summaryrefslogtreecommitdiffstats
path: root/src/quic_tls.c
blob: 7d2d2c1a47ef0bb60a13c35a1fdd6bed9a584623 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
#include <haproxy/quic_tls.h>

#include <string.h>

#include <openssl/evp.h>
#include <openssl/kdf.h>
#include <openssl/ssl.h>

#include <haproxy/buf.h>
#include <haproxy/chunk.h>
#include <haproxy/pool.h>
#include <haproxy/quic_conn-t.h>


DECLARE_POOL(pool_head_quic_tls_secret, "quic_tls_secret", QUIC_TLS_SECRET_LEN);
DECLARE_POOL(pool_head_quic_tls_iv,     "quic_tls_iv",     QUIC_TLS_IV_LEN);
DECLARE_POOL(pool_head_quic_tls_key,    "quic_tls_key",    QUIC_TLS_KEY_LEN);

/* Initial salt depending on QUIC version to derive client/server initial secrets.
 * This one is for draft-29 QUIC version.
 */
const unsigned char initial_salt_draft_29[20] = {
	0xaf, 0xbf, 0xec, 0x28, 0x99, 0x93, 0xd2, 0x4c,
	0x9e, 0x97, 0x86, 0xf1, 0x9c, 0x61, 0x11, 0xe0,
	0x43, 0x90, 0xa8, 0x99
};

const unsigned char initial_salt_v1[20] = {
	0x38, 0x76, 0x2c, 0xf7, 0xf5, 0x59, 0x34, 0xb3,
	0x4d, 0x17, 0x9a, 0xe6, 0xa4, 0xc8, 0x0c, 0xad,
	0xcc, 0xbb, 0x7f, 0x0a
};

const unsigned char initial_salt_v2_draft[20] = {
	0xa7, 0x07, 0xc2, 0x03, 0xa5, 0x9b, 0x47, 0x18,
	0x4a, 0x1d, 0x62, 0xca, 0x57, 0x04, 0x06, 0xea,
	0x7a, 0xe3, 0xe5, 0xd3
};

/* Dump the RX/TX secrets of <secs> QUIC TLS secrets. */
void quic_tls_keys_hexdump(struct buffer *buf,
                           const struct quic_tls_secrets *secs)
{
	int i;
	size_t aead_keylen = (size_t)EVP_CIPHER_key_length(secs->aead);
	size_t aead_ivlen = (size_t)EVP_CIPHER_iv_length(secs->aead);
	size_t hp_len = (size_t)EVP_CIPHER_key_length(secs->hp);

	chunk_appendf(buf, "\n          key=");
	for (i = 0; i < aead_keylen; i++)
		chunk_appendf(buf, "%02x", secs->key[i]);
	chunk_appendf(buf, "\n          iv=");
	for (i = 0; i < aead_ivlen; i++)
		chunk_appendf(buf, "%02x", secs->iv[i]);
	chunk_appendf(buf, "\n          hp=");
	for (i = 0; i < hp_len; i++)
		chunk_appendf(buf, "%02x", secs->hp_key[i]);
}

/* Dump <secret> TLS secret. */
void quic_tls_secret_hexdump(struct buffer *buf,
                             const unsigned char *secret, size_t secret_len)
{
	int i;

	chunk_appendf(buf, " secret=");
	for (i = 0; i < secret_len; i++)
		chunk_appendf(buf, "%02x", secret[i]);
}

int quic_hkdf_extract(const EVP_MD *md,
                      unsigned char *buf, size_t buflen,
                      const unsigned char *key, size_t keylen,
                      const unsigned char *salt, size_t saltlen)
{
    EVP_PKEY_CTX *ctx;

    ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL);
    if (!ctx)
        return 0;

    if (EVP_PKEY_derive_init(ctx) <= 0 ||
        EVP_PKEY_CTX_hkdf_mode(ctx, EVP_PKEY_HKDEF_MODE_EXTRACT_ONLY) <= 0 ||
        EVP_PKEY_CTX_set_hkdf_md(ctx, md) <= 0 ||
        EVP_PKEY_CTX_set1_hkdf_salt(ctx, salt, saltlen) <= 0 ||
        EVP_PKEY_CTX_set1_hkdf_key(ctx, key, keylen) <= 0 ||
        EVP_PKEY_derive(ctx, buf, &buflen) <= 0)
        goto err;

    EVP_PKEY_CTX_free(ctx);
    return 1;

 err:
    EVP_PKEY_CTX_free(ctx);
    return 0;
}

int quic_hkdf_expand(const EVP_MD *md,
                     unsigned char *buf, size_t buflen,
                     const unsigned char *key, size_t keylen,
                     const unsigned char *label, size_t labellen)
{
    EVP_PKEY_CTX *ctx;

    ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL);
    if (!ctx)
        return 0;

    if (EVP_PKEY_derive_init(ctx) <= 0 ||
        EVP_PKEY_CTX_hkdf_mode(ctx, EVP_PKEY_HKDEF_MODE_EXPAND_ONLY) <= 0 ||
        EVP_PKEY_CTX_set_hkdf_md(ctx, md) <= 0 ||
        EVP_PKEY_CTX_set1_hkdf_key(ctx, key, keylen) <= 0 ||
        EVP_PKEY_CTX_add1_hkdf_info(ctx, label, labellen) <= 0 ||
        EVP_PKEY_derive(ctx, buf, &buflen) <= 0)
        goto err;

    EVP_PKEY_CTX_free(ctx);
    return 1;

 err:
    EVP_PKEY_CTX_free(ctx);
    return 0;
}

/* Extracts a peudo-random secret key from <key> which is eventually not
 * pseudo-random and expand it to a new pseudo-random key into
 * <buf> with <buflen> as key length according to HKDF specifications
 * (https://datatracker.ietf.org/doc/html/rfc5869).
 * According to this specifications it is highly recommended to use
 * a salt, even if optional (NULL value).
 * Return 1 if succeeded, 0 if not.
 */
int quic_hkdf_extract_and_expand(const EVP_MD *md,
                                 unsigned char *buf, size_t buflen,
                                 const unsigned char *key, size_t keylen,
                                 const unsigned char *salt, size_t saltlen,
                                 const unsigned char *label, size_t labellen)
{
	EVP_PKEY_CTX *ctx;

	ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL);
	if (!ctx)
		return 0;

	if (EVP_PKEY_derive_init(ctx) <= 0 ||
	    EVP_PKEY_CTX_hkdf_mode(ctx, EVP_PKEY_HKDEF_MODE_EXTRACT_AND_EXPAND) <= 0 ||
	    EVP_PKEY_CTX_set_hkdf_md(ctx, md) <= 0 ||
	    EVP_PKEY_CTX_set1_hkdf_salt(ctx, salt, saltlen) <= 0 ||
	    EVP_PKEY_CTX_set1_hkdf_key(ctx, key, keylen) <= 0 ||
	    EVP_PKEY_CTX_add1_hkdf_info(ctx, label, labellen) <= 0 ||
	    EVP_PKEY_derive(ctx, buf, &buflen) <= 0)
		goto err;

	EVP_PKEY_CTX_free(ctx);
	return 1;

 err:
	EVP_PKEY_CTX_free(ctx);
	return 0;
}

/* https://quicwg.org/base-drafts/draft-ietf-quic-tls.html#protection-keys
 * refers to:
 *
 * https://tools.ietf.org/html/rfc8446#section-7.1:
 * 7.1.  Key Schedule
 *
 * The key derivation process makes use of the HKDF-Extract and
 * HKDF-Expand functions as defined for HKDF [RFC5869], as well as the
 * functions defined below:
 *
 *     HKDF-Expand-Label(Secret, Label, Context, Length) =
 *          HKDF-Expand(Secret, HkdfLabel, Length)
 *
 *     Where HkdfLabel is specified as:
 *
 *     struct {
 *         uint16 length = Length;
 *         opaque label<7..255> = "tls13 " + Label;
 *         opaque context<0..255> = Context;
 *     } HkdfLabel;
 *
 *     Derive-Secret(Secret, Label, Messages) =
 *          HKDF-Expand-Label(Secret, Label,
 *                            Transcript-Hash(Messages), Hash.length)
 *
 */
int quic_hkdf_expand_label(const EVP_MD *md,
                           unsigned char *buf, size_t buflen,
                           const unsigned char *key, size_t keylen,
                           const unsigned char *label, size_t labellen)
{
	unsigned char hdkf_label[256], *pos;
	const unsigned char hdkf_label_label[] = "tls13 ";
	size_t hdkf_label_label_sz = sizeof hdkf_label_label - 1;

	pos = hdkf_label;
	*pos++ = buflen >> 8;
	*pos++ = buflen & 0xff;
	*pos++ = hdkf_label_label_sz + labellen;
	memcpy(pos, hdkf_label_label, hdkf_label_label_sz);
	pos += hdkf_label_label_sz;
	memcpy(pos, label, labellen);
	pos += labellen;
	*pos++ = '\0';

	return quic_hkdf_expand(md, buf, buflen,
	                        key, keylen, hdkf_label, pos - hdkf_label);
}

/*
 * This function derives two keys from <secret> is <ctx> as TLS cryptographic context.
 * ->key is the TLS key to be derived to encrypt/decrypt data at TLS level.
 * ->iv is the initialization vector to be used with ->key.
 * ->hp_key is the key to be derived for header protection.
 * Obviouly these keys have the same size becaused derived with the same TLS cryptographic context.
 */
int quic_tls_derive_keys(const EVP_CIPHER *aead, const EVP_CIPHER *hp,
                         const EVP_MD *md, const struct quic_version *qv,
                         unsigned char *key, size_t keylen,
                         unsigned char *iv, size_t ivlen,
                         unsigned char *hp_key, size_t hp_keylen,
                         const unsigned char *secret, size_t secretlen)
{
	size_t aead_keylen = (size_t)EVP_CIPHER_key_length(aead);
	size_t aead_ivlen = (size_t)EVP_CIPHER_iv_length(aead);
	size_t hp_len = hp ? (size_t)EVP_CIPHER_key_length(hp) : 0;

	if (aead_keylen > keylen || aead_ivlen > ivlen || hp_len > hp_keylen)
		return 0;

	if (!quic_hkdf_expand_label(md, key, aead_keylen, secret, secretlen,
	                            qv->key_label,qv->key_label_len) ||
	    !quic_hkdf_expand_label(md, iv, aead_ivlen, secret, secretlen,
	                            qv->iv_label, qv->iv_label_len) ||
	    (hp_key && !quic_hkdf_expand_label(md, hp_key, hp_len, secret, secretlen,
	                                       qv->hp_label, qv->hp_label_len)))
		return 0;

	return 1;
}

/*
 * Derive the initial secret from <secret> and QUIC version dependent salt.
 * Returns the size of the derived secret if succeeded, 0 if not.
 */
int quic_derive_initial_secret(const EVP_MD *md,
                               const unsigned char *initial_salt, size_t initial_salt_sz,
                               unsigned char *initial_secret, size_t initial_secret_sz,
                               const unsigned char *secret, size_t secret_sz)
{
	if (!quic_hkdf_extract(md, initial_secret, initial_secret_sz, secret, secret_sz,
	                       initial_salt, initial_salt_sz))
		return 0;

	return 1;
}

/*
 * Derive the client initial secret from the initial secret.
 * Returns the size of the derived secret if succeeded, 0 if not.
 */
int quic_tls_derive_initial_secrets(const EVP_MD *md,
                                    unsigned char *rx, size_t rx_sz,
                                    unsigned char *tx, size_t tx_sz,
                                    const unsigned char *secret, size_t secret_sz,
                                    int server)
{
	const unsigned char client_label[] = "client in";
	const unsigned char server_label[] = "server in";
	const unsigned char *tx_label, *rx_label;
	size_t rx_label_sz, tx_label_sz;

	if (server) {
		rx_label = client_label;
		rx_label_sz = sizeof client_label;
		tx_label = server_label;
		tx_label_sz = sizeof server_label;
	}
	else {
		rx_label = server_label;
		rx_label_sz = sizeof server_label;
		tx_label = client_label;
		tx_label_sz = sizeof client_label;
	}

	if (!quic_hkdf_expand_label(md, rx, rx_sz, secret, secret_sz,
	                            rx_label, rx_label_sz - 1) ||
	    !quic_hkdf_expand_label(md, tx, tx_sz, secret, secret_sz,
	                            tx_label, tx_label_sz - 1))
	    return 0;

	return 1;
}

/* Update <sec> secret key into <new_sec> according to RFC 9001 6.1.
 * Always succeeds.
 */
int quic_tls_sec_update(const EVP_MD *md, const struct quic_version *qv,
                        unsigned char *new_sec, size_t new_seclen,
                        const unsigned char *sec, size_t seclen)
{
	return quic_hkdf_expand_label(md, new_sec, new_seclen, sec, seclen,
	                              qv->ku_label, qv->ku_label_len);
}

/*
 * Build an IV into <iv> buffer with <ivlen> as size from <aead_iv> with
 * <aead_ivlen> as size depending on <pn> packet number.
 * This is the function which must be called to build an AEAD IV for the AEAD cryptographic algorithm
 * used to encrypt/decrypt the QUIC packet payloads depending on the packet number <pn>.
 * This function fails and return 0 only if the two buffer lengths are different, 1 if not.
 */
int quic_aead_iv_build(unsigned char *iv, size_t ivlen,
                       unsigned char *aead_iv, size_t aead_ivlen, uint64_t pn)
{
	int i;
	unsigned int shift;
	unsigned char *pos = iv;

	if (ivlen != aead_ivlen)
		return 0;

	for (i = 0; i < ivlen - sizeof pn; i++)
		*pos++ = *aead_iv++;

	/* Only the remaining (sizeof pn) bytes are XOR'ed. */
	shift = 56;
	for (i = aead_ivlen - sizeof pn; i < aead_ivlen ; i++, shift -= 8)
		*pos++ = *aead_iv++ ^ (pn >> shift);

	return 1;
}

/* Initialize the cipher context for RX part of <tls_ctx> QUIC TLS context.
 * Return 1 if succeeded, 0 if not.
 */
int quic_tls_rx_ctx_init(EVP_CIPHER_CTX **rx_ctx,
                         const EVP_CIPHER *aead, unsigned char *key)
{
	EVP_CIPHER_CTX *ctx;
	int aead_nid = EVP_CIPHER_nid(aead);

	ctx = EVP_CIPHER_CTX_new();
	if (!ctx)
		return 0;

	if (!EVP_DecryptInit_ex(ctx, aead, NULL, NULL, NULL) ||
	    !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, QUIC_TLS_IV_LEN, NULL) ||
	    (aead_nid == NID_aes_128_ccm &&
	     !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, QUIC_TLS_TAG_LEN, NULL)) ||
	    !EVP_DecryptInit_ex(ctx, NULL, NULL, key, NULL))
		goto err;

	*rx_ctx = ctx;

	return 1;

 err:
	EVP_CIPHER_CTX_free(ctx);
	return 0;
}

/* Initialize <*aes_ctx> AES cipher context with <key> as key for encryption */
int quic_tls_enc_aes_ctx_init(EVP_CIPHER_CTX **aes_ctx,
                              const EVP_CIPHER *aes, unsigned char *key)
{
	EVP_CIPHER_CTX *ctx;

	ctx = EVP_CIPHER_CTX_new();
	if (!ctx)
		return 0;

	if (!EVP_EncryptInit_ex(ctx, aes, NULL, key, NULL))
		goto err;

	*aes_ctx = ctx;
	return 1;

 err:
	EVP_CIPHER_CTX_free(ctx);
	return 0;
}

/* Encrypt <inlen> bytes from <in> buffer into <out> with <ctx> as AES
 * cipher context. This is the responsibility of the caller to check there
 * is at least <inlen> bytes of available space in <out> buffer.
 * Return 1 if succeeded, 0 if not.
 */
int quic_tls_aes_encrypt(unsigned char *out,
                         const unsigned char *in, size_t inlen,
                         EVP_CIPHER_CTX *ctx)
{
	int ret = 0;

	if (!EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, in) ||
	    !EVP_EncryptUpdate(ctx, out, &ret, out, inlen) ||
	    !EVP_EncryptFinal_ex(ctx, out, &ret))
		return 0;

	return 1;
}

/* Initialize <*aes_ctx> AES cipher context with <key> as key for decryption */
int quic_tls_dec_aes_ctx_init(EVP_CIPHER_CTX **aes_ctx,
                              const EVP_CIPHER *aes, unsigned char *key)
{
	EVP_CIPHER_CTX *ctx;

	ctx = EVP_CIPHER_CTX_new();
	if (!ctx)
		return 0;

	if (!EVP_DecryptInit_ex(ctx, aes, NULL, key, NULL))
		goto err;

	*aes_ctx = ctx;
	return 1;

 err:
	EVP_CIPHER_CTX_free(ctx);
	return 0;
}

/* Decrypt <in> data into <out> with <ctx> as AES cipher context.
 * This is the responsibility of the caller to check there is at least
 * <outlen> bytes into <in> buffer.
 * Return 1 if succeeded, 0 if not.
 */
int quic_tls_aes_decrypt(unsigned char *out,
                         const unsigned char *in, size_t inlen,
                         EVP_CIPHER_CTX *ctx)
{
	int ret = 0;

	if (!EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, in) ||
	    !EVP_DecryptUpdate(ctx, out, &ret, out, inlen) ||
	    !EVP_DecryptFinal_ex(ctx, out, &ret))
		return 0;

	return 1;
}

/* Initialize the cipher context for TX part of <tls_ctx> QUIC TLS context.
 * Return 1 if succeeded, 0 if not.
 */
int quic_tls_tx_ctx_init(EVP_CIPHER_CTX **tx_ctx,
                         const EVP_CIPHER *aead, unsigned char *key)
{
	EVP_CIPHER_CTX *ctx;
	int aead_nid = EVP_CIPHER_nid(aead);

	ctx = EVP_CIPHER_CTX_new();
	if (!ctx)
		return 0;

	if (!EVP_EncryptInit_ex(ctx, aead, NULL, NULL, NULL) ||
	    !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, QUIC_TLS_IV_LEN, NULL) ||
	    (aead_nid == NID_aes_128_ccm &&
	     !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, QUIC_TLS_TAG_LEN, NULL)) ||
	    !EVP_EncryptInit_ex(ctx, NULL, NULL, key, NULL))
		goto err;

	*tx_ctx = ctx;

	return 1;

 err:
	EVP_CIPHER_CTX_free(ctx);
	return 0;
}

/*
 * https://quicwg.org/base-drafts/draft-ietf-quic-tls.html#aead
 *
 * 5.3. AEAD Usage
 *
 * Packets are protected prior to applying header protection (Section 5.4).
 * The unprotected packet header is part of the associated data (A). When removing
 * packet protection, an endpoint first removes the header protection.
 * (...)
 * These ciphersuites have a 16-byte authentication tag and produce an output 16
 * bytes larger than their input.
 * The key and IV for the packet are computed as described in Section 5.1. The nonce,
 * N, is formed by combining the packet protection IV with the packet number. The 62
 * bits of the reconstructed QUIC packet number in network byte order are left-padded
 * with zeros to the size of the IV. The exclusive OR of the padded packet number and
 * the IV forms the AEAD nonce.
 *
 * The associated data, A, for the AEAD is the contents of the QUIC header, starting
 * from the flags byte in either the short or long header, up to and including the
 * unprotected packet number.
 *
 * The input plaintext, P, for the AEAD is the payload of the QUIC packet, as described
 * in [QUIC-TRANSPORT].
 *
 * The output ciphertext, C, of the AEAD is transmitted in place of P.
 *
 * Some AEAD functions have limits for how many packets can be encrypted under the same
 * key and IV (see for example [AEBounds]). This might be lower than the packet number limit.
 * An endpoint MUST initiate a key update (Section 6) prior to exceeding any limit set for
 * the AEAD that is in use.
 */

/* Encrypt in place <buf> plaintext with <len> as length with QUIC_TLS_TAG_LEN
 * included tailing bytes for the tag.
 * Note that for CCM mode, we must set the the ciphertext length if AAD data
 * are provided from <aad> buffer with <aad_len> as length. This is always the
 * case here. So the caller of this function must provide <aad>.
 *
 * https://wiki.openssl.org/index.php/EVP_Authenticated_Encryption_and_Decryption
 */
int quic_tls_encrypt(unsigned char *buf, size_t len,
                     const unsigned char *aad, size_t aad_len,
                     EVP_CIPHER_CTX *ctx, const EVP_CIPHER *aead,
                     const unsigned char *key, const unsigned char *iv)
{
	int outlen;
	int aead_nid = EVP_CIPHER_nid(aead);

	if (!EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) ||
	    (aead_nid == NID_aes_128_ccm &&
	     !EVP_EncryptUpdate(ctx, NULL, &outlen, NULL, len)) ||
		!EVP_EncryptUpdate(ctx, NULL, &outlen, aad, aad_len) ||
		!EVP_EncryptUpdate(ctx, buf, &outlen, buf, len) ||
		!EVP_EncryptFinal_ex(ctx, buf + outlen, &outlen) ||
		!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, QUIC_TLS_TAG_LEN, buf + len))
		return 0;

	return 1;
}

/* Decrypt in place <buf> ciphertext with <len> as length with QUIC_TLS_TAG_LEN
 * included tailing bytes for the tag.
 * Note that for CCM mode, we must set the the ciphertext length if AAD data
 * are provided from <aad> buffer with <aad_len> as length. This is always the
 * case here. So the caller of this function must provide <aad>. Also not the
 * there is no need to call EVP_DecryptFinal_ex for CCM mode.
 *
 * https://wiki.openssl.org/index.php/EVP_Authenticated_Encryption_and_Decryption
 */
int quic_tls_decrypt(unsigned char *buf, size_t len,
                     unsigned char *aad, size_t aad_len,
                     EVP_CIPHER_CTX *ctx, const EVP_CIPHER *aead,
                     const unsigned char *key, const unsigned char *iv)
{
	int outlen;
	int aead_nid = EVP_CIPHER_nid(aead);

	if (!EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) ||
	    !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, QUIC_TLS_TAG_LEN,
	                         buf + len - QUIC_TLS_TAG_LEN) ||
	    (aead_nid == NID_aes_128_ccm &&
	     !EVP_DecryptUpdate(ctx, NULL, &outlen, NULL, len - QUIC_TLS_TAG_LEN)) ||
		!EVP_DecryptUpdate(ctx, NULL, &outlen, aad, aad_len) ||
		!EVP_DecryptUpdate(ctx, buf, &outlen, buf, len - QUIC_TLS_TAG_LEN) ||
		(aead_nid != NID_aes_128_ccm &&
		 !EVP_DecryptFinal_ex(ctx, buf + outlen, &outlen)))
		return 0;

	return 1;
}

/* Similar to quic_tls_decrypt(), except that this function does not decrypt
 * in place its ciphertest if <out> output buffer ciphertest with <len> as length
 * is different from <in> input buffer. This is the responbality of the caller
 * to check that the output buffer has at least the same size as the input buffer.
 * Note that for CCM mode, we must set the the ciphertext length if AAD data
 * are provided from <aad> buffer with <aad_len> as length. This is always the
 * case here. So the caller of this function must provide <aad>. Also note that
 * there is no need to call EVP_DecryptFinal_ex for CCM mode.
 *
 * https://wiki.openssl.org/index.php/EVP_Authenticated_Encryption_and_Decryption
 *
 * Return 1 if succeeded, 0 if not.
 */
int quic_tls_decrypt2(unsigned char *out,
                      unsigned char *in, size_t len,
                      unsigned char *aad, size_t aad_len,
                      EVP_CIPHER_CTX *ctx, const EVP_CIPHER *aead,
                      const unsigned char *key, const unsigned char *iv)
{
	int outlen;
	int aead_nid = EVP_CIPHER_nid(aead);

	len -= QUIC_TLS_TAG_LEN;
	if (!EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) ||
	    !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, QUIC_TLS_TAG_LEN, in + len) ||
	    (aead_nid == NID_aes_128_ccm &&
	     !EVP_DecryptUpdate(ctx, NULL, &outlen, NULL, len)) ||
	    !EVP_DecryptUpdate(ctx, NULL, &outlen, aad, aad_len) ||
	    !EVP_DecryptUpdate(ctx, out, &outlen, in, len) ||
	    (aead_nid != NID_aes_128_ccm &&
	     !EVP_DecryptFinal_ex(ctx, out + outlen, &outlen)))
		return 0;

	return 1;
}

/* Derive <key> and <iv> key and IV to be used to encrypt a retry token
 * with <secret> which is not pseudo-random.
 * Return 1 if succeeded, 0 if not.
 */
int quic_tls_derive_retry_token_secret(const EVP_MD *md,
                                       unsigned char *key, size_t keylen,
                                       unsigned char *iv, size_t ivlen,
                                       const unsigned char *salt, size_t saltlen,
                                       const unsigned char *secret, size_t secretlen)
{
	unsigned char tmpkey[QUIC_TLS_KEY_LEN];
	const unsigned char tmpkey_label[] = "retry token";
	const unsigned char key_label[] = "retry token key";
	const unsigned char iv_label[] = "retry token iv";

	if (!quic_hkdf_extract_and_expand(md, tmpkey, sizeof tmpkey,
	                                  secret, secretlen, salt, saltlen,
	                                  tmpkey_label, sizeof tmpkey_label - 1) ||
	    !quic_hkdf_expand(md, key, keylen, tmpkey, sizeof tmpkey,
	                      key_label, sizeof key_label - 1) ||
	    !quic_hkdf_expand(md, iv, ivlen, secret, secretlen,
	                      iv_label, sizeof iv_label - 1))
		return 0;

	return 1;
}

/* Generate the AEAD tag for the Retry packet <pkt> of <pkt_len> bytes and
 * write it to <tag>. The tag is written just after the <pkt> area. It should
 * be at least 16 bytes longs. <odcid> is the CID of the Initial packet
 * received which triggers the Retry.
 *
 * Returns non-zero on success else zero.
 */
int quic_tls_generate_retry_integrity_tag(unsigned char *odcid, unsigned char odcid_len,
                                          unsigned char *pkt, size_t pkt_len,
                                          const struct quic_version *qv)
{
	const EVP_CIPHER *evp = EVP_aes_128_gcm();
	EVP_CIPHER_CTX *ctx;

	/* encryption buffer - not used as only AEAD tag generation is proceed */
	unsigned char *out = NULL;
	/* address to store the AEAD tag */
	unsigned char *tag = pkt + pkt_len;
	int outlen, ret = 0;

	ctx = EVP_CIPHER_CTX_new();
	if (!ctx)
		return 0;

	/* rfc9001 5.8. Retry Packet Integrity
	 *
	 * AEAD is proceed over a pseudo-Retry packet used as AAD. It contains
	 * the ODCID len + data and the Retry packet itself.
	 */
	if (!EVP_EncryptInit_ex(ctx, evp, NULL, qv->retry_tag_key, qv->retry_tag_nonce) ||
	    /* specify pseudo-Retry as AAD */
	    !EVP_EncryptUpdate(ctx, NULL, &outlen, &odcid_len, sizeof(odcid_len)) ||
	    !EVP_EncryptUpdate(ctx, NULL, &outlen, odcid, odcid_len) ||
	    !EVP_EncryptUpdate(ctx, NULL, &outlen, pkt, pkt_len) ||
	    /* finalize */
	    !EVP_EncryptFinal_ex(ctx, out, &outlen) ||
	    /* store the tag */
	    !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, QUIC_TLS_TAG_LEN, tag)) {
		goto out;
	}
	ret = 1;

 out:
	EVP_CIPHER_CTX_free(ctx);
	return ret;
}