/* * functions about threads. * * Copyright (C) 2017 Christopher Fauet - cfaulet@haproxy.com * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #define _GNU_SOURCE #include #include #include #include #ifdef _POSIX_PRIORITY_SCHEDULING #include #endif #ifdef USE_THREAD # include #endif #ifdef USE_CPU_AFFINITY # include # if defined(__FreeBSD__) || defined(__DragonFly__) # include # ifdef __FreeBSD__ # include # endif # include # endif # ifdef __APPLE__ # include # include # include # endif # include #endif #include #include #include #include #include #include #include struct tgroup_info ha_tgroup_info[MAX_TGROUPS] = { }; THREAD_LOCAL const struct tgroup_info *tg = &ha_tgroup_info[0]; struct thread_info ha_thread_info[MAX_THREADS] = { }; THREAD_LOCAL const struct thread_info *ti = &ha_thread_info[0]; struct thread_ctx ha_thread_ctx[MAX_THREADS] = { }; THREAD_LOCAL struct thread_ctx *th_ctx = &ha_thread_ctx[0]; #ifdef USE_THREAD volatile unsigned long threads_want_rdv_mask __read_mostly = 0; volatile unsigned long threads_harmless_mask = 0; volatile unsigned long threads_idle_mask = 0; volatile unsigned long threads_sync_mask = 0; volatile unsigned long all_threads_mask __read_mostly = 1; // nbthread 1 assumed by default THREAD_LOCAL unsigned int tgid = 1; // thread ID starts at 1 THREAD_LOCAL unsigned int tid = 0; THREAD_LOCAL unsigned long tid_bit = (1UL << 0); int thread_cpus_enabled_at_boot = 1; static pthread_t ha_pthread[MAX_THREADS] = { }; /* Marks the thread as harmless until the last thread using the rendez-vous * point quits, excluding the current one. Thus an isolated thread may be safely * marked as harmless. Given that we can wait for a long time, sched_yield() is * used when available to offer the CPU resources to competing threads if * needed. */ void thread_harmless_till_end() { _HA_ATOMIC_OR(&threads_harmless_mask, tid_bit); while (threads_want_rdv_mask & all_threads_mask & ~tid_bit) { ha_thread_relax(); } } /* Isolates the current thread : request the ability to work while all other * threads are harmless, as defined by thread_harmless_now() (i.e. they're not * going to touch any visible memory area). Only returns once all of them are * harmless, with the current thread's bit in threads_harmless_mask cleared. * Needs to be completed using thread_release(). */ void thread_isolate() { unsigned long old; _HA_ATOMIC_OR(&threads_harmless_mask, tid_bit); __ha_barrier_atomic_store(); _HA_ATOMIC_OR(&threads_want_rdv_mask, tid_bit); /* wait for all threads to become harmless */ old = threads_harmless_mask; while (1) { if (unlikely((old & all_threads_mask) != all_threads_mask)) old = threads_harmless_mask; else if (_HA_ATOMIC_CAS(&threads_harmless_mask, &old, old & ~tid_bit)) break; ha_thread_relax(); } /* one thread gets released at a time here, with its harmess bit off. * The loss of this bit makes the other one continue to spin while the * thread is working alone. */ } /* Isolates the current thread : request the ability to work while all other * threads are idle, as defined by thread_idle_now(). It only returns once * all of them are both harmless and idle, with the current thread's bit in * threads_harmless_mask and idle_mask cleared. Needs to be completed using * thread_release(). By doing so the thread also engages in being safe against * any actions that other threads might be about to start under the same * conditions. This specifically targets destruction of any internal structure, * which implies that the current thread may not hold references to any object. * * Note that a concurrent thread_isolate() will usually win against * thread_isolate_full() as it doesn't consider the idle_mask, allowing it to * get back to the poller or any other fully idle location, that will * ultimately release this one. */ void thread_isolate_full() { unsigned long old; _HA_ATOMIC_OR(&threads_idle_mask, tid_bit); _HA_ATOMIC_OR(&threads_harmless_mask, tid_bit); __ha_barrier_atomic_store(); _HA_ATOMIC_OR(&threads_want_rdv_mask, tid_bit); /* wait for all threads to become harmless */ old = threads_harmless_mask; while (1) { unsigned long idle = _HA_ATOMIC_LOAD(&threads_idle_mask); if (unlikely((old & all_threads_mask) != all_threads_mask)) old = _HA_ATOMIC_LOAD(&threads_harmless_mask); else if ((idle & all_threads_mask) == all_threads_mask && _HA_ATOMIC_CAS(&threads_harmless_mask, &old, old & ~tid_bit)) break; ha_thread_relax(); } /* we're not idle anymore at this point. Other threads waiting on this * condition will need to wait until out next pass to the poller, or * our next call to thread_isolate_full(). */ _HA_ATOMIC_AND(&threads_idle_mask, ~tid_bit); } /* Cancels the effect of thread_isolate() by releasing the current thread's bit * in threads_want_rdv_mask. This immediately allows other threads to expect be * executed, though they will first have to wait for this thread to become * harmless again (possibly by reaching the poller again). */ void thread_release() { _HA_ATOMIC_AND(&threads_want_rdv_mask, ~tid_bit); } /* Cancels the effect of thread_isolate() by releasing the current thread's bit * in threads_want_rdv_mask and by marking this thread as harmless until the * last worker finishes. The difference with thread_release() is that this one * will not leave the function before others are notified to do the same, so it * guarantees that the current thread will not pass through a subsequent call * to thread_isolate() before others finish. */ void thread_sync_release() { _HA_ATOMIC_OR(&threads_sync_mask, tid_bit); __ha_barrier_atomic_store(); _HA_ATOMIC_AND(&threads_want_rdv_mask, ~tid_bit); while (threads_want_rdv_mask & all_threads_mask) { _HA_ATOMIC_OR(&threads_harmless_mask, tid_bit); while (threads_want_rdv_mask & all_threads_mask) ha_thread_relax(); HA_ATOMIC_AND(&threads_harmless_mask, ~tid_bit); } /* the current thread is not harmless anymore, thread_isolate() * is forced to wait till all waiters finish. */ _HA_ATOMIC_AND(&threads_sync_mask, ~tid_bit); while (threads_sync_mask & all_threads_mask) ha_thread_relax(); } /* Sets up threads, signals and masks, and starts threads 2 and above. * Does nothing when threads are disabled. */ void setup_extra_threads(void *(*handler)(void *)) { sigset_t blocked_sig, old_sig; int i; /* ensure the signals will be blocked in every thread */ sigfillset(&blocked_sig); sigdelset(&blocked_sig, SIGPROF); sigdelset(&blocked_sig, SIGBUS); sigdelset(&blocked_sig, SIGFPE); sigdelset(&blocked_sig, SIGILL); sigdelset(&blocked_sig, SIGSEGV); pthread_sigmask(SIG_SETMASK, &blocked_sig, &old_sig); /* Create nbthread-1 thread. The first thread is the current process */ ha_pthread[0] = pthread_self(); for (i = 1; i < global.nbthread; i++) pthread_create(&ha_pthread[i], NULL, handler, &ha_thread_info[i]); } /* waits for all threads to terminate. Does nothing when threads are * disabled. */ void wait_for_threads_completion() { int i; /* Wait the end of other threads */ for (i = 1; i < global.nbthread; i++) pthread_join(ha_pthread[i], NULL); #if defined(DEBUG_THREAD) || defined(DEBUG_FULL) show_lock_stats(); #endif } /* Tries to set the current thread's CPU affinity according to the cpu_map */ void set_thread_cpu_affinity() { #if defined(USE_CPU_AFFINITY) /* no affinity setting for the master process */ if (master) return; /* Now the CPU affinity for all threads */ if (ha_cpuset_count(&cpu_map.proc)) ha_cpuset_and(&cpu_map.thread[tid], &cpu_map.proc); if (ha_cpuset_count(&cpu_map.thread[tid])) {/* only do this if the thread has a THREAD map */ # if defined(__APPLE__) /* Note: this API is limited to the first 32/64 CPUs */ unsigned long set = cpu_map.thread[tid].cpuset; int j; while ((j = ffsl(set)) > 0) { thread_affinity_policy_data_t cpu_set = { j - 1 }; thread_port_t mthread; mthread = pthread_mach_thread_np(ha_pthread[tid]); thread_policy_set(mthread, THREAD_AFFINITY_POLICY, (thread_policy_t)&cpu_set, 1); set &= ~(1UL << (j - 1)); } # else struct hap_cpuset *set = &cpu_map.thread[tid]; pthread_setaffinity_np(ha_pthread[tid], sizeof(set->cpuset), &set->cpuset); # endif } #endif /* USE_CPU_AFFINITY */ } /* Retrieves the opaque pthread_t of thread cast to an unsigned long long * since POSIX took great care of not specifying its representation, making it * hard to export for post-mortem analysis. For this reason we copy it into a * union and will use the smallest scalar type at least as large as its size, * which will keep endianness and alignment for all regular sizes. As a last * resort we end up with a long long ligned to the first bytes in memory, which * will be endian-dependent if pthread_t is larger than a long long (not seen * yet). */ unsigned long long ha_get_pthread_id(unsigned int thr) { union { pthread_t t; unsigned long long ll; unsigned int i; unsigned short s; unsigned char c; } u = { 0 }; u.t = ha_pthread[thr]; if (sizeof(u.t) <= sizeof(u.c)) return u.c; else if (sizeof(u.t) <= sizeof(u.s)) return u.s; else if (sizeof(u.t) <= sizeof(u.i)) return u.i; return u.ll; } /* send signal to thread */ void ha_tkill(unsigned int thr, int sig) { pthread_kill(ha_pthread[thr], sig); } /* send signal to all threads. The calling thread is signaled last in * order to allow all threads to synchronize in the handler. */ void ha_tkillall(int sig) { unsigned int thr; for (thr = 0; thr < global.nbthread; thr++) { if (!(all_threads_mask & (1UL << thr))) continue; if (thr == tid) continue; pthread_kill(ha_pthread[thr], sig); } raise(sig); } void ha_thread_relax(void) { #ifdef _POSIX_PRIORITY_SCHEDULING sched_yield(); #else pl_cpu_relax(); #endif } /* these calls are used as callbacks at init time when debugging is on */ void ha_spin_init(HA_SPINLOCK_T *l) { HA_SPIN_INIT(l); } /* these calls are used as callbacks at init time when debugging is on */ void ha_rwlock_init(HA_RWLOCK_T *l) { HA_RWLOCK_INIT(l); } /* returns the number of CPUs the current process is enabled to run on, * regardless of any MAX_THREADS limitation. */ static int thread_cpus_enabled() { int ret = 1; #ifdef USE_CPU_AFFINITY #if defined(__linux__) && defined(CPU_COUNT) cpu_set_t mask; if (sched_getaffinity(0, sizeof(mask), &mask) == 0) ret = CPU_COUNT(&mask); #elif defined(__FreeBSD__) && defined(USE_CPU_AFFINITY) cpuset_t cpuset; if (cpuset_getaffinity(CPU_LEVEL_CPUSET, CPU_WHICH_PID, -1, sizeof(cpuset), &cpuset) == 0) ret = CPU_COUNT(&cpuset); #elif defined(__APPLE__) ret = (int)sysconf(_SC_NPROCESSORS_ONLN); #endif #endif ret = MAX(ret, 1); return ret; } /* Returns 1 if the cpu set is currently restricted for the process else 0. * Currently only implemented for the Linux platform. */ int thread_cpu_mask_forced() { #if defined(__linux__) const int cpus_avail = sysconf(_SC_NPROCESSORS_ONLN); return cpus_avail != thread_cpus_enabled(); #else return 0; #endif } /* Below come the lock-debugging functions */ #if defined(DEBUG_THREAD) || defined(DEBUG_FULL) struct lock_stat lock_stats[LOCK_LABELS]; /* this is only used below */ static const char *lock_label(enum lock_label label) { switch (label) { case TASK_RQ_LOCK: return "TASK_RQ"; case TASK_WQ_LOCK: return "TASK_WQ"; case LISTENER_LOCK: return "LISTENER"; case PROXY_LOCK: return "PROXY"; case SERVER_LOCK: return "SERVER"; case LBPRM_LOCK: return "LBPRM"; case SIGNALS_LOCK: return "SIGNALS"; case STK_TABLE_LOCK: return "STK_TABLE"; case STK_SESS_LOCK: return "STK_SESS"; case APPLETS_LOCK: return "APPLETS"; case PEER_LOCK: return "PEER"; case SHCTX_LOCK: return "SHCTX"; case SSL_LOCK: return "SSL"; case SSL_GEN_CERTS_LOCK: return "SSL_GEN_CERTS"; case PATREF_LOCK: return "PATREF"; case PATEXP_LOCK: return "PATEXP"; case VARS_LOCK: return "VARS"; case COMP_POOL_LOCK: return "COMP_POOL"; case LUA_LOCK: return "LUA"; case NOTIF_LOCK: return "NOTIF"; case SPOE_APPLET_LOCK: return "SPOE_APPLET"; case DNS_LOCK: return "DNS"; case PID_LIST_LOCK: return "PID_LIST"; case EMAIL_ALERTS_LOCK: return "EMAIL_ALERTS"; case PIPES_LOCK: return "PIPES"; case TLSKEYS_REF_LOCK: return "TLSKEYS_REF"; case AUTH_LOCK: return "AUTH"; case LOGSRV_LOCK: return "LOGSRV"; case DICT_LOCK: return "DICT"; case PROTO_LOCK: return "PROTO"; case QUEUE_LOCK: return "QUEUE"; case CKCH_LOCK: return "CKCH"; case SNI_LOCK: return "SNI"; case SSL_SERVER_LOCK: return "SSL_SERVER"; case SFT_LOCK: return "SFT"; case IDLE_CONNS_LOCK: return "IDLE_CONNS"; case QUIC_LOCK: return "QUIC"; case OTHER_LOCK: return "OTHER"; case DEBUG1_LOCK: return "DEBUG1"; case DEBUG2_LOCK: return "DEBUG2"; case DEBUG3_LOCK: return "DEBUG3"; case DEBUG4_LOCK: return "DEBUG4"; case DEBUG5_LOCK: return "DEBUG5"; case LOCK_LABELS: break; /* keep compiler happy */ }; /* only way to come here is consecutive to an internal bug */ abort(); } void show_lock_stats() { int lbl; for (lbl = 0; lbl < LOCK_LABELS; lbl++) { if (!lock_stats[lbl].num_write_locked && !lock_stats[lbl].num_seek_locked && !lock_stats[lbl].num_read_locked) { fprintf(stderr, "Stats about Lock %s: not used\n", lock_label(lbl)); continue; } fprintf(stderr, "Stats about Lock %s: \n", lock_label(lbl)); if (lock_stats[lbl].num_write_locked) fprintf(stderr, "\t # write lock : %llu\n" "\t # write unlock: %llu (%lld)\n" "\t # wait time for write : %.3f msec\n" "\t # wait time for write/lock: %.3f nsec\n", (ullong)lock_stats[lbl].num_write_locked, (ullong)lock_stats[lbl].num_write_unlocked, (llong)(lock_stats[lbl].num_write_unlocked - lock_stats[lbl].num_write_locked), (double)lock_stats[lbl].nsec_wait_for_write / 1000000.0, lock_stats[lbl].num_write_locked ? ((double)lock_stats[lbl].nsec_wait_for_write / (double)lock_stats[lbl].num_write_locked) : 0); if (lock_stats[lbl].num_seek_locked) fprintf(stderr, "\t # seek lock : %llu\n" "\t # seek unlock : %llu (%lld)\n" "\t # wait time for seek : %.3f msec\n" "\t # wait time for seek/lock : %.3f nsec\n", (ullong)lock_stats[lbl].num_seek_locked, (ullong)lock_stats[lbl].num_seek_unlocked, (llong)(lock_stats[lbl].num_seek_unlocked - lock_stats[lbl].num_seek_locked), (double)lock_stats[lbl].nsec_wait_for_seek / 1000000.0, lock_stats[lbl].num_seek_locked ? ((double)lock_stats[lbl].nsec_wait_for_seek / (double)lock_stats[lbl].num_seek_locked) : 0); if (lock_stats[lbl].num_read_locked) fprintf(stderr, "\t # read lock : %llu\n" "\t # read unlock : %llu (%lld)\n" "\t # wait time for read : %.3f msec\n" "\t # wait time for read/lock : %.3f nsec\n", (ullong)lock_stats[lbl].num_read_locked, (ullong)lock_stats[lbl].num_read_unlocked, (llong)(lock_stats[lbl].num_read_unlocked - lock_stats[lbl].num_read_locked), (double)lock_stats[lbl].nsec_wait_for_read / 1000000.0, lock_stats[lbl].num_read_locked ? ((double)lock_stats[lbl].nsec_wait_for_read / (double)lock_stats[lbl].num_read_locked) : 0); } } void __ha_rwlock_init(struct ha_rwlock *l) { memset(l, 0, sizeof(struct ha_rwlock)); __RWLOCK_INIT(&l->lock); } void __ha_rwlock_destroy(struct ha_rwlock *l) { __RWLOCK_DESTROY(&l->lock); memset(l, 0, sizeof(struct ha_rwlock)); } void __ha_rwlock_wrlock(enum lock_label lbl, struct ha_rwlock *l, const char *func, const char *file, int line) { uint64_t start_time; if ((l->info.cur_readers | l->info.cur_seeker | l->info.cur_writer) & tid_bit) abort(); HA_ATOMIC_OR(&l->info.wait_writers, tid_bit); start_time = now_mono_time(); __RWLOCK_WRLOCK(&l->lock); HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_write, (now_mono_time() - start_time)); HA_ATOMIC_INC(&lock_stats[lbl].num_write_locked); l->info.cur_writer = tid_bit; l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; HA_ATOMIC_AND(&l->info.wait_writers, ~tid_bit); } int __ha_rwlock_trywrlock(enum lock_label lbl, struct ha_rwlock *l, const char *func, const char *file, int line) { uint64_t start_time; int r; if ((l->info.cur_readers | l->info.cur_seeker | l->info.cur_writer) & tid_bit) abort(); /* We set waiting writer because trywrlock could wait for readers to quit */ HA_ATOMIC_OR(&l->info.wait_writers, tid_bit); start_time = now_mono_time(); r = __RWLOCK_TRYWRLOCK(&l->lock); HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_write, (now_mono_time() - start_time)); if (unlikely(r)) { HA_ATOMIC_AND(&l->info.wait_writers, ~tid_bit); return r; } HA_ATOMIC_INC(&lock_stats[lbl].num_write_locked); l->info.cur_writer = tid_bit; l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; HA_ATOMIC_AND(&l->info.wait_writers, ~tid_bit); return 0; } void __ha_rwlock_wrunlock(enum lock_label lbl,struct ha_rwlock *l, const char *func, const char *file, int line) { if (unlikely(!(l->info.cur_writer & tid_bit))) { /* the thread is not owning the lock for write */ abort(); } l->info.cur_writer = 0; l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; __RWLOCK_WRUNLOCK(&l->lock); HA_ATOMIC_INC(&lock_stats[lbl].num_write_unlocked); } void __ha_rwlock_rdlock(enum lock_label lbl,struct ha_rwlock *l) { uint64_t start_time; if ((l->info.cur_readers | l->info.cur_seeker | l->info.cur_writer) & tid_bit) abort(); HA_ATOMIC_OR(&l->info.wait_readers, tid_bit); start_time = now_mono_time(); __RWLOCK_RDLOCK(&l->lock); HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_read, (now_mono_time() - start_time)); HA_ATOMIC_INC(&lock_stats[lbl].num_read_locked); HA_ATOMIC_OR(&l->info.cur_readers, tid_bit); HA_ATOMIC_AND(&l->info.wait_readers, ~tid_bit); } int __ha_rwlock_tryrdlock(enum lock_label lbl,struct ha_rwlock *l) { int r; if ((l->info.cur_readers | l->info.cur_seeker | l->info.cur_writer) & tid_bit) abort(); /* try read should never wait */ r = __RWLOCK_TRYRDLOCK(&l->lock); if (unlikely(r)) return r; HA_ATOMIC_INC(&lock_stats[lbl].num_read_locked); HA_ATOMIC_OR(&l->info.cur_readers, tid_bit); return 0; } void __ha_rwlock_rdunlock(enum lock_label lbl,struct ha_rwlock *l) { if (unlikely(!(l->info.cur_readers & tid_bit))) { /* the thread is not owning the lock for read */ abort(); } HA_ATOMIC_AND(&l->info.cur_readers, ~tid_bit); __RWLOCK_RDUNLOCK(&l->lock); HA_ATOMIC_INC(&lock_stats[lbl].num_read_unlocked); } void __ha_rwlock_wrtord(enum lock_label lbl, struct ha_rwlock *l, const char *func, const char *file, int line) { uint64_t start_time; if ((l->info.cur_readers | l->info.cur_seeker) & tid_bit) abort(); if (!(l->info.cur_writer & tid_bit)) abort(); HA_ATOMIC_OR(&l->info.wait_readers, tid_bit); start_time = now_mono_time(); __RWLOCK_WRTORD(&l->lock); HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_read, (now_mono_time() - start_time)); HA_ATOMIC_INC(&lock_stats[lbl].num_read_locked); HA_ATOMIC_OR(&l->info.cur_readers, tid_bit); HA_ATOMIC_AND(&l->info.cur_writer, ~tid_bit); l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; HA_ATOMIC_AND(&l->info.wait_readers, ~tid_bit); } void __ha_rwlock_wrtosk(enum lock_label lbl, struct ha_rwlock *l, const char *func, const char *file, int line) { uint64_t start_time; if ((l->info.cur_readers | l->info.cur_seeker) & tid_bit) abort(); if (!(l->info.cur_writer & tid_bit)) abort(); HA_ATOMIC_OR(&l->info.wait_seekers, tid_bit); start_time = now_mono_time(); __RWLOCK_WRTOSK(&l->lock); HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_seek, (now_mono_time() - start_time)); HA_ATOMIC_INC(&lock_stats[lbl].num_seek_locked); HA_ATOMIC_OR(&l->info.cur_seeker, tid_bit); HA_ATOMIC_AND(&l->info.cur_writer, ~tid_bit); l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; HA_ATOMIC_AND(&l->info.wait_seekers, ~tid_bit); } void __ha_rwlock_sklock(enum lock_label lbl, struct ha_rwlock *l, const char *func, const char *file, int line) { uint64_t start_time; if ((l->info.cur_readers | l->info.cur_seeker | l->info.cur_writer) & tid_bit) abort(); HA_ATOMIC_OR(&l->info.wait_seekers, tid_bit); start_time = now_mono_time(); __RWLOCK_SKLOCK(&l->lock); HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_seek, (now_mono_time() - start_time)); HA_ATOMIC_INC(&lock_stats[lbl].num_seek_locked); HA_ATOMIC_OR(&l->info.cur_seeker, tid_bit); l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; HA_ATOMIC_AND(&l->info.wait_seekers, ~tid_bit); } void __ha_rwlock_sktowr(enum lock_label lbl, struct ha_rwlock *l, const char *func, const char *file, int line) { uint64_t start_time; if ((l->info.cur_readers | l->info.cur_writer) & tid_bit) abort(); if (!(l->info.cur_seeker & tid_bit)) abort(); HA_ATOMIC_OR(&l->info.wait_writers, tid_bit); start_time = now_mono_time(); __RWLOCK_SKTOWR(&l->lock); HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_write, (now_mono_time() - start_time)); HA_ATOMIC_INC(&lock_stats[lbl].num_write_locked); HA_ATOMIC_OR(&l->info.cur_writer, tid_bit); HA_ATOMIC_AND(&l->info.cur_seeker, ~tid_bit); l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; HA_ATOMIC_AND(&l->info.wait_writers, ~tid_bit); } void __ha_rwlock_sktord(enum lock_label lbl, struct ha_rwlock *l, const char *func, const char *file, int line) { uint64_t start_time; if ((l->info.cur_readers | l->info.cur_writer) & tid_bit) abort(); if (!(l->info.cur_seeker & tid_bit)) abort(); HA_ATOMIC_OR(&l->info.wait_readers, tid_bit); start_time = now_mono_time(); __RWLOCK_SKTORD(&l->lock); HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_read, (now_mono_time() - start_time)); HA_ATOMIC_INC(&lock_stats[lbl].num_read_locked); HA_ATOMIC_OR(&l->info.cur_readers, tid_bit); HA_ATOMIC_AND(&l->info.cur_seeker, ~tid_bit); l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; HA_ATOMIC_AND(&l->info.wait_readers, ~tid_bit); } void __ha_rwlock_skunlock(enum lock_label lbl,struct ha_rwlock *l, const char *func, const char *file, int line) { if (!(l->info.cur_seeker & tid_bit)) abort(); HA_ATOMIC_AND(&l->info.cur_seeker, ~tid_bit); l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; __RWLOCK_SKUNLOCK(&l->lock); HA_ATOMIC_INC(&lock_stats[lbl].num_seek_unlocked); } int __ha_rwlock_trysklock(enum lock_label lbl, struct ha_rwlock *l, const char *func, const char *file, int line) { uint64_t start_time; int r; if ((l->info.cur_readers | l->info.cur_seeker | l->info.cur_writer) & tid_bit) abort(); HA_ATOMIC_OR(&l->info.wait_seekers, tid_bit); start_time = now_mono_time(); r = __RWLOCK_TRYSKLOCK(&l->lock); HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_seek, (now_mono_time() - start_time)); if (likely(!r)) { /* got the lock ! */ HA_ATOMIC_INC(&lock_stats[lbl].num_seek_locked); HA_ATOMIC_OR(&l->info.cur_seeker, tid_bit); l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; } HA_ATOMIC_AND(&l->info.wait_seekers, ~tid_bit); return r; } int __ha_rwlock_tryrdtosk(enum lock_label lbl, struct ha_rwlock *l, const char *func, const char *file, int line) { uint64_t start_time; int r; if ((l->info.cur_writer | l->info.cur_seeker) & tid_bit) abort(); if (!(l->info.cur_readers & tid_bit)) abort(); HA_ATOMIC_OR(&l->info.wait_seekers, tid_bit); start_time = now_mono_time(); r = __RWLOCK_TRYRDTOSK(&l->lock); HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_seek, (now_mono_time() - start_time)); if (likely(!r)) { /* got the lock ! */ HA_ATOMIC_INC(&lock_stats[lbl].num_seek_locked); HA_ATOMIC_OR(&l->info.cur_seeker, tid_bit); HA_ATOMIC_AND(&l->info.cur_readers, ~tid_bit); l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; } HA_ATOMIC_AND(&l->info.wait_seekers, ~tid_bit); return r; } void __spin_init(struct ha_spinlock *l) { memset(l, 0, sizeof(struct ha_spinlock)); __SPIN_INIT(&l->lock); } void __spin_destroy(struct ha_spinlock *l) { __SPIN_DESTROY(&l->lock); memset(l, 0, sizeof(struct ha_spinlock)); } void __spin_lock(enum lock_label lbl, struct ha_spinlock *l, const char *func, const char *file, int line) { uint64_t start_time; if (unlikely(l->info.owner & tid_bit)) { /* the thread is already owning the lock */ abort(); } HA_ATOMIC_OR(&l->info.waiters, tid_bit); start_time = now_mono_time(); __SPIN_LOCK(&l->lock); HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_write, (now_mono_time() - start_time)); HA_ATOMIC_INC(&lock_stats[lbl].num_write_locked); l->info.owner = tid_bit; l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; HA_ATOMIC_AND(&l->info.waiters, ~tid_bit); } int __spin_trylock(enum lock_label lbl, struct ha_spinlock *l, const char *func, const char *file, int line) { int r; if (unlikely(l->info.owner & tid_bit)) { /* the thread is already owning the lock */ abort(); } /* try read should never wait */ r = __SPIN_TRYLOCK(&l->lock); if (unlikely(r)) return r; HA_ATOMIC_INC(&lock_stats[lbl].num_write_locked); l->info.owner = tid_bit; l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; return 0; } void __spin_unlock(enum lock_label lbl, struct ha_spinlock *l, const char *func, const char *file, int line) { if (unlikely(!(l->info.owner & tid_bit))) { /* the thread is not owning the lock */ abort(); } l->info.owner = 0; l->info.last_location.function = func; l->info.last_location.file = file; l->info.last_location.line = line; __SPIN_UNLOCK(&l->lock); HA_ATOMIC_INC(&lock_stats[lbl].num_write_unlocked); } #endif // defined(DEBUG_THREAD) || defined(DEBUG_FULL) /* Depending on the platform and how libpthread was built, pthread_exit() may * involve some code in libgcc_s that would be loaded on exit for the first * time, causing aborts if the process is chrooted. It's harmless bit very * dirty. There isn't much we can do to make sure libgcc_s is loaded only if * needed, so what we do here is that during early boot we create a dummy * thread that immediately exits. This will lead to libgcc_s being loaded * during boot on the platforms where it's required. */ static void *dummy_thread_function(void *data) { pthread_exit(NULL); return NULL; } static inline void preload_libgcc_s(void) { pthread_t dummy_thread; pthread_create(&dummy_thread, NULL, dummy_thread_function, NULL); pthread_join(dummy_thread, NULL); } static void __thread_init(void) { char *ptr = NULL; if (MAX_THREADS < 1 || MAX_THREADS > LONGBITS) { ha_alert("MAX_THREADS value must be between 1 and %d inclusive; " "HAProxy was built with value %d, please fix it and rebuild.\n", LONGBITS, MAX_THREADS); exit(1); } preload_libgcc_s(); thread_cpus_enabled_at_boot = thread_cpus_enabled(); thread_cpus_enabled_at_boot = MIN(thread_cpus_enabled_at_boot, MAX_THREADS); memprintf(&ptr, "Built with multi-threading support (MAX_THREADS=%d, default=%d).", MAX_THREADS, thread_cpus_enabled_at_boot); hap_register_build_opts(ptr, 1); #if defined(DEBUG_THREAD) || defined(DEBUG_FULL) memset(lock_stats, 0, sizeof(lock_stats)); #endif } INITCALL0(STG_PREPARE, __thread_init); #else /* send signal to thread (send to process in fact) */ void ha_tkill(unsigned int thr, int sig) { raise(sig); } /* send signal to all threads (send to process in fact) */ void ha_tkillall(int sig) { raise(sig); } void ha_thread_relax(void) { #ifdef _POSIX_PRIORITY_SCHEDULING sched_yield(); #endif } REGISTER_BUILD_OPTS("Built without multi-threading support (USE_THREAD not set)."); #endif // USE_THREAD /* scans the configured thread mapping and establishes the final one. Returns <0 * on failure, >=0 on success. */ int thread_map_to_groups() { int t, g, ut, ug; int q, r; ut = ug = 0; // unassigned threads & groups for (t = 0; t < global.nbthread; t++) { if (!ha_thread_info[t].tg) ut++; } for (g = 0; g < global.nbtgroups; g++) { if (!ha_tgroup_info[g].count) ug++; ha_tgroup_info[g].tgid = g + 1; } if (ug > ut) { ha_alert("More unassigned thread-groups (%d) than threads (%d). Please reduce thread-groups\n", ug, ut); return -1; } /* look for first unassigned thread */ for (t = 0; t < global.nbthread && ha_thread_info[t].tg; t++) ; /* assign threads to empty groups */ for (g = 0; ug && ut; ) { /* due to sparse thread assignment we can end up with more threads * per group on last assigned groups than former ones, so we must * always try to pack the maximum remaining ones together first. */ q = ut / ug; r = ut % ug; if ((q + !!r) > MAX_THREADS_PER_GROUP) { ha_alert("Too many remaining unassigned threads (%d) for thread groups (%d). Please increase thread-groups or make sure to keep thread numbers contiguous\n", ut, ug); return -1; } /* thread is the next unassigned one. Let's look for next * unassigned group, we know there are some left */ while (ut >= ug && ha_tgroup_info[g].count) g++; /* group g is unassigned, try to fill it with consecutive threads */ while (ut && ut >= ug && ha_tgroup_info[g].count < q + !!r && (!ha_tgroup_info[g].count || t == ha_tgroup_info[g].base + ha_tgroup_info[g].count)) { if (!ha_tgroup_info[g].count) { /* assign new group */ ha_tgroup_info[g].base = t; ug--; } ha_tgroup_info[g].count++; ha_thread_info[t].tg = &ha_tgroup_info[g]; ut--; /* switch to next unassigned thread */ while (++t < global.nbthread && ha_thread_info[t].tg) ; } } if (ut) { ha_alert("Remaining unassigned threads found (%d) because all groups are in use. Please increase 'thread-groups', reduce 'nbthreads' or remove or extend 'thread-group' enumerations.\n", ut); return -1; } for (t = 0; t < global.nbthread; t++) { ha_thread_info[t].tid = t; ha_thread_info[t].ltid = t - ha_thread_info[t].tg->base; ha_thread_info[t].tid_bit = 1UL << ha_thread_info[t].tid; ha_thread_info[t].ltid_bit = 1UL << ha_thread_info[t].ltid; } return 0; } /* converts a configuration thread group+mask to a global group+mask depending on * the configured thread group id. This is essentially for use with the "thread" * directive on "bind" lines, where "thread 2/1-3" might be turned to "4-6" for * the global ID. It cannot be used before the thread mapping above was completed * and the thread group number configured. Possible options: * - igid == 0: imask represents global IDs. We have to check that all * configured threads in the mask belong to the same group. If imask is zero * it means everything, so for now we only support this with a single group. * - igid > 0, imask = 0: convert local values to global values for this thread * - igid > 0, imask > 0: convert local values to global values * * Returns <0 on failure, >=0 on success. */ int thread_resolve_group_mask(uint igid, ulong imask, uint *ogid, ulong *omask, char **err) { ulong mask; uint t; if (igid == 0) { /* unspecified group, IDs are global */ if (!imask) { /* all threads of all groups */ if (global.nbtgroups > 1) { memprintf(err, "'thread' directive spans multiple groups"); return -1; } mask = 0; *ogid = 1; // first and only group *omask = all_threads_mask; return 0; } else { /* some global threads */ imask &= all_threads_mask; for (t = 0; t < global.nbthread; t++) { if (imask & (1UL << t)) { if (ha_thread_info[t].tg->tgid != igid) { if (!igid) igid = ha_thread_info[t].tg->tgid; else { memprintf(err, "'thread' directive spans multiple groups (at least %u and %u)", igid, ha_thread_info[t].tg->tgid); return -1; } } } } if (!igid) { memprintf(err, "'thread' directive contains threads that belong to no group"); return -1; } /* we have a valid group, convert this to global thread IDs */ *ogid = igid; *omask = imask << ha_tgroup_info[igid - 1].base; return 0; } } else { /* group was specified */ if (igid > global.nbtgroups) { memprintf(err, "'thread' directive references non-existing thread group %u", igid); return -1; } if (!imask) { /* all threads of this groups. Let's make a mask from their count and base. */ *ogid = igid; mask = 1UL << (ha_tgroup_info[igid - 1].count - 1); mask |= mask - 1; *omask = mask << ha_tgroup_info[igid - 1].base; return 0; } else { /* some local threads. Keep only existing ones for this group */ mask = 1UL << (ha_tgroup_info[igid - 1].count - 1); mask |= mask - 1; if (!(mask & imask)) { /* no intersection between the thread group's * threads and the bind line's. */ #ifdef THREAD_AUTO_ADJUST_GROUPS unsigned long new_mask = 0; while (imask) { new_mask |= imask & mask; imask >>= ha_tgroup_info[igid - 1].count; } imask = new_mask; #else memprintf(err, "'thread' directive only references threads not belonging to the group"); return -1; #endif } mask &= imask; *omask = mask << ha_tgroup_info[igid - 1].base; *ogid = igid; return 0; } } } /* Parse the "nbthread" global directive, which takes an integer argument that * contains the desired number of threads. */ static int cfg_parse_nbthread(char **args, int section_type, struct proxy *curpx, const struct proxy *defpx, const char *file, int line, char **err) { long nbthread; char *errptr; if (too_many_args(1, args, err, NULL)) return -1; nbthread = strtol(args[1], &errptr, 10); if (!*args[1] || *errptr) { memprintf(err, "'%s' passed a missing or unparsable integer value in '%s'", args[0], args[1]); return -1; } #ifndef USE_THREAD if (nbthread != 1) { memprintf(err, "'%s' specified with a value other than 1 while HAProxy is not compiled with threads support. Please check build options for USE_THREAD", args[0]); return -1; } #else if (nbthread < 1 || nbthread > MAX_THREADS) { memprintf(err, "'%s' value must be between 1 and %d (was %ld)", args[0], MAX_THREADS, nbthread); return -1; } all_threads_mask = nbits(nbthread); #endif HA_DIAG_WARNING_COND(global.nbthread, "parsing [%s:%d] : '%s' is already defined and will be overridden.\n", file, line, args[0]); global.nbthread = nbthread; return 0; } /* Parse the "thread-group" global directive, which takes an integer argument * that designates a thread group, and a list of threads to put into that group. */ static int cfg_parse_thread_group(char **args, int section_type, struct proxy *curpx, const struct proxy *defpx, const char *file, int line, char **err) { char *errptr; long tnum, tend, tgroup; int arg, tot; tgroup = strtol(args[1], &errptr, 10); if (!*args[1] || *errptr) { memprintf(err, "'%s' passed a missing or unparsable integer value in '%s'", args[0], args[1]); return -1; } if (tgroup < 1 || tgroup > MAX_TGROUPS) { memprintf(err, "'%s' thread-group number must be between 1 and %d (was %ld)", args[0], MAX_TGROUPS, tgroup); return -1; } /* look for a preliminary definition of any thread pointing to this * group, and remove them. */ if (ha_tgroup_info[tgroup-1].count) { ha_warning("parsing [%s:%d] : '%s %ld' was already defined and will be overridden.\n", file, line, args[0], tgroup); for (tnum = ha_tgroup_info[tgroup-1].base; tnum < ha_tgroup_info[tgroup-1].base + ha_tgroup_info[tgroup-1].count; tnum++) { if (ha_thread_info[tnum-1].tg == &ha_tgroup_info[tgroup-1]) ha_thread_info[tnum-1].tg = NULL; } ha_tgroup_info[tgroup-1].count = ha_tgroup_info[tgroup-1].base = 0; } tot = 0; for (arg = 2; args[arg] && *args[arg]; arg++) { tend = tnum = strtol(args[arg], &errptr, 10); if (*errptr == '-') tend = strtol(errptr + 1, &errptr, 10); if (*errptr || tnum < 1 || tend < 1 || tnum > MAX_THREADS || tend > MAX_THREADS) { memprintf(err, "'%s %ld' passed an unparsable or invalid thread number '%s' (valid range is 1 to %d)", args[0], tgroup, args[arg], MAX_THREADS); return -1; } for(; tnum <= tend; tnum++) { if (ha_thread_info[tnum-1].tg == &ha_tgroup_info[tgroup-1]) { ha_warning("parsing [%s:%d] : '%s %ld': thread %ld assigned more than once on the same line.\n", file, line, args[0], tgroup, tnum); } else if (ha_thread_info[tnum-1].tg) { ha_warning("parsing [%s:%d] : '%s %ld': thread %ld was previously assigned to thread group %ld and will be overridden.\n", file, line, args[0], tgroup, tnum, (long)(ha_thread_info[tnum-1].tg - &ha_tgroup_info[0] + 1)); } if (!ha_tgroup_info[tgroup-1].count) { ha_tgroup_info[tgroup-1].base = tnum-1; ha_tgroup_info[tgroup-1].count = 1; } else if (tnum >= ha_tgroup_info[tgroup-1].base + ha_tgroup_info[tgroup-1].count) { ha_tgroup_info[tgroup-1].count = tnum - ha_tgroup_info[tgroup-1].base; } else if (tnum < ha_tgroup_info[tgroup-1].base) { ha_tgroup_info[tgroup-1].count += ha_tgroup_info[tgroup-1].base - tnum-1; ha_tgroup_info[tgroup-1].base = tnum - 1; } ha_thread_info[tnum-1].tg = &ha_tgroup_info[tgroup-1]; tot++; } } if (ha_tgroup_info[tgroup-1].count > tot) { memprintf(err, "'%s %ld' assigned sparse threads, only contiguous supported", args[0], tgroup); return -1; } if (ha_tgroup_info[tgroup-1].count > MAX_THREADS_PER_GROUP) { memprintf(err, "'%s %ld' assigned too many threads (%d, max=%d)", args[0], tgroup, tot, MAX_THREADS_PER_GROUP); return -1; } return 0; } /* Parse the "thread-groups" global directive, which takes an integer argument * that contains the desired number of thread groups. */ static int cfg_parse_thread_groups(char **args, int section_type, struct proxy *curpx, const struct proxy *defpx, const char *file, int line, char **err) { long nbtgroups; char *errptr; if (too_many_args(1, args, err, NULL)) return -1; nbtgroups = strtol(args[1], &errptr, 10); if (!*args[1] || *errptr) { memprintf(err, "'%s' passed a missing or unparsable integer value in '%s'", args[0], args[1]); return -1; } #ifndef USE_THREAD if (nbtgroups != 1) { memprintf(err, "'%s' specified with a value other than 1 while HAProxy is not compiled with threads support. Please check build options for USE_THREAD", args[0]); return -1; } #else if (nbtgroups < 1 || nbtgroups > MAX_TGROUPS) { memprintf(err, "'%s' value must be between 1 and %d (was %ld)", args[0], MAX_TGROUPS, nbtgroups); return -1; } #endif HA_DIAG_WARNING_COND(global.nbtgroups, "parsing [%s:%d] : '%s' is already defined and will be overridden.\n", file, line, args[0]); global.nbtgroups = nbtgroups; return 0; } /* config keyword parsers */ static struct cfg_kw_list cfg_kws = {ILH, { { CFG_GLOBAL, "nbthread", cfg_parse_nbthread, 0 }, { CFG_GLOBAL, "thread-group", cfg_parse_thread_group, 0 }, { CFG_GLOBAL, "thread-groups", cfg_parse_thread_groups, 0 }, { 0, NULL, NULL } }}; INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws);