &&
+ (scb->state != SC_ST_CON || (s->be->options & PR_O_ABRT_CLOSE)))) {
+ channel_shutw_now(req);
+ }
+
+ /* shutdown(write) pending */
+ if (unlikely((req->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW &&
+ channel_is_empty(req))) {
+ if (req->flags & CF_READ_ERROR)
+ scb->flags |= SC_FL_NOLINGER;
+ sc_shutw(scb);
+ }
+
+ /* shutdown(write) done on server side, we must stop the client too */
+ if (unlikely((req->flags & (CF_SHUTW|CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTW &&
+ !req->analysers))
+ channel_shutr_now(req);
+
+ /* shutdown(read) pending */
+ if (unlikely((req->flags & (CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTR_NOW)) {
+ if (scf->flags & SC_FL_NOHALF)
+ scf->flags |= SC_FL_NOLINGER;
+ sc_shutr(scf);
+ }
+
+ /* Benchmarks have shown that it's optimal to do a full resync now */
+ if (scf->state == SC_ST_DIS ||
+ sc_state_in(scb->state, SC_SB_RDY|SC_SB_DIS) ||
+ (sc_ep_test(scf, SE_FL_ERROR) && scf->state != SC_ST_CLO) ||
+ (sc_ep_test(scb, SE_FL_ERROR) && scb->state != SC_ST_CLO))
+ goto resync_stconns;
+
+ /* otherwise we want to check if we need to resync the req buffer or not */
+ if ((req->flags ^ rqf_last) & (CF_SHUTR|CF_SHUTW))
+ goto resync_request;
+
+ /* perform output updates to the response buffer */
+
+ /* If no one is interested in analysing data, it's time to forward
+ * everything. We configure the buffer to forward indefinitely.
+ * Note that we're checking CF_SHUTR_NOW as an indication of a possible
+ * recent call to channel_abort().
+ */
+ if (unlikely((!res->analysers || (res->analysers == AN_RES_FLT_END && !(res->flags & CF_FLT_ANALYZE))) &&
+ !(res->flags & (CF_SHUTW|CF_SHUTR_NOW)) &&
+ sc_state_in(scb->state, SC_SB_EST|SC_SB_DIS|SC_SB_CLO) &&
+ (res->to_forward != CHN_INFINITE_FORWARD))) {
+ /* This buffer is freewheeling, there's no analyser
+ * attached to it. If any data are left in, we'll permit them to
+ * move.
+ */
+ channel_auto_read(res);
+ channel_auto_close(res);
+
+ if (IS_HTX_STRM(s)) {
+ struct htx *htx = htxbuf(&res->buf);
+
+ /* We'll let data flow between the producer (if still connected)
+ * to the consumer.
+ */
+ co_set_data(res, htx->data);
+ if (!(res->flags & (CF_SHUTR|CF_SHUTW_NOW)))
+ channel_htx_forward_forever(res, htx);
+ }
+ else {
+ /* We'll let data flow between the producer (if still connected)
+ * to the consumer.
+ */
+ c_adv(res, ci_data(res));
+ if (!(res->flags & (CF_SHUTR|CF_SHUTW_NOW)))
+ channel_forward_forever(res);
+ }
+
+ /* if we have no analyser anymore in any direction and have a
+ * tunnel timeout set, use it now. Note that we must respect
+ * the half-closed timeouts as well.
+ */
+ if (!req->analysers && s->tunnel_timeout) {
+ req->rto = req->wto = res->rto = res->wto =
+ s->tunnel_timeout;
+
+ if ((req->flags & CF_SHUTR) && tick_isset(sess->fe->timeout.clientfin))
+ res->wto = sess->fe->timeout.clientfin;
+ if ((req->flags & CF_SHUTW) && tick_isset(s->be->timeout.serverfin))
+ res->rto = s->be->timeout.serverfin;
+ if ((res->flags & CF_SHUTR) && tick_isset(s->be->timeout.serverfin))
+ req->wto = s->be->timeout.serverfin;
+ if ((res->flags & CF_SHUTW) && tick_isset(sess->fe->timeout.clientfin))
+ req->rto = sess->fe->timeout.clientfin;
+
+ req->rex = tick_add(now_ms, req->rto);
+ req->wex = tick_add(now_ms, req->wto);
+ res->rex = tick_add(now_ms, res->rto);
+ res->wex = tick_add(now_ms, res->wto);
+ }
+ }
+
+ /* check if it is wise to enable kernel splicing to forward response data */
+ if (!(res->flags & (CF_KERN_SPLICING|CF_SHUTR)) &&
+ res->to_forward &&
+ (global.tune.options & GTUNE_USE_SPLICE) &&
+ (sc_conn(scf) && __sc_conn(scf)->xprt && __sc_conn(scf)->xprt->snd_pipe &&
+ __sc_conn(scf)->mux && __sc_conn(scf)->mux->snd_pipe) &&
+ (sc_conn(scb) && __sc_conn(scb)->xprt && __sc_conn(scb)->xprt->rcv_pipe &&
+ __sc_conn(scb)->mux && __sc_conn(scb)->mux->rcv_pipe) &&
+ (pipes_used < global.maxpipes) &&
+ (((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_RTR) ||
+ (((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_AUT) &&
+ (res->flags & CF_STREAMER_FAST)))) {
+ res->flags |= CF_KERN_SPLICING;
+ }
+
+ /* reflect what the L7 analysers have seen last */
+ rpf_last = res->flags;
+
+ /* Let's see if we can send the pending response now */
+ sc_conn_sync_send(scf);
+
+ /*
+ * Now forward all shutdown requests between both sides of the buffer
+ */
+
+ /*
+ * FIXME: this is probably where we should produce error responses.
+ */
+
+ /* first, let's check if the response buffer needs to shutdown(write) */
+ if (unlikely((res->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_AUTO_CLOSE|CF_SHUTR)) ==
+ (CF_AUTO_CLOSE|CF_SHUTR))) {
+ channel_shutw_now(res);
+ }
+
+ /* shutdown(write) pending */
+ if (unlikely((res->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW &&
+ channel_is_empty(res))) {
+ sc_shutw(scf);
+ }
+
+ /* shutdown(write) done on the client side, we must stop the server too */
+ if (unlikely((res->flags & (CF_SHUTW|CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTW) &&
+ !res->analysers)
+ channel_shutr_now(res);
+
+ /* shutdown(read) pending */
+ if (unlikely((res->flags & (CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTR_NOW)) {
+ if (scb->flags & SC_FL_NOHALF)
+ scb->flags |= SC_FL_NOLINGER;
+ sc_shutr(scb);
+ }
+
+ if (scf->state == SC_ST_DIS ||
+ sc_state_in(scb->state, SC_SB_RDY|SC_SB_DIS) ||
+ (sc_ep_test(scf, SE_FL_ERROR) && scf->state != SC_ST_CLO) ||
+ (sc_ep_test(scb, SE_FL_ERROR) && scb->state != SC_ST_CLO))
+ goto resync_stconns;
+
+ if ((req->flags & ~rqf_last) & CF_MASK_ANALYSER)
+ goto resync_request;
+
+ if ((res->flags ^ rpf_last) & CF_MASK_STATIC)
+ goto resync_response;
+
+ if (((req->flags ^ rqf_last) | (res->flags ^ rpf_last)) & CF_MASK_ANALYSER)
+ goto resync_request;
+
+ /* we're interested in getting wakeups again */
+ scf->flags &= ~SC_FL_DONT_WAKE;
+ scb->flags &= ~SC_FL_DONT_WAKE;
+
+ if (likely((scf->state != SC_ST_CLO) || !sc_state_in(scb->state, SC_SB_INI|SC_SB_CLO) ||
+ (req->analysers & AN_REQ_FLT_END) || (res->analysers & AN_RES_FLT_END))) {
+ if ((sess->fe->options & PR_O_CONTSTATS) && (s->flags & SF_BE_ASSIGNED) && !(s->flags & SF_IGNORE))
+ stream_process_counters(s);
+
+ stream_update_both_sc(s);
+
+ /* Trick: if a request is being waiting for the server to respond,
+ * and if we know the server can timeout, we don't want the timeout
+ * to expire on the client side first, but we're still interested
+ * in passing data from the client to the server (eg: POST). Thus,
+ * we can cancel the client's request timeout if the server's
+ * request timeout is set and the server has not yet sent a response.
+ */
+
+ if ((res->flags & (CF_AUTO_CLOSE|CF_SHUTR)) == 0 &&
+ (tick_isset(req->wex) || tick_isset(res->rex))) {
+ req->flags |= CF_READ_NOEXP;
+ req->rex = TICK_ETERNITY;
+ }
+
+ /* Reset pending events now */
+ s->pending_events = 0;
+
+ update_exp_and_leave:
+ /* Note: please ensure that if you branch here you disable SC_FL_DONT_WAKE */
+ t->expire = tick_first((tick_is_expired(t->expire, now_ms) ? 0 : t->expire),
+ tick_first(tick_first(req->rex, req->wex),
+ tick_first(res->rex, res->wex)));
+ if (!req->analysers)
+ req->analyse_exp = TICK_ETERNITY;
+
+ if ((sess->fe->options & PR_O_CONTSTATS) && (s->flags & SF_BE_ASSIGNED) &&
+ (!tick_isset(req->analyse_exp) || tick_is_expired(req->analyse_exp, now_ms)))
+ req->analyse_exp = tick_add(now_ms, 5000);
+
+ t->expire = tick_first(t->expire, req->analyse_exp);
+
+ t->expire = tick_first(t->expire, res->analyse_exp);
+
+ t->expire = tick_first(t->expire, s->conn_exp);
+
+ s->pending_events &= ~(TASK_WOKEN_TIMER | TASK_WOKEN_RES);
+ stream_release_buffers(s);
+
+ DBG_TRACE_DEVEL("queuing", STRM_EV_STRM_PROC, s);
+ return t; /* nothing more to do */
+ }
+
+ DBG_TRACE_DEVEL("releasing", STRM_EV_STRM_PROC, s);
+
+ if (s->flags & SF_BE_ASSIGNED)
+ _HA_ATOMIC_DEC(&s->be->beconn);
+
+ if (unlikely((global.mode & MODE_DEBUG) &&
+ (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)))) {
+ chunk_printf(&trash, "%08x:%s.closed[%04x:%04x]\n",
+ s->uniq_id, s->be->id,
+ (unsigned short)conn_fd(sc_conn(scf)),
+ (unsigned short)conn_fd(sc_conn(scb)));
+ DISGUISE(write(1, trash.area, trash.data));
+ }
+
+ if (!(s->flags & SF_IGNORE)) {
+ s->logs.t_close = tv_ms_elapsed(&s->logs.tv_accept, &now);
+
+ stream_process_counters(s);
+
+ if (s->txn && s->txn->status) {
+ int n;
+
+ n = s->txn->status / 100;
+ if (n < 1 || n > 5)
+ n = 0;
+
+ if (sess->fe->mode == PR_MODE_HTTP) {
+ _HA_ATOMIC_INC(&sess->fe->fe_counters.p.http.rsp[n]);
+ }
+ if ((s->flags & SF_BE_ASSIGNED) &&
+ (s->be->mode == PR_MODE_HTTP)) {
+ _HA_ATOMIC_INC(&s->be->be_counters.p.http.rsp[n]);
+ _HA_ATOMIC_INC(&s->be->be_counters.p.http.cum_req);
+ }
+ }
+
+ /* let's do a final log if we need it */
+ if (!LIST_ISEMPTY(&sess->fe->logformat) && s->logs.logwait &&
+ !(s->flags & SF_MONITOR) &&
+ (!(sess->fe->options & PR_O_NULLNOLOG) || req->total)) {
+ /* we may need to know the position in the queue */
+ pendconn_free(s);
+
+ stream_cond_update_cpu_usage(s);
+ s->do_log(s);
+ }
+
+ /* update time stats for this stream */
+ stream_update_time_stats(s);
+ }
+
+ /* the task MUST not be in the run queue anymore */
+ stream_free(s);
+ task_destroy(t);
+ return NULL;
+}
+
+/* Update the stream's backend and server time stats */
+void stream_update_time_stats(struct stream *s)
+{
+ int t_request;
+ int t_queue;
+ int t_connect;
+ int t_data;
+ int t_close;
+ struct server *srv;
+ unsigned int samples_window;
+
+ t_request = 0;
+ t_queue = s->logs.t_queue;
+ t_connect = s->logs.t_connect;
+ t_close = s->logs.t_close;
+ t_data = s->logs.t_data;
+
+ if (s->be->mode != PR_MODE_HTTP)
+ t_data = t_connect;
+
+ if (t_connect < 0 || t_data < 0)
+ return;
+
+ if (tv_isge(&s->logs.tv_request, &s->logs.tv_accept))
+ t_request = tv_ms_elapsed(&s->logs.tv_accept, &s->logs.tv_request);
+
+ t_data -= t_connect;
+ t_connect -= t_queue;
+ t_queue -= t_request;
+
+ srv = objt_server(s->target);
+ if (srv) {
+ samples_window = (((s->be->mode == PR_MODE_HTTP) ?
+ srv->counters.p.http.cum_req : srv->counters.cum_lbconn) > TIME_STATS_SAMPLES) ? TIME_STATS_SAMPLES : 0;
+ swrate_add_dynamic(&srv->counters.q_time, samples_window, t_queue);
+ swrate_add_dynamic(&srv->counters.c_time, samples_window, t_connect);
+ swrate_add_dynamic(&srv->counters.d_time, samples_window, t_data);
+ swrate_add_dynamic(&srv->counters.t_time, samples_window, t_close);
+ HA_ATOMIC_UPDATE_MAX(&srv->counters.qtime_max, t_queue);
+ HA_ATOMIC_UPDATE_MAX(&srv->counters.ctime_max, t_connect);
+ HA_ATOMIC_UPDATE_MAX(&srv->counters.dtime_max, t_data);
+ HA_ATOMIC_UPDATE_MAX(&srv->counters.ttime_max, t_close);
+ }
+ samples_window = (((s->be->mode == PR_MODE_HTTP) ?
+ s->be->be_counters.p.http.cum_req : s->be->be_counters.cum_lbconn) > TIME_STATS_SAMPLES) ? TIME_STATS_SAMPLES : 0;
+ swrate_add_dynamic(&s->be->be_counters.q_time, samples_window, t_queue);
+ swrate_add_dynamic(&s->be->be_counters.c_time, samples_window, t_connect);
+ swrate_add_dynamic(&s->be->be_counters.d_time, samples_window, t_data);
+ swrate_add_dynamic(&s->be->be_counters.t_time, samples_window, t_close);
+ HA_ATOMIC_UPDATE_MAX(&s->be->be_counters.qtime_max, t_queue);
+ HA_ATOMIC_UPDATE_MAX(&s->be->be_counters.ctime_max, t_connect);
+ HA_ATOMIC_UPDATE_MAX(&s->be->be_counters.dtime_max, t_data);
+ HA_ATOMIC_UPDATE_MAX(&s->be->be_counters.ttime_max, t_close);
+}
+
+/*
+ * This function adjusts sess->srv_conn and maintains the previous and new
+ * server's served stream counts. Setting newsrv to NULL is enough to release
+ * current connection slot. This function also notifies any LB algo which might
+ * expect to be informed about any change in the number of active streams on a
+ * server.
+ */
+void sess_change_server(struct stream *strm, struct server *newsrv)
+{
+ struct server *oldsrv = strm->srv_conn;
+
+ if (oldsrv == newsrv)
+ return;
+
+ if (oldsrv) {
+ _HA_ATOMIC_DEC(&oldsrv->served);
+ _HA_ATOMIC_DEC(&oldsrv->proxy->served);
+ __ha_barrier_atomic_store();
+ if (oldsrv->proxy->lbprm.server_drop_conn)
+ oldsrv->proxy->lbprm.server_drop_conn(oldsrv);
+ stream_del_srv_conn(strm);
+ }
+
+ if (newsrv) {
+ _HA_ATOMIC_INC(&newsrv->served);
+ _HA_ATOMIC_INC(&newsrv->proxy->served);
+ __ha_barrier_atomic_store();
+ if (newsrv->proxy->lbprm.server_take_conn)
+ newsrv->proxy->lbprm.server_take_conn(newsrv);
+ stream_add_srv_conn(strm, newsrv);
+ }
+}
+
+/* Handle server-side errors for default protocols. It is called whenever a a
+ * connection setup is aborted or a request is aborted in queue. It sets the
+ * stream termination flags so that the caller does not have to worry about
+ * them. It's installed as ->srv_error for the server-side stream connector.
+ */
+void default_srv_error(struct stream *s, struct stconn *sc)
+{
+ int err_type = s->conn_err_type;
+ int err = 0, fin = 0;
+
+ if (err_type & STRM_ET_QUEUE_ABRT) {
+ err = SF_ERR_CLICL;
+ fin = SF_FINST_Q;
+ }
+ else if (err_type & STRM_ET_CONN_ABRT) {
+ err = SF_ERR_CLICL;
+ fin = SF_FINST_C;
+ }
+ else if (err_type & STRM_ET_QUEUE_TO) {
+ err = SF_ERR_SRVTO;
+ fin = SF_FINST_Q;
+ }
+ else if (err_type & STRM_ET_QUEUE_ERR) {
+ err = SF_ERR_SRVCL;
+ fin = SF_FINST_Q;
+ }
+ else if (err_type & STRM_ET_CONN_TO) {
+ err = SF_ERR_SRVTO;
+ fin = SF_FINST_C;
+ }
+ else if (err_type & STRM_ET_CONN_ERR) {
+ err = SF_ERR_SRVCL;
+ fin = SF_FINST_C;
+ }
+ else if (err_type & STRM_ET_CONN_RES) {
+ err = SF_ERR_RESOURCE;
+ fin = SF_FINST_C;
+ }
+ else /* STRM_ET_CONN_OTHER and others */ {
+ err = SF_ERR_INTERNAL;
+ fin = SF_FINST_C;
+ }
+
+ if (!(s->flags & SF_ERR_MASK))
+ s->flags |= err;
+ if (!(s->flags & SF_FINST_MASK))
+ s->flags |= fin;
+}
+
+/* kill a stream and set the termination flags to <why> (one of SF_ERR_*) */
+void stream_shutdown(struct stream *stream, int why)
+{
+ if (stream->req.flags & (CF_SHUTW|CF_SHUTW_NOW))
+ return;
+
+ channel_shutw_now(&stream->req);
+ channel_shutr_now(&stream->res);
+ stream->task->nice = 1024;
+ if (!(stream->flags & SF_ERR_MASK))
+ stream->flags |= why;
+ task_wakeup(stream->task, TASK_WOKEN_OTHER);
+}
+
+/* Appends a dump of the state of stream <s> into buffer <buf> which must have
+ * preliminary be prepared by its caller, with each line prepended by prefix
+ * <pfx>, and each line terminated by character <eol>.
+ */
+void stream_dump(struct buffer *buf, const struct stream *s, const char *pfx, char eol)
+{
+ const struct stconn *scf, *scb;
+ const struct connection *cof, *cob;
+ const struct appctx *acf, *acb;
+ const struct server *srv;
+ const char *src = "unknown";
+ const char *dst = "unknown";
+ char pn[INET6_ADDRSTRLEN];
+ const struct channel *req, *res;
+
+ if (!s) {
+ chunk_appendf(buf, "%sstrm=%p%c", pfx, s, eol);
+ return;
+ }
+
+ if (s->obj_type != OBJ_TYPE_STREAM) {
+ chunk_appendf(buf, "%sstrm=%p [invalid type=%d(%s)]%c",
+ pfx, s, s->obj_type, obj_type_name(&s->obj_type), eol);
+ return;
+ }
+
+ req = &s->req;
+ res = &s->res;
+
+ scf = s->scf;
+ cof = sc_conn(scf);
+ acf = sc_appctx(scf);
+ if (cof && cof->src && addr_to_str(cof->src, pn, sizeof(pn)) >= 0)
+ src = pn;
+ else if (acf)
+ src = acf->applet->name;
+
+ scb = s->scb;
+ cob = sc_conn(scb);
+ acb = sc_appctx(scb);
+ srv = objt_server(s->target);
+ if (srv)
+ dst = srv->id;
+ else if (acb)
+ dst = acb->applet->name;
+
+ chunk_appendf(buf,
+ "%sstrm=%p,%x src=%s fe=%s be=%s dst=%s%c"
+ "%stxn=%p,%x txn.req=%s,%x txn.rsp=%s,%x%c"
+ "%srqf=%x rqa=%x rpf=%x rpa=%x%c"
+ "%sscf=%p,%s,%x scb=%p,%s,%x%c"
+ "%saf=%p,%u sab=%p,%u%c"
+ "%scof=%p,%x:%s(%p)/%s(%p)/%s(%d)%c"
+ "%scob=%p,%x:%s(%p)/%s(%p)/%s(%d)%c"
+ "",
+ pfx, s, s->flags, src, s->sess->fe->id, s->be->id, dst, eol,
+ pfx, s->txn, (s->txn ? s->txn->flags : 0),
+ (s->txn ? h1_msg_state_str(s->txn->req.msg_state): "-"), (s->txn ? s->txn->req.flags : 0),
+ (s->txn ? h1_msg_state_str(s->txn->rsp.msg_state): "-"), (s->txn ? s->txn->rsp.flags : 0), eol,
+ pfx, req->flags, req->analysers, res->flags, res->analysers, eol,
+ pfx, scf, sc_state_str(scf->state), scf->flags, scb, sc_state_str(scb->state), scb->flags, eol,
+ pfx, acf, acf ? acf->st0 : 0, acb, acb ? acb->st0 : 0, eol,
+ pfx, cof, cof ? cof->flags : 0, conn_get_mux_name(cof), cof?cof->ctx:0, conn_get_xprt_name(cof),
+ cof ? cof->xprt_ctx : 0, conn_get_ctrl_name(cof), conn_fd(cof), eol,
+ pfx, cob, cob ? cob->flags : 0, conn_get_mux_name(cob), cob?cob->ctx:0, conn_get_xprt_name(cob),
+ cob ? cob->xprt_ctx : 0, conn_get_ctrl_name(cob), conn_fd(cob), eol);
+}
+
+/* dumps an error message for type <type> at ptr <ptr> related to stream <s>,
+ * having reached loop rate <rate>, then aborts hoping to retrieve a core.
+ */
+void stream_dump_and_crash(enum obj_type *obj, int rate)
+{
+ const struct stream *s;
+ char *msg = NULL;
+ const void *ptr;
+
+ ptr = s = objt_stream(obj);
+ if (!s) {
+ const struct appctx *appctx = objt_appctx(obj);
+ if (!appctx)
+ return;
+ ptr = appctx;
+ s = appctx_strm(appctx);
+ if (!s)
+ return;
+ }
+
+ chunk_reset(&trash);
+ stream_dump(&trash, s, "", ' ');
+
+ chunk_appendf(&trash, "filters={");
+ if (HAS_FILTERS(s)) {
+ struct filter *filter;
+
+ list_for_each_entry(filter, &s->strm_flt.filters, list) {
+ if (filter->list.p != &s->strm_flt.filters)
+ chunk_appendf(&trash, ", ");
+ chunk_appendf(&trash, "%p=\"%s\"", filter, FLT_ID(filter));
+ }
+ }
+ chunk_appendf(&trash, "}");
+
+ if (ptr != s) { // that's an appctx
+ const struct appctx *appctx = ptr;
+
+ chunk_appendf(&trash, " applet=%p(", appctx->applet);
+ resolve_sym_name(&trash, NULL, appctx->applet);
+ chunk_appendf(&trash, ")");
+
+ chunk_appendf(&trash, " handler=%p(", appctx->applet->fct);
+ resolve_sym_name(&trash, NULL, appctx->applet->fct);
+ chunk_appendf(&trash, ")");
+ }
+
+ memprintf(&msg,
+ "A bogus %s [%p] is spinning at %d calls per second and refuses to die, "
+ "aborting now! Please report this error to developers "
+ "[%s]\n",
+ obj_type_name(obj), ptr, rate, trash.area);
+
+ ha_alert("%s", msg);
+ send_log(NULL, LOG_EMERG, "%s", msg);
+ ABORT_NOW();
+}
+
+/* initialize the require structures */
+static void init_stream()
+{
+ int thr;
+
+ for (thr = 0; thr < MAX_THREADS; thr++)
+ LIST_INIT(&ha_thread_ctx[thr].streams);
+}
+INITCALL0(STG_INIT, init_stream);
+
+/* Generates a unique ID based on the given <format>, stores it in the given <strm> and
+ * returns the unique ID.
+ *
+ * If this function fails to allocate memory IST_NULL is returned.
+ *
+ * If an ID is already stored within the stream nothing happens existing unique ID is
+ * returned.
+ */
+struct ist stream_generate_unique_id(struct stream *strm, struct list *format)
+{
+ if (isttest(strm->unique_id)) {
+ return strm->unique_id;
+ }
+ else {
+ char *unique_id;
+ int length;
+ if ((unique_id = pool_alloc(pool_head_uniqueid)) == NULL)
+ return IST_NULL;
+
+ length = build_logline(strm, unique_id, UNIQUEID_LEN, format);
+ strm->unique_id = ist2(unique_id, length);
+
+ return strm->unique_id;
+ }
+}
+
+/************************************************************************/
+/* All supported ACL keywords must be declared here. */
+/************************************************************************/
+static enum act_return stream_action_set_log_level(struct act_rule *rule, struct proxy *px,
+ struct session *sess, struct stream *s, int flags)
+{
+ s->logs.level = (uintptr_t)rule->arg.act.p[0];
+ return ACT_RET_CONT;
+}
+
+
+/* Parse a "set-log-level" action. It takes the level value as argument. It
+ * returns ACT_RET_PRS_OK on success, ACT_RET_PRS_ERR on error.
+ */
+static enum act_parse_ret stream_parse_set_log_level(const char **args, int *cur_arg, struct proxy *px,
+ struct act_rule *rule, char **err)
+{
+ int level;
+
+ if (!*args[*cur_arg]) {
+ bad_log_level:
+ memprintf(err, "expects exactly 1 argument (log level name or 'silent')");
+ return ACT_RET_PRS_ERR;
+ }
+ if (strcmp(args[*cur_arg], "silent") == 0)
+ level = -1;
+ else if ((level = get_log_level(args[*cur_arg]) + 1) == 0)
+ goto bad_log_level;
+
+ (*cur_arg)++;
+
+ /* Register processing function. */
+ rule->action_ptr = stream_action_set_log_level;
+ rule->action = ACT_CUSTOM;
+ rule->arg.act.p[0] = (void *)(uintptr_t)level;
+ return ACT_RET_PRS_OK;
+}
+
+static enum act_return stream_action_set_nice(struct act_rule *rule, struct proxy *px,
+ struct session *sess, struct stream *s, int flags)
+{
+ s->task->nice = (uintptr_t)rule->arg.act.p[0];
+ return ACT_RET_CONT;
+}
+
+
+/* Parse a "set-nice" action. It takes the nice value as argument. It returns
+ * ACT_RET_PRS_OK on success, ACT_RET_PRS_ERR on error.
+ */
+static enum act_parse_ret stream_parse_set_nice(const char **args, int *cur_arg, struct proxy *px,
+ struct act_rule *rule, char **err)
+{
+ int nice;
+
+ if (!*args[*cur_arg]) {
+ bad_log_level:
+ memprintf(err, "expects exactly 1 argument (integer value)");
+ return ACT_RET_PRS_ERR;
+ }
+
+ nice = atoi(args[*cur_arg]);
+ if (nice < -1024)
+ nice = -1024;
+ else if (nice > 1024)
+ nice = 1024;
+
+ (*cur_arg)++;
+
+ /* Register processing function. */
+ rule->action_ptr = stream_action_set_nice;
+ rule->action = ACT_CUSTOM;
+ rule->arg.act.p[0] = (void *)(uintptr_t)nice;
+ return ACT_RET_PRS_OK;
+}
+
+
+static enum act_return tcp_action_switch_stream_mode(struct act_rule *rule, struct proxy *px,
+ struct session *sess, struct stream *s, int flags)
+{
+ enum pr_mode mode = (uintptr_t)rule->arg.act.p[0];
+ const struct mux_proto_list *mux_proto = rule->arg.act.p[1];
+
+ if (!IS_HTX_STRM(s) && mode == PR_MODE_HTTP) {
+ if (!stream_set_http_mode(s, mux_proto)) {
+ channel_abort(&s->req);
+ channel_abort(&s->res);
+ return ACT_RET_ABRT;
+ }
+ }
+ return ACT_RET_STOP;
+}
+
+
+static int check_tcp_switch_stream_mode(struct act_rule *rule, struct proxy *px, char **err)
+{
+ const struct mux_proto_list *mux_ent;
+ const struct mux_proto_list *mux_proto = rule->arg.act.p[1];
+ enum pr_mode pr_mode = (uintptr_t)rule->arg.act.p[0];
+ enum proto_proxy_mode mode = (1 << (pr_mode == PR_MODE_HTTP));
+
+ if (pr_mode == PR_MODE_HTTP)
+ px->options |= PR_O_HTTP_UPG;
+
+ if (mux_proto) {
+ mux_ent = conn_get_best_mux_entry(mux_proto->token, PROTO_SIDE_FE, mode);
+ if (!mux_ent || !isteq(mux_ent->token, mux_proto->token)) {
+ memprintf(err, "MUX protocol '%.*s' is not compatible with the selected mode",
+ (int)mux_proto->token.len, mux_proto->token.ptr);
+ return 0;
+ }
+ }
+ else {
+ mux_ent = conn_get_best_mux_entry(IST_NULL, PROTO_SIDE_FE, mode);
+ if (!mux_ent) {
+ memprintf(err, "Unable to find compatible MUX protocol with the selected mode");
+ return 0;
+ }
+ }
+
+ /* Update the mux */
+ rule->arg.act.p[1] = (void *)mux_ent;
+ return 1;
+
+}
+
+static enum act_parse_ret stream_parse_switch_mode(const char **args, int *cur_arg,
+ struct proxy *px, struct act_rule *rule,
+ char **err)
+{
+ const struct mux_proto_list *mux_proto = NULL;
+ struct ist proto;
+ enum pr_mode mode;
+
+ /* must have at least the mode */
+ if (*(args[*cur_arg]) == 0) {
+ memprintf(err, "'%s %s' expects a mode as argument.", args[0], args[*cur_arg-1]);
+ return ACT_RET_PRS_ERR;
+ }
+
+ if (!(px->cap & PR_CAP_FE)) {
+ memprintf(err, "'%s %s' not allowed because %s '%s' has no frontend capability",
+ args[0], args[*cur_arg-1], proxy_type_str(px), px->id);
+ return ACT_RET_PRS_ERR;
+ }
+ /* Check if the mode. For now "tcp" is disabled because downgrade is not
+ * supported and PT is the only TCP mux.
+ */
+ if (strcmp(args[*cur_arg], "http") == 0)
+ mode = PR_MODE_HTTP;
+ else {
+ memprintf(err, "'%s %s' expects a valid mode (got '%s').", args[0], args[*cur_arg-1], args[*cur_arg]);
+ return ACT_RET_PRS_ERR;
+ }
+
+ /* check the proto, if specified */
+ if (*(args[*cur_arg+1]) && strcmp(args[*cur_arg+1], "proto") == 0) {
+ if (*(args[*cur_arg+2]) == 0) {
+ memprintf(err, "'%s %s': '%s' expects a protocol as argument.",
+ args[0], args[*cur_arg-1], args[*cur_arg+1]);
+ return ACT_RET_PRS_ERR;
+ }
+
+ proto = ist(args[*cur_arg + 2]);
+ mux_proto = get_mux_proto(proto);
+ if (!mux_proto) {
+ memprintf(err, "'%s %s': '%s' expects a valid MUX protocol, if specified (got '%s')",
+ args[0], args[*cur_arg-1], args[*cur_arg+1], args[*cur_arg+2]);
+ return ACT_RET_PRS_ERR;
+ }
+ *cur_arg += 2;
+ }
+
+ (*cur_arg)++;
+
+ /* Register processing function. */
+ rule->action_ptr = tcp_action_switch_stream_mode;
+ rule->check_ptr = check_tcp_switch_stream_mode;
+ rule->action = ACT_CUSTOM;
+ rule->arg.act.p[0] = (void *)(uintptr_t)mode;
+ rule->arg.act.p[1] = (void *)mux_proto;
+ return ACT_RET_PRS_OK;
+}
+
+/* 0=OK, <0=Alert, >0=Warning */
+static enum act_parse_ret stream_parse_use_service(const char **args, int *cur_arg,
+ struct proxy *px, struct act_rule *rule,
+ char **err)
+{
+ struct action_kw *kw;
+
+ /* Check if the service name exists. */
+ if (*(args[*cur_arg]) == 0) {
+ memprintf(err, "'%s' expects a service name.", args[0]);
+ return ACT_RET_PRS_ERR;
+ }
+
+ /* lookup for keyword corresponding to a service. */
+ kw = action_lookup(&service_keywords, args[*cur_arg]);
+ if (!kw) {
+ memprintf(err, "'%s' unknown service name.", args[1]);
+ return ACT_RET_PRS_ERR;
+ }
+ (*cur_arg)++;
+
+ /* executes specific rule parser. */
+ rule->kw = kw;
+ if (kw->parse((const char **)args, cur_arg, px, rule, err) == ACT_RET_PRS_ERR)
+ return ACT_RET_PRS_ERR;
+
+ /* Register processing function. */
+ rule->action_ptr = process_use_service;
+ rule->action = ACT_CUSTOM;
+
+ return ACT_RET_PRS_OK;
+}
+
+void service_keywords_register(struct action_kw_list *kw_list)
+{
+ LIST_APPEND(&service_keywords, &kw_list->list);
+}
+
+struct action_kw *service_find(const char *kw)
+{
+ return action_lookup(&service_keywords, kw);
+}
+
+/* Lists the known services on <out>. If <out> is null, emit them on stdout one
+ * per line.
+ */
+void list_services(FILE *out)
+{
+ const struct action_kw *akwp, *akwn;
+ struct action_kw_list *kw_list;
+ int found = 0;
+ int i;
+
+ if (out)
+ fprintf(out, "Available services :");
+
+ for (akwn = akwp = NULL;; akwp = akwn) {
+ list_for_each_entry(kw_list, &service_keywords, list) {
+ for (i = 0; kw_list->kw[i].kw != NULL; i++) {
+ if (strordered(akwp ? akwp->kw : NULL,
+ kw_list->kw[i].kw,
+ akwn != akwp ? akwn->kw : NULL))
+ akwn = &kw_list->kw[i];
+ found = 1;
+ }
+ }
+ if (akwn == akwp)
+ break;
+ if (out)
+ fprintf(out, " %s", akwn->kw);
+ else
+ printf("%s\n", akwn->kw);
+ }
+ if (!found && out)
+ fprintf(out, " none\n");
+}
+
+/* appctx context used by the "show sess" command */
+
+struct show_sess_ctx {
+ struct bref bref; /* back-reference from the session being dumped */
+ void *target; /* session we want to dump, or NULL for all */
+ unsigned int thr; /* the thread number being explored (0..MAX_THREADS-1) */
+ unsigned int uid; /* if non-null, the uniq_id of the session being dumped */
+ int section; /* section of the session being dumped */
+ int pos; /* last position of the current session's buffer */
+};
+
+/* This function dumps a complete stream state onto the stream connector's
+ * read buffer. The stream has to be set in strm. It returns 0 if the output
+ * buffer is full and it needs to be called again, otherwise non-zero. It is
+ * designed to be called from stats_dump_strm_to_buffer() below.
+ */
+static int stats_dump_full_strm_to_buffer(struct stconn *sc, struct stream *strm)
+{
+ struct appctx *appctx = __sc_appctx(sc);
+ struct show_sess_ctx *ctx = appctx->svcctx;
+ struct stconn *scf, *scb;
+ struct tm tm;
+ extern const char *monthname[12];
+ char pn[INET6_ADDRSTRLEN];
+ struct connection *conn;
+ struct appctx *tmpctx;
+
+ chunk_reset(&trash);
+
+ if (ctx->section > 0 && ctx->uid != strm->uniq_id) {
+ /* stream changed, no need to go any further */
+ chunk_appendf(&trash, " *** session terminated while we were watching it ***\n");
+ if (applet_putchk(appctx, &trash) == -1)
+ goto full;
+ goto done;
+ }
+
+ switch (ctx->section) {
+ case 0: /* main status of the stream */
+ ctx->uid = strm->uniq_id;
+ ctx->section = 1;
+ /* fall through */
+
+ case 1:
+ get_localtime(strm->logs.accept_date.tv_sec, &tm);
+ chunk_appendf(&trash,
+ "%p: [%02d/%s/%04d:%02d:%02d:%02d.%06d] id=%u proto=%s",
+ strm,
+ tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900,
+ tm.tm_hour, tm.tm_min, tm.tm_sec, (int)(strm->logs.accept_date.tv_usec),
+ strm->uniq_id,
+ strm_li(strm) ? strm_li(strm)->rx.proto->name : "?");
+
+ conn = objt_conn(strm_orig(strm));
+ switch (conn && conn_get_src(conn) ? addr_to_str(conn->src, pn, sizeof(pn)) : AF_UNSPEC) {
+ case AF_INET:
+ case AF_INET6:
+ chunk_appendf(&trash, " source=%s:%d\n",
+ pn, get_host_port(conn->src));
+ break;
+ case AF_UNIX:
+ chunk_appendf(&trash, " source=unix:%d\n", strm_li(strm)->luid);
+ break;
+ default:
+ /* no more information to print right now */
+ chunk_appendf(&trash, "\n");
+ break;
+ }
+
+ chunk_appendf(&trash,
+ " flags=0x%x, conn_retries=%d, conn_exp=%s conn_et=0x%03x srv_conn=%p, pend_pos=%p waiting=%d epoch=%#x\n",
+ strm->flags, strm->conn_retries,
+ strm->conn_exp ?
+ tick_is_expired(strm->conn_exp, now_ms) ? "<PAST>" :
+ human_time(TICKS_TO_MS(strm->conn_exp - now_ms),
+ TICKS_TO_MS(1000)) : "<NEVER>",
+ strm->conn_err_type, strm->srv_conn, strm->pend_pos,
+ LIST_INLIST(&strm->buffer_wait.list), strm->stream_epoch);
+
+ chunk_appendf(&trash,
+ " frontend=%s (id=%u mode=%s), listener=%s (id=%u)",
+ strm_fe(strm)->id, strm_fe(strm)->uuid, proxy_mode_str(strm_fe(strm)->mode),
+ strm_li(strm) ? strm_li(strm)->name ? strm_li(strm)->name : "?" : "?",
+ strm_li(strm) ? strm_li(strm)->luid : 0);
+
+ switch (conn && conn_get_dst(conn) ? addr_to_str(conn->dst, pn, sizeof(pn)) : AF_UNSPEC) {
+ case AF_INET:
+ case AF_INET6:
+ chunk_appendf(&trash, " addr=%s:%d\n",
+ pn, get_host_port(conn->dst));
+ break;
+ case AF_UNIX:
+ chunk_appendf(&trash, " addr=unix:%d\n", strm_li(strm)->luid);
+ break;
+ default:
+ /* no more information to print right now */
+ chunk_appendf(&trash, "\n");
+ break;
+ }
+
+ if (strm->be->cap & PR_CAP_BE)
+ chunk_appendf(&trash,
+ " backend=%s (id=%u mode=%s)",
+ strm->be->id,
+ strm->be->uuid, proxy_mode_str(strm->be->mode));
+ else
+ chunk_appendf(&trash, " backend=<NONE> (id=-1 mode=-)");
+
+ conn = sc_conn(strm->scb);
+ switch (conn && conn_get_src(conn) ? addr_to_str(conn->src, pn, sizeof(pn)) : AF_UNSPEC) {
+ case AF_INET:
+ case AF_INET6:
+ chunk_appendf(&trash, " addr=%s:%d\n",
+ pn, get_host_port(conn->src));
+ break;
+ case AF_UNIX:
+ chunk_appendf(&trash, " addr=unix\n");
+ break;
+ default:
+ /* no more information to print right now */
+ chunk_appendf(&trash, "\n");
+ break;
+ }
+
+ if (strm->be->cap & PR_CAP_BE)
+ chunk_appendf(&trash,
+ " server=%s (id=%u)",
+ objt_server(strm->target) ? __objt_server(strm->target)->id : "<none>",
+ objt_server(strm->target) ? __objt_server(strm->target)->puid : 0);
+ else
+ chunk_appendf(&trash, " server=<NONE> (id=-1)");
+
+ switch (conn && conn_get_dst(conn) ? addr_to_str(conn->dst, pn, sizeof(pn)) : AF_UNSPEC) {
+ case AF_INET:
+ case AF_INET6:
+ chunk_appendf(&trash, " addr=%s:%d\n",
+ pn, get_host_port(conn->dst));
+ break;
+ case AF_UNIX:
+ chunk_appendf(&trash, " addr=unix\n");
+ break;
+ default:
+ /* no more information to print right now */
+ chunk_appendf(&trash, "\n");
+ break;
+ }
+
+ chunk_appendf(&trash,
+ " task=%p (state=0x%02x nice=%d calls=%u rate=%u exp=%s tmask=0x%lx%s",
+ strm->task,
+ strm->task->state,
+ strm->task->nice, strm->task->calls, read_freq_ctr(&strm->call_rate),
+ strm->task->expire ?
+ tick_is_expired(strm->task->expire, now_ms) ? "<PAST>" :
+ human_time(TICKS_TO_MS(strm->task->expire - now_ms),
+ TICKS_TO_MS(1000)) : "<NEVER>",
+ strm->task->thread_mask,
+ task_in_rq(strm->task) ? ", running" : "");
+
+ chunk_appendf(&trash,
+ " age=%s)\n",
+ human_time(now.tv_sec - strm->logs.accept_date.tv_sec, 1));
+
+ if (strm->txn)
+ chunk_appendf(&trash,
+ " txn=%p flags=0x%x meth=%d status=%d req.st=%s rsp.st=%s req.f=0x%02x rsp.f=0x%02x\n",
+ strm->txn, strm->txn->flags, strm->txn->meth, strm->txn->status,
+ h1_msg_state_str(strm->txn->req.msg_state), h1_msg_state_str(strm->txn->rsp.msg_state),
+ strm->txn->req.flags, strm->txn->rsp.flags);
+
+ scf = strm->scf;
+ chunk_appendf(&trash, " scf=%p flags=0x%08x state=%s endp=%s,%p,0x%08x sub=%d\n",
+ scf, scf->flags, sc_state_str(scf->state),
+ (sc_ep_test(scf, SE_FL_T_MUX) ? "CONN" : (sc_ep_test(scf, SE_FL_T_APPLET) ? "APPCTX" : "NONE")),
+ scf->sedesc->se, sc_ep_get(scf), scf->wait_event.events);
+
+ if ((conn = sc_conn(scf)) != NULL) {
+ chunk_appendf(&trash,
+ " co0=%p ctrl=%s xprt=%s mux=%s data=%s target=%s:%p\n",
+ conn,
+ conn_get_ctrl_name(conn),
+ conn_get_xprt_name(conn),
+ conn_get_mux_name(conn),
+ sc_get_data_name(scf),
+ obj_type_name(conn->target),
+ obj_base_ptr(conn->target));
+
+ chunk_appendf(&trash,
+ " flags=0x%08x fd=%d fd.state=%02x updt=%d fd.tmask=0x%lx\n",
+ conn->flags,
+ conn_fd(conn),
+ conn_fd(conn) >= 0 ? fdtab[conn->handle.fd].state : 0,
+ conn_fd(conn) >= 0 ? !!(fdtab[conn->handle.fd].update_mask & tid_bit) : 0,
+ conn_fd(conn) >= 0 ? fdtab[conn->handle.fd].thread_mask: 0);
+
+ }
+ else if ((tmpctx = sc_appctx(scf)) != NULL) {
+ chunk_appendf(&trash,
+ " app0=%p st0=%d st1=%d st2=%d applet=%s tmask=0x%lx nice=%d calls=%u rate=%u cpu=%llu lat=%llu\n",
+ tmpctx,
+ tmpctx->st0,
+ tmpctx->st1,
+ tmpctx->_st2,
+ tmpctx->applet->name,
+ tmpctx->t->thread_mask,
+ tmpctx->t->nice, tmpctx->t->calls, read_freq_ctr(&tmpctx->call_rate),
+ (unsigned long long)tmpctx->t->cpu_time, (unsigned long long)tmpctx->t->lat_time);
+ }
+
+ scb = strm->scb;
+ chunk_appendf(&trash, " scb=%p flags=0x%08x state=%s endp=%s,%p,0x%08x sub=%d\n",
+ scb, scb->flags, sc_state_str(scb->state),
+ (sc_ep_test(scb, SE_FL_T_MUX) ? "CONN" : (sc_ep_test(scb, SE_FL_T_APPLET) ? "APPCTX" : "NONE")),
+ scb->sedesc->se, sc_ep_get(scb), scb->wait_event.events);
+
+ if ((conn = sc_conn(scb)) != NULL) {
+ chunk_appendf(&trash,
+ " co1=%p ctrl=%s xprt=%s mux=%s data=%s target=%s:%p\n",
+ conn,
+ conn_get_ctrl_name(conn),
+ conn_get_xprt_name(conn),
+ conn_get_mux_name(conn),
+ sc_get_data_name(scb),
+ obj_type_name(conn->target),
+ obj_base_ptr(conn->target));
+
+ chunk_appendf(&trash,
+ " flags=0x%08x fd=%d fd.state=%02x updt=%d fd.tmask=0x%lx\n",
+ conn->flags,
+ conn_fd(conn),
+ conn_fd(conn) >= 0 ? fdtab[conn->handle.fd].state : 0,
+ conn_fd(conn) >= 0 ? !!(fdtab[conn->handle.fd].update_mask & tid_bit) : 0,
+ conn_fd(conn) >= 0 ? fdtab[conn->handle.fd].thread_mask: 0);
+
+ }
+ else if ((tmpctx = sc_appctx(scb)) != NULL) {
+ chunk_appendf(&trash,
+ " app1=%p st0=%d st1=%d st2=%d applet=%s tmask=0x%lx nice=%d calls=%u rate=%u cpu=%llu lat=%llu\n",
+ tmpctx,
+ tmpctx->st0,
+ tmpctx->st1,
+ tmpctx->_st2,
+ tmpctx->applet->name,
+ tmpctx->t->thread_mask,
+ tmpctx->t->nice, tmpctx->t->calls, read_freq_ctr(&tmpctx->call_rate),
+ (unsigned long long)tmpctx->t->cpu_time, (unsigned long long)tmpctx->t->lat_time);
+ }
+
+ chunk_appendf(&trash,
+ " req=%p (f=0x%06x an=0x%x pipe=%d tofwd=%d total=%lld)\n"
+ " an_exp=%s",
+ &strm->req,
+ strm->req.flags, strm->req.analysers,
+ strm->req.pipe ? strm->req.pipe->data : 0,
+ strm->req.to_forward, strm->req.total,
+ strm->req.analyse_exp ?
+ human_time(TICKS_TO_MS(strm->req.analyse_exp - now_ms),
+ TICKS_TO_MS(1000)) : "<NEVER>");
+
+ chunk_appendf(&trash,
+ " rex=%s",
+ strm->req.rex ?
+ human_time(TICKS_TO_MS(strm->req.rex - now_ms),
+ TICKS_TO_MS(1000)) : "<NEVER>");
+
+ chunk_appendf(&trash,
+ " wex=%s\n"
+ " buf=%p data=%p o=%u p=%u i=%u size=%u\n",
+ strm->req.wex ?
+ human_time(TICKS_TO_MS(strm->req.wex - now_ms),
+ TICKS_TO_MS(1000)) : "<NEVER>",
+ &strm->req.buf,
+ b_orig(&strm->req.buf), (unsigned int)co_data(&strm->req),
+ (unsigned int)ci_head_ofs(&strm->req), (unsigned int)ci_data(&strm->req),
+ (unsigned int)strm->req.buf.size);
+
+ if (IS_HTX_STRM(strm)) {
+ struct htx *htx = htxbuf(&strm->req.buf);
+
+ chunk_appendf(&trash,
+ " htx=%p flags=0x%x size=%u data=%u used=%u wrap=%s extra=%llu\n",
+ htx, htx->flags, htx->size, htx->data, htx_nbblks(htx),
+ (htx->tail >= htx->head) ? "NO" : "YES",
+ (unsigned long long)htx->extra);
+ }
+ if (HAS_FILTERS(strm) && strm_flt(strm)->current[0]) {
+ struct filter *flt = strm_flt(strm)->current[0];
+
+ chunk_appendf(&trash, " current_filter=%p (id=\"%s\" flags=0x%x pre=0x%x post=0x%x) \n",
+ flt, flt->config->id, flt->flags, flt->pre_analyzers, flt->post_analyzers);
+ }
+
+ chunk_appendf(&trash,
+ " res=%p (f=0x%06x an=0x%x pipe=%d tofwd=%d total=%lld)\n"
+ " an_exp=%s",
+ &strm->res,
+ strm->res.flags, strm->res.analysers,
+ strm->res.pipe ? strm->res.pipe->data : 0,
+ strm->res.to_forward, strm->res.total,
+ strm->res.analyse_exp ?
+ human_time(TICKS_TO_MS(strm->res.analyse_exp - now_ms),
+ TICKS_TO_MS(1000)) : "<NEVER>");
+
+ chunk_appendf(&trash,
+ " rex=%s",
+ strm->res.rex ?
+ human_time(TICKS_TO_MS(strm->res.rex - now_ms),
+ TICKS_TO_MS(1000)) : "<NEVER>");
+
+ chunk_appendf(&trash,
+ " wex=%s\n"
+ " buf=%p data=%p o=%u p=%u i=%u size=%u\n",
+ strm->res.wex ?
+ human_time(TICKS_TO_MS(strm->res.wex - now_ms),
+ TICKS_TO_MS(1000)) : "<NEVER>",
+ &strm->res.buf,
+ b_orig(&strm->res.buf), (unsigned int)co_data(&strm->res),
+ (unsigned int)ci_head_ofs(&strm->res), (unsigned int)ci_data(&strm->res),
+ (unsigned int)strm->res.buf.size);
+
+ if (IS_HTX_STRM(strm)) {
+ struct htx *htx = htxbuf(&strm->res.buf);
+
+ chunk_appendf(&trash,
+ " htx=%p flags=0x%x size=%u data=%u used=%u wrap=%s extra=%llu\n",
+ htx, htx->flags, htx->size, htx->data, htx_nbblks(htx),
+ (htx->tail >= htx->head) ? "NO" : "YES",
+ (unsigned long long)htx->extra);
+ }
+ if (HAS_FILTERS(strm) && strm_flt(strm)->current[1]) {
+ struct filter *flt = strm_flt(strm)->current[1];
+
+ chunk_appendf(&trash, " current_filter=%p (id=\"%s\" flags=0x%x pre=0x%x post=0x%x) \n",
+ flt, flt->config->id, flt->flags, flt->pre_analyzers, flt->post_analyzers);
+ }
+
+ if (strm->current_rule_list && strm->current_rule) {
+ const struct act_rule *rule = strm->current_rule;
+ chunk_appendf(&trash, " current_rule=\"%s\" [%s:%d]\n", rule->kw->kw, rule->conf.file, rule->conf.line);
+ }
+
+ if (applet_putchk(appctx, &trash) == -1)
+ goto full;
+
+ /* use other states to dump the contents */
+ }
+ /* end of dump */
+ done:
+ ctx->uid = 0;
+ ctx->section = 0;
+ return 1;
+ full:
+ return 0;
+}
+
+static int cli_parse_show_sess(char **args, char *payload, struct appctx *appctx, void *private)
+{
+ struct show_sess_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
+
+ if (!cli_has_level(appctx, ACCESS_LVL_OPER))
+ return 1;
+
+ if (*args[2] && strcmp(args[2], "all") == 0)
+ ctx->target = (void *)-1;
+ else if (*args[2])
+ ctx->target = (void *)strtoul(args[2], NULL, 0);
+ else
+ ctx->target = NULL;
+ ctx->section = 0; /* start with stream status */
+ ctx->pos = 0;
+ ctx->thr = 0;
+
+ /* The back-ref must be reset, it will be detected and set by
+ * the dump code upon first invocation.
+ */
+ LIST_INIT(&ctx->bref.users);
+
+ /* let's set our own stream's epoch to the current one and increment
+ * it so that we know which streams were already there before us.
+ */
+ appctx_strm(appctx)->stream_epoch = _HA_ATOMIC_FETCH_ADD(&stream_epoch, 1);
+ return 0;
+}
+
+/* This function dumps all streams' states onto the stream connector's
+ * read buffer. It returns 0 if the output buffer is full and it needs
+ * to be called again, otherwise non-zero. It proceeds in an isolated
+ * thread so there is no thread safety issue here.
+ */
+static int cli_io_handler_dump_sess(struct appctx *appctx)
+{
+ struct show_sess_ctx *ctx = appctx->svcctx;
+ struct stconn *sc = appctx_sc(appctx);
+ struct connection *conn;
+
+ thread_isolate();
+
+ if (ctx->thr >= global.nbthread) {
+ /* already terminated */
+ goto done;
+ }
+
+ if (unlikely(sc_ic(sc)->flags & (CF_WRITE_ERROR|CF_SHUTW))) {
+ /* If we're forced to shut down, we might have to remove our
+ * reference to the last stream being dumped.
+ */
+ if (!LIST_ISEMPTY(&ctx->bref.users)) {
+ LIST_DELETE(&ctx->bref.users);
+ LIST_INIT(&ctx->bref.users);
+ }
+ goto done;
+ }
+
+ chunk_reset(&trash);
+
+ /* first, let's detach the back-ref from a possible previous stream */
+ if (!LIST_ISEMPTY(&ctx->bref.users)) {
+ LIST_DELETE(&ctx->bref.users);
+ LIST_INIT(&ctx->bref.users);
+ } else if (!ctx->bref.ref) {
+ /* first call, start with first stream */
+ ctx->bref.ref = ha_thread_ctx[ctx->thr].streams.n;
+ }
+
+ /* and start from where we stopped */
+ while (1) {
+ char pn[INET6_ADDRSTRLEN];
+ struct stream *curr_strm;
+ int done= 0;
+
+ if (ctx->bref.ref == &ha_thread_ctx[ctx->thr].streams)
+ done = 1;
+ else {
+ /* check if we've found a stream created after issuing the "show sess" */
+ curr_strm = LIST_ELEM(ctx->bref.ref, struct stream *, list);
+ if ((int)(curr_strm->stream_epoch - appctx_strm(appctx)->stream_epoch) > 0)
+ done = 1;
+ }
+
+ if (done) {
+ ctx->thr++;
+ if (ctx->thr >= global.nbthread)
+ break;
+ ctx->bref.ref = ha_thread_ctx[ctx->thr].streams.n;
+ continue;
+ }
+
+ if (ctx->target) {
+ if (ctx->target != (void *)-1 && ctx->target != curr_strm)
+ goto next_sess;
+
+ LIST_APPEND(&curr_strm->back_refs, &ctx->bref.users);
+ /* call the proper dump() function and return if we're missing space */
+ if (!stats_dump_full_strm_to_buffer(sc, curr_strm))
+ goto full;
+
+ /* stream dump complete */
+ LIST_DELETE(&ctx->bref.users);
+ LIST_INIT(&ctx->bref.users);
+ if (ctx->target != (void *)-1) {
+ ctx->target = NULL;
+ break;
+ }
+ else
+ goto next_sess;
+ }
+
+ chunk_appendf(&trash,
+ "%p: proto=%s",
+ curr_strm,
+ strm_li(curr_strm) ? strm_li(curr_strm)->rx.proto->name : "?");
+
+ conn = objt_conn(strm_orig(curr_strm));
+ switch (conn && conn_get_src(conn) ? addr_to_str(conn->src, pn, sizeof(pn)) : AF_UNSPEC) {
+ case AF_INET:
+ case AF_INET6:
+ chunk_appendf(&trash,
+ " src=%s:%d fe=%s be=%s srv=%s",
+ pn,
+ get_host_port(conn->src),
+ strm_fe(curr_strm)->id,
+ (curr_strm->be->cap & PR_CAP_BE) ? curr_strm->be->id : "<NONE>",
+ objt_server(curr_strm->target) ? __objt_server(curr_strm->target)->id : "<none>"
+ );
+ break;
+ case AF_UNIX:
+ chunk_appendf(&trash,
+ " src=unix:%d fe=%s be=%s srv=%s",
+ strm_li(curr_strm)->luid,
+ strm_fe(curr_strm)->id,
+ (curr_strm->be->cap & PR_CAP_BE) ? curr_strm->be->id : "<NONE>",
+ objt_server(curr_strm->target) ? __objt_server(curr_strm->target)->id : "<none>"
+ );
+ break;
+ }
+
+ chunk_appendf(&trash,
+ " ts=%02x epoch=%#x age=%s calls=%u rate=%u cpu=%llu lat=%llu",
+ curr_strm->task->state, curr_strm->stream_epoch,
+ human_time(now.tv_sec - curr_strm->logs.tv_accept.tv_sec, 1),
+ curr_strm->task->calls, read_freq_ctr(&curr_strm->call_rate),
+ (unsigned long long)curr_strm->task->cpu_time, (unsigned long long)curr_strm->task->lat_time);
+
+ chunk_appendf(&trash,
+ " rq[f=%06xh,i=%u,an=%02xh,rx=%s",
+ curr_strm->req.flags,
+ (unsigned int)ci_data(&curr_strm->req),
+ curr_strm->req.analysers,
+ curr_strm->req.rex ?
+ human_time(TICKS_TO_MS(curr_strm->req.rex - now_ms),
+ TICKS_TO_MS(1000)) : "");
+
+ chunk_appendf(&trash,
+ ",wx=%s",
+ curr_strm->req.wex ?
+ human_time(TICKS_TO_MS(curr_strm->req.wex - now_ms),
+ TICKS_TO_MS(1000)) : "");
+
+ chunk_appendf(&trash,
+ ",ax=%s]",
+ curr_strm->req.analyse_exp ?
+ human_time(TICKS_TO_MS(curr_strm->req.analyse_exp - now_ms),
+ TICKS_TO_MS(1000)) : "");
+
+ chunk_appendf(&trash,
+ " rp[f=%06xh,i=%u,an=%02xh,rx=%s",
+ curr_strm->res.flags,
+ (unsigned int)ci_data(&curr_strm->res),
+ curr_strm->res.analysers,
+ curr_strm->res.rex ?
+ human_time(TICKS_TO_MS(curr_strm->res.rex - now_ms),
+ TICKS_TO_MS(1000)) : "");
+
+ chunk_appendf(&trash,
+ ",wx=%s",
+ curr_strm->res.wex ?
+ human_time(TICKS_TO_MS(curr_strm->res.wex - now_ms),
+ TICKS_TO_MS(1000)) : "");
+
+ chunk_appendf(&trash,
+ ",ax=%s]",
+ curr_strm->res.analyse_exp ?
+ human_time(TICKS_TO_MS(curr_strm->res.analyse_exp - now_ms),
+ TICKS_TO_MS(1000)) : "");
+
+ conn = sc_conn(curr_strm->scf);
+ chunk_appendf(&trash,
+ " scf=[%d,%1xh,fd=%d]",
+ curr_strm->scf->state,
+ curr_strm->scf->flags,
+ conn_fd(conn));
+
+ conn = sc_conn(curr_strm->scb);
+ chunk_appendf(&trash,
+ " scb=[%d,%1xh,fd=%d]",
+ curr_strm->scb->state,
+ curr_strm->scb->flags,
+ conn_fd(conn));
+
+ chunk_appendf(&trash,
+ " exp=%s rc=%d c_exp=%s",
+ curr_strm->task->expire ?
+ human_time(TICKS_TO_MS(curr_strm->task->expire - now_ms),
+ TICKS_TO_MS(1000)) : "",
+ curr_strm->conn_retries,
+ curr_strm->conn_exp ?
+ human_time(TICKS_TO_MS(curr_strm->conn_exp - now_ms),
+ TICKS_TO_MS(1000)) : "");
+ if (task_in_rq(curr_strm->task))
+ chunk_appendf(&trash, " run(nice=%d)", curr_strm->task->nice);
+
+ chunk_appendf(&trash, "\n");
+
+ if (applet_putchk(appctx, &trash) == -1) {
+ /* let's try again later from this stream. We add ourselves into
+ * this stream's users so that it can remove us upon termination.
+ */
+ LIST_APPEND(&curr_strm->back_refs, &ctx->bref.users);
+ goto full;
+ }
+
+ next_sess:
+ ctx->bref.ref = curr_strm->list.n;
+ }
+
+ if (ctx->target && ctx->target != (void *)-1) {
+ /* specified stream not found */
+ if (ctx->section > 0)
+ chunk_appendf(&trash, " *** session terminated while we were watching it ***\n");
+ else
+ chunk_appendf(&trash, "Session not found.\n");
+
+ if (applet_putchk(appctx, &trash) == -1)
+ goto full;
+
+ ctx->target = NULL;
+ ctx->uid = 0;
+ goto done;
+ }
+
+ done:
+ thread_release();
+ return 1;
+ full:
+ thread_release();
+ return 0;
+}
+
+static void cli_release_show_sess(struct appctx *appctx)
+{
+ struct show_sess_ctx *ctx = appctx->svcctx;
+
+ if (ctx->thr < global.nbthread) {
+ /* a dump was aborted, either in error or timeout. We need to
+ * safely detach from the target stream's list. It's mandatory
+ * to lock because a stream on the target thread could be moving
+ * our node.
+ */
+ thread_isolate();
+ if (!LIST_ISEMPTY(&ctx->bref.users))
+ LIST_DELETE(&ctx->bref.users);
+ thread_release();
+ }
+}
+
+/* Parses the "shutdown session" directive, it always returns 1 */
+static int cli_parse_shutdown_session(char **args, char *payload, struct appctx *appctx, void *private)
+{
+ struct stream *strm, *ptr;
+ int thr;
+
+ if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
+ return 1;
+
+ ptr = (void *)strtoul(args[2], NULL, 0);
+ if (!ptr)
+ return cli_err(appctx, "Session pointer expected (use 'show sess').\n");
+
+ strm = NULL;
+
+ thread_isolate();
+
+ /* first, look for the requested stream in the stream table */
+ for (thr = 0; strm != ptr && thr < global.nbthread; thr++) {
+ list_for_each_entry(strm, &ha_thread_ctx[thr].streams, list) {
+ if (strm == ptr) {
+ stream_shutdown(strm, SF_ERR_KILLED);
+ break;
+ }
+ }
+ }
+
+ thread_release();
+
+ /* do we have the stream ? */
+ if (strm != ptr)
+ return cli_err(appctx, "No such session (use 'show sess').\n");
+
+ return 1;
+}
+
+/* Parses the "shutdown session server" directive, it always returns 1 */
+static int cli_parse_shutdown_sessions_server(char **args, char *payload, struct appctx *appctx, void *private)
+{
+ struct server *sv;
+
+ if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
+ return 1;
+
+ sv = cli_find_server(appctx, args[3]);
+ if (!sv)
+ return 1;
+
+ /* kill all the stream that are on this server */
+ HA_SPIN_LOCK(SERVER_LOCK, &sv->lock);
+ srv_shutdown_streams(sv, SF_ERR_KILLED);
+ HA_SPIN_UNLOCK(SERVER_LOCK, &sv->lock);
+ return 1;
+}
+
+/* register cli keywords */
+static struct cli_kw_list cli_kws = {{ },{
+ { { "show", "sess", NULL }, "show sess [id] : report the list of current sessions or dump this exact session", cli_parse_show_sess, cli_io_handler_dump_sess, cli_release_show_sess },
+ { { "shutdown", "session", NULL }, "shutdown session [id] : kill a specific session", cli_parse_shutdown_session, NULL, NULL },
+ { { "shutdown", "sessions", "server" }, "shutdown sessions server <bk>/<srv> : kill sessions on a server", cli_parse_shutdown_sessions_server, NULL, NULL },
+ {{},}
+}};
+
+INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);
+
+/* main configuration keyword registration. */
+static struct action_kw_list stream_tcp_req_keywords = { ILH, {
+ { "set-log-level", stream_parse_set_log_level },
+ { "set-nice", stream_parse_set_nice },
+ { "switch-mode", stream_parse_switch_mode },
+ { "use-service", stream_parse_use_service },
+ { /* END */ }
+}};
+
+INITCALL1(STG_REGISTER, tcp_req_cont_keywords_register, &stream_tcp_req_keywords);
+
+/* main configuration keyword registration. */
+static struct action_kw_list stream_tcp_res_keywords = { ILH, {
+ { "set-log-level", stream_parse_set_log_level },
+ { "set-nice", stream_parse_set_nice },
+ { /* END */ }
+}};
+
+INITCALL1(STG_REGISTER, tcp_res_cont_keywords_register, &stream_tcp_res_keywords);
+
+static struct action_kw_list stream_http_req_keywords = { ILH, {
+ { "set-log-level", stream_parse_set_log_level },
+ { "set-nice", stream_parse_set_nice },
+ { "use-service", stream_parse_use_service },
+ { /* END */ }
+}};
+
+INITCALL1(STG_REGISTER, http_req_keywords_register, &stream_http_req_keywords);
+
+static struct action_kw_list stream_http_res_keywords = { ILH, {
+ { "set-log-level", stream_parse_set_log_level },
+ { "set-nice", stream_parse_set_nice },
+ { /* END */ }
+}};
+
+INITCALL1(STG_REGISTER, http_res_keywords_register, &stream_http_res_keywords);
+
+static int smp_fetch_cur_server_timeout(const struct arg *args, struct sample *smp, const char *km, void *private)
+{
+ smp->flags = SMP_F_VOL_TXN;
+ smp->data.type = SMP_T_SINT;
+ if (!smp->strm)
+ return 0;
+
+ smp->data.u.sint = TICKS_TO_MS(smp->strm->res.rto);
+ return 1;
+}
+
+static int smp_fetch_cur_tunnel_timeout(const struct arg *args, struct sample *smp, const char *km, void *private)
+{
+ smp->flags = SMP_F_VOL_TXN;
+ smp->data.type = SMP_T_SINT;
+ if (!smp->strm)
+ return 0;
+
+ smp->data.u.sint = TICKS_TO_MS(smp->strm->tunnel_timeout);
+ return 1;
+}
+
+static int smp_fetch_last_rule_file(const struct arg *args, struct sample *smp, const char *km, void *private)
+{
+ smp->flags = SMP_F_VOL_TXN;
+ smp->data.type = SMP_T_STR;
+ if (!smp->strm || !smp->strm->last_rule_file)
+ return 0;
+
+ smp->flags |= SMP_F_CONST;
+ smp->data.u.str.area = (char *)smp->strm->last_rule_file;
+ smp->data.u.str.data = strlen(smp->strm->last_rule_file);
+ return 1;
+}
+
+static int smp_fetch_last_rule_line(const struct arg *args, struct sample *smp, const char *km, void *private)
+{
+ smp->flags = SMP_F_VOL_TXN;
+ smp->data.type = SMP_T_SINT;
+ if (!smp->strm || !smp->strm->last_rule_line)
+ return 0;
+
+ smp->data.u.sint = smp->strm->last_rule_line;
+ return 1;
+}
+
+/* Note: must not be declared <const> as its list will be overwritten.
+ * Please take care of keeping this list alphabetically sorted.
+ */
+static struct sample_fetch_kw_list smp_kws = {ILH, {
+ { "cur_server_timeout", smp_fetch_cur_server_timeout, 0, NULL, SMP_T_SINT, SMP_USE_BKEND, },
+ { "cur_tunnel_timeout", smp_fetch_cur_tunnel_timeout, 0, NULL, SMP_T_SINT, SMP_USE_BKEND, },
+ { "last_rule_file", smp_fetch_last_rule_file, 0, NULL, SMP_T_STR, SMP_USE_INTRN, },
+ { "last_rule_line", smp_fetch_last_rule_line, 0, NULL, SMP_T_SINT, SMP_USE_INTRN, },
+ { NULL, NULL, 0, 0, 0 },
+}};
+
+INITCALL1(STG_REGISTER, sample_register_fetches, &smp_kws);
+
+/*
+ * Local variables:
+ * c-indent-level: 8
+ * c-basic-offset: 8
+ * End:
+ */