/* * iplink_can.c CAN device support * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Authors: Wolfgang Grandegger */ #include #include #include #include #include "rt_names.h" #include "utils.h" #include "ip_common.h" static void print_usage(FILE *f) { fprintf(f, "Usage: ip link set DEVICE type can\n" "\t[ bitrate BITRATE [ sample-point SAMPLE-POINT] ] |\n" "\t[ tq TQ prop-seg PROP_SEG phase-seg1 PHASE-SEG1\n \t phase-seg2 PHASE-SEG2 [ sjw SJW ] ]\n" "\n" "\t[ dbitrate BITRATE [ dsample-point SAMPLE-POINT] ] |\n" "\t[ dtq TQ dprop-seg PROP_SEG dphase-seg1 PHASE-SEG1\n \t dphase-seg2 PHASE-SEG2 [ dsjw SJW ] ]\n" "\t[ tdcv TDCV tdco TDCO tdcf TDCF ]\n" "\n" "\t[ loopback { on | off } ]\n" "\t[ listen-only { on | off } ]\n" "\t[ triple-sampling { on | off } ]\n" "\t[ one-shot { on | off } ]\n" "\t[ berr-reporting { on | off } ]\n" "\t[ fd { on | off } ]\n" "\t[ fd-non-iso { on | off } ]\n" "\t[ presume-ack { on | off } ]\n" "\t[ cc-len8-dlc { on | off } ]\n" "\t[ tdc-mode { auto | manual | off } ]\n" "\n" "\t[ restart-ms TIME-MS ]\n" "\t[ restart ]\n" "\n" "\t[ termination { 0..65535 } ]\n" "\n" "\tWhere: BITRATE := { NUMBER in bps }\n" "\t SAMPLE-POINT := { 0.000..0.999 }\n" "\t TQ := { NUMBER in ns }\n" "\t PROP-SEG := { NUMBER in tq }\n" "\t PHASE-SEG1 := { NUMBER in tq }\n" "\t PHASE-SEG2 := { NUMBER in tq }\n" "\t SJW := { NUMBER in tq }\n" "\t TDCV := { NUMBER in tc }\n" "\t TDCO := { NUMBER in tc }\n" "\t TDCF := { NUMBER in tc }\n" "\t RESTART-MS := { 0 | NUMBER in ms }\n" ); } static void usage(void) { print_usage(stderr); } static int get_float(float *val, const char *arg) { float res; char *ptr; if (!arg || !*arg) return -1; res = strtof(arg, &ptr); if (!ptr || ptr == arg || *ptr) return -1; *val = res; return 0; } static void set_ctrlmode(char *name, char *arg, struct can_ctrlmode *cm, __u32 flags) { if (strcmp(arg, "on") == 0) { cm->flags |= flags; } else if (strcmp(arg, "off") != 0) { fprintf(stderr, "Error: argument of \"%s\" must be \"on\" or \"off\", not \"%s\"\n", name, arg); exit(-1); } cm->mask |= flags; } static void print_flag(enum output_type t, __u32 *flags, __u32 flag, const char* name) { if (*flags & flag) { *flags &= ~flag; print_string(t, NULL, *flags ? "%s," : "%s", name); } } static void print_ctrlmode(enum output_type t, __u32 flags, const char* key) { if (!flags) return; open_json_array(t, is_json_context() ? key : "<"); print_flag(t, &flags, CAN_CTRLMODE_LOOPBACK, "LOOPBACK"); print_flag(t, &flags, CAN_CTRLMODE_LISTENONLY, "LISTEN-ONLY"); print_flag(t, &flags, CAN_CTRLMODE_3_SAMPLES, "TRIPLE-SAMPLING"); print_flag(t, &flags, CAN_CTRLMODE_ONE_SHOT, "ONE-SHOT"); print_flag(t, &flags, CAN_CTRLMODE_BERR_REPORTING, "BERR-REPORTING"); print_flag(t, &flags, CAN_CTRLMODE_FD, "FD"); print_flag(t, &flags, CAN_CTRLMODE_FD_NON_ISO, "FD-NON-ISO"); print_flag(t, &flags, CAN_CTRLMODE_PRESUME_ACK, "PRESUME-ACK"); print_flag(t, &flags, CAN_CTRLMODE_CC_LEN8_DLC, "CC-LEN8-DLC"); print_flag(t, &flags, CAN_CTRLMODE_TDC_AUTO, "TDC-AUTO"); print_flag(t, &flags, CAN_CTRLMODE_TDC_MANUAL, "TDC-MANUAL"); if (flags) print_hex(t, NULL, "%x", flags); close_json_array(t, "> "); } static int can_parse_opt(struct link_util *lu, int argc, char **argv, struct nlmsghdr *n) { struct can_bittiming bt = {}, dbt = {}; struct can_ctrlmode cm = { 0 }; struct rtattr *tdc; __u32 tdcv = -1, tdco = -1, tdcf = -1; while (argc > 0) { if (matches(*argv, "bitrate") == 0) { NEXT_ARG(); if (get_u32(&bt.bitrate, *argv, 0)) invarg("invalid \"bitrate\" value\n", *argv); } else if (matches(*argv, "sample-point") == 0) { float sp; NEXT_ARG(); if (get_float(&sp, *argv)) invarg("invalid \"sample-point\" value\n", *argv); bt.sample_point = (__u32)(sp * 1000); } else if (matches(*argv, "tq") == 0) { NEXT_ARG(); if (get_u32(&bt.tq, *argv, 0)) invarg("invalid \"tq\" value\n", *argv); } else if (matches(*argv, "prop-seg") == 0) { NEXT_ARG(); if (get_u32(&bt.prop_seg, *argv, 0)) invarg("invalid \"prop-seg\" value\n", *argv); } else if (matches(*argv, "phase-seg1") == 0) { NEXT_ARG(); if (get_u32(&bt.phase_seg1, *argv, 0)) invarg("invalid \"phase-seg1\" value\n", *argv); } else if (matches(*argv, "phase-seg2") == 0) { NEXT_ARG(); if (get_u32(&bt.phase_seg2, *argv, 0)) invarg("invalid \"phase-seg2\" value\n", *argv); } else if (matches(*argv, "sjw") == 0) { NEXT_ARG(); if (get_u32(&bt.sjw, *argv, 0)) invarg("invalid \"sjw\" value\n", *argv); } else if (matches(*argv, "dbitrate") == 0) { NEXT_ARG(); if (get_u32(&dbt.bitrate, *argv, 0)) invarg("invalid \"dbitrate\" value\n", *argv); } else if (matches(*argv, "dsample-point") == 0) { float sp; NEXT_ARG(); if (get_float(&sp, *argv)) invarg("invalid \"dsample-point\" value\n", *argv); dbt.sample_point = (__u32)(sp * 1000); } else if (matches(*argv, "dtq") == 0) { NEXT_ARG(); if (get_u32(&dbt.tq, *argv, 0)) invarg("invalid \"dtq\" value\n", *argv); } else if (matches(*argv, "dprop-seg") == 0) { NEXT_ARG(); if (get_u32(&dbt.prop_seg, *argv, 0)) invarg("invalid \"dprop-seg\" value\n", *argv); } else if (matches(*argv, "dphase-seg1") == 0) { NEXT_ARG(); if (get_u32(&dbt.phase_seg1, *argv, 0)) invarg("invalid \"dphase-seg1\" value\n", *argv); } else if (matches(*argv, "dphase-seg2") == 0) { NEXT_ARG(); if (get_u32(&dbt.phase_seg2, *argv, 0)) invarg("invalid \"dphase-seg2\" value\n", *argv); } else if (matches(*argv, "dsjw") == 0) { NEXT_ARG(); if (get_u32(&dbt.sjw, *argv, 0)) invarg("invalid \"dsjw\" value\n", *argv); } else if (matches(*argv, "tdcv") == 0) { NEXT_ARG(); if (get_u32(&tdcv, *argv, 0)) invarg("invalid \"tdcv\" value\n", *argv); } else if (matches(*argv, "tdco") == 0) { NEXT_ARG(); if (get_u32(&tdco, *argv, 0)) invarg("invalid \"tdco\" value\n", *argv); } else if (matches(*argv, "tdcf") == 0) { NEXT_ARG(); if (get_u32(&tdcf, *argv, 0)) invarg("invalid \"tdcf\" value\n", *argv); } else if (matches(*argv, "loopback") == 0) { NEXT_ARG(); set_ctrlmode("loopback", *argv, &cm, CAN_CTRLMODE_LOOPBACK); } else if (matches(*argv, "listen-only") == 0) { NEXT_ARG(); set_ctrlmode("listen-only", *argv, &cm, CAN_CTRLMODE_LISTENONLY); } else if (matches(*argv, "triple-sampling") == 0) { NEXT_ARG(); set_ctrlmode("triple-sampling", *argv, &cm, CAN_CTRLMODE_3_SAMPLES); } else if (matches(*argv, "one-shot") == 0) { NEXT_ARG(); set_ctrlmode("one-shot", *argv, &cm, CAN_CTRLMODE_ONE_SHOT); } else if (matches(*argv, "berr-reporting") == 0) { NEXT_ARG(); set_ctrlmode("berr-reporting", *argv, &cm, CAN_CTRLMODE_BERR_REPORTING); } else if (matches(*argv, "fd") == 0) { NEXT_ARG(); set_ctrlmode("fd", *argv, &cm, CAN_CTRLMODE_FD); } else if (matches(*argv, "fd-non-iso") == 0) { NEXT_ARG(); set_ctrlmode("fd-non-iso", *argv, &cm, CAN_CTRLMODE_FD_NON_ISO); } else if (matches(*argv, "presume-ack") == 0) { NEXT_ARG(); set_ctrlmode("presume-ack", *argv, &cm, CAN_CTRLMODE_PRESUME_ACK); } else if (matches(*argv, "cc-len8-dlc") == 0) { NEXT_ARG(); set_ctrlmode("cc-len8-dlc", *argv, &cm, CAN_CTRLMODE_CC_LEN8_DLC); } else if (matches(*argv, "tdc-mode") == 0) { NEXT_ARG(); if (strcmp(*argv, "auto") == 0) { cm.flags |= CAN_CTRLMODE_TDC_AUTO; cm.mask |= CAN_CTRLMODE_TDC_AUTO; } else if (strcmp(*argv, "manual") == 0) { cm.flags |= CAN_CTRLMODE_TDC_MANUAL; cm.mask |= CAN_CTRLMODE_TDC_MANUAL; } else if (strcmp(*argv, "off") == 0) { cm.mask |= CAN_CTRLMODE_TDC_AUTO | CAN_CTRLMODE_TDC_MANUAL; } else { fprintf(stderr, "Error: argument of \"tdc-mode\" must be \"auto\", \"manual\" or \"off\", not \"%s\"\n", *argv); exit (-1); } } else if (matches(*argv, "restart") == 0) { __u32 val = 1; addattr32(n, 1024, IFLA_CAN_RESTART, val); } else if (matches(*argv, "restart-ms") == 0) { __u32 val; NEXT_ARG(); if (get_u32(&val, *argv, 0)) invarg("invalid \"restart-ms\" value\n", *argv); addattr32(n, 1024, IFLA_CAN_RESTART_MS, val); } else if (matches(*argv, "termination") == 0) { __u16 val; NEXT_ARG(); if (get_u16(&val, *argv, 0)) invarg("invalid \"termination\" value\n", *argv); addattr16(n, 1024, IFLA_CAN_TERMINATION, val); } else if (matches(*argv, "help") == 0) { usage(); return -1; } else { fprintf(stderr, "can: unknown option \"%s\"\n", *argv); usage(); return -1; } argc--, argv++; } if (bt.bitrate || bt.tq) addattr_l(n, 1024, IFLA_CAN_BITTIMING, &bt, sizeof(bt)); if (dbt.bitrate || dbt.tq) addattr_l(n, 1024, IFLA_CAN_DATA_BITTIMING, &dbt, sizeof(dbt)); if (cm.mask) addattr_l(n, 1024, IFLA_CAN_CTRLMODE, &cm, sizeof(cm)); if (tdcv != -1 || tdco != -1 || tdcf != -1) { tdc = addattr_nest(n, 1024, IFLA_CAN_TDC | NLA_F_NESTED); if (tdcv != -1) addattr32(n, 1024, IFLA_CAN_TDC_TDCV, tdcv); if (tdco != -1) addattr32(n, 1024, IFLA_CAN_TDC_TDCO, tdco); if (tdcf != -1) addattr32(n, 1024, IFLA_CAN_TDC_TDCF, tdcf); addattr_nest_end(n, tdc); } return 0; } static const char *can_state_names[CAN_STATE_MAX] = { [CAN_STATE_ERROR_ACTIVE] = "ERROR-ACTIVE", [CAN_STATE_ERROR_WARNING] = "ERROR-WARNING", [CAN_STATE_ERROR_PASSIVE] = "ERROR-PASSIVE", [CAN_STATE_BUS_OFF] = "BUS-OFF", [CAN_STATE_STOPPED] = "STOPPED", [CAN_STATE_SLEEPING] = "SLEEPING" }; static void can_print_nl_indent(void) { print_nl(); print_string(PRINT_FP, NULL, "%s", "\t "); } static void __attribute__((format(printf, 2, 0))) can_print_timing_min_max(const char *json_attr, const char *fp_attr, int min, int max) { print_null(PRINT_FP, NULL, fp_attr, NULL); open_json_object(json_attr); print_uint(PRINT_ANY, "min", " %d", min); print_uint(PRINT_ANY, "max", "..%d", max); close_json_object(); } static void can_print_tdc_opt(FILE *f, struct rtattr *tdc_attr) { struct rtattr *tb[IFLA_CAN_TDC_MAX + 1]; parse_rtattr_nested(tb, IFLA_CAN_TDC_MAX, tdc_attr); if (tb[IFLA_CAN_TDC_TDCV] || tb[IFLA_CAN_TDC_TDCO] || tb[IFLA_CAN_TDC_TDCF]) { open_json_object("tdc"); can_print_nl_indent(); if (tb[IFLA_CAN_TDC_TDCV]) { __u32 *tdcv = RTA_DATA(tb[IFLA_CAN_TDC_TDCV]); print_uint(PRINT_ANY, "tdcv", " tdcv %u", *tdcv); } if (tb[IFLA_CAN_TDC_TDCO]) { __u32 *tdco = RTA_DATA(tb[IFLA_CAN_TDC_TDCO]); print_uint(PRINT_ANY, "tdco", " tdco %u", *tdco); } if (tb[IFLA_CAN_TDC_TDCF]) { __u32 *tdcf = RTA_DATA(tb[IFLA_CAN_TDC_TDCF]); print_uint(PRINT_ANY, "tdcf", " tdcf %u", *tdcf); } close_json_object(); } } static void can_print_tdc_const_opt(FILE *f, struct rtattr *tdc_attr) { struct rtattr *tb[IFLA_CAN_TDC_MAX + 1]; parse_rtattr_nested(tb, IFLA_CAN_TDC_MAX, tdc_attr); open_json_object("tdc"); can_print_nl_indent(); if (tb[IFLA_CAN_TDC_TDCV_MIN] && tb[IFLA_CAN_TDC_TDCV_MAX]) { __u32 *tdcv_min = RTA_DATA(tb[IFLA_CAN_TDC_TDCV_MIN]); __u32 *tdcv_max = RTA_DATA(tb[IFLA_CAN_TDC_TDCV_MAX]); can_print_timing_min_max("tdcv", " tdcv", *tdcv_min, *tdcv_max); } if (tb[IFLA_CAN_TDC_TDCO_MIN] && tb[IFLA_CAN_TDC_TDCO_MAX]) { __u32 *tdco_min = RTA_DATA(tb[IFLA_CAN_TDC_TDCO_MIN]); __u32 *tdco_max = RTA_DATA(tb[IFLA_CAN_TDC_TDCO_MAX]); can_print_timing_min_max("tdco", " tdco", *tdco_min, *tdco_max); } if (tb[IFLA_CAN_TDC_TDCF_MIN] && tb[IFLA_CAN_TDC_TDCF_MAX]) { __u32 *tdcf_min = RTA_DATA(tb[IFLA_CAN_TDC_TDCF_MIN]); __u32 *tdcf_max = RTA_DATA(tb[IFLA_CAN_TDC_TDCF_MAX]); can_print_timing_min_max("tdcf", " tdcf", *tdcf_min, *tdcf_max); } close_json_object(); } static void can_print_ctrlmode_ext(FILE *f, struct rtattr *ctrlmode_ext_attr, __u32 cm_flags) { struct rtattr *tb[IFLA_CAN_CTRLMODE_MAX + 1]; parse_rtattr_nested(tb, IFLA_CAN_CTRLMODE_MAX, ctrlmode_ext_attr); if (tb[IFLA_CAN_CTRLMODE_SUPPORTED]) { __u32 *supported = RTA_DATA(tb[IFLA_CAN_CTRLMODE_SUPPORTED]); print_ctrlmode(PRINT_JSON, *supported, "ctrlmode_supported"); print_ctrlmode(PRINT_JSON, cm_flags & ~*supported, "ctrlmode_static"); } } static void can_print_opt(struct link_util *lu, FILE *f, struct rtattr *tb[]) { if (!tb) return; if (tb[IFLA_CAN_CTRLMODE]) { struct can_ctrlmode *cm = RTA_DATA(tb[IFLA_CAN_CTRLMODE]); print_ctrlmode(PRINT_ANY, cm->flags, "ctrlmode"); if (tb[IFLA_CAN_CTRLMODE_EXT]) can_print_ctrlmode_ext(f, tb[IFLA_CAN_CTRLMODE_EXT], cm->flags); } if (tb[IFLA_CAN_STATE]) { uint32_t state = rta_getattr_u32(tb[IFLA_CAN_STATE]); print_string(PRINT_ANY, "state", "state %s ", state < CAN_STATE_MAX ? can_state_names[state] : "UNKNOWN"); } if (tb[IFLA_CAN_BERR_COUNTER]) { struct can_berr_counter *bc = RTA_DATA(tb[IFLA_CAN_BERR_COUNTER]); open_json_object("berr_counter"); print_uint(PRINT_ANY, "tx", "(berr-counter tx %u", bc->txerr); print_uint(PRINT_ANY, "rx", " rx %u) ", bc->rxerr); close_json_object(); } if (tb[IFLA_CAN_RESTART_MS]) { __u32 *restart_ms = RTA_DATA(tb[IFLA_CAN_RESTART_MS]); print_uint(PRINT_ANY, "restart_ms", "restart-ms %u ", *restart_ms); } /* bittiming is irrelevant if fixed bitrate is defined */ if (tb[IFLA_CAN_BITTIMING] && !tb[IFLA_CAN_BITRATE_CONST]) { struct can_bittiming *bt = RTA_DATA(tb[IFLA_CAN_BITTIMING]); char sp[6]; open_json_object("bittiming"); can_print_nl_indent(); print_uint(PRINT_ANY, "bitrate", " bitrate %u", bt->bitrate); snprintf(sp, sizeof(sp), "%.3f", bt->sample_point / 1000.); print_string(PRINT_ANY, "sample_point", " sample-point %s", sp); can_print_nl_indent(); print_uint(PRINT_ANY, "tq", " tq %u", bt->tq); print_uint(PRINT_ANY, "prop_seg", " prop-seg %u", bt->prop_seg); print_uint(PRINT_ANY, "phase_seg1", " phase-seg1 %u", bt->phase_seg1); print_uint(PRINT_ANY, "phase_seg2", " phase-seg2 %u", bt->phase_seg2); print_uint(PRINT_ANY, "sjw", " sjw %u", bt->sjw); print_uint(PRINT_ANY, "brp", " brp %u", bt->brp); close_json_object(); } /* bittiming const is irrelevant if fixed bitrate is defined */ if (tb[IFLA_CAN_BITTIMING_CONST] && !tb[IFLA_CAN_BITRATE_CONST]) { struct can_bittiming_const *btc = RTA_DATA(tb[IFLA_CAN_BITTIMING_CONST]); open_json_object("bittiming_const"); can_print_nl_indent(); print_string(PRINT_ANY, "name", " %s:", btc->name); can_print_timing_min_max("tseg1", " tseg1", btc->tseg1_min, btc->tseg1_max); can_print_timing_min_max("tseg2", " tseg2", btc->tseg2_min, btc->tseg2_max); can_print_timing_min_max("sjw", " sjw", 1, btc->sjw_max); can_print_timing_min_max("brp", " brp", btc->brp_min, btc->brp_max); print_uint(PRINT_ANY, "brp_inc", " brp_inc %u", btc->brp_inc); close_json_object(); } if (tb[IFLA_CAN_BITRATE_CONST]) { __u32 *bitrate_const = RTA_DATA(tb[IFLA_CAN_BITRATE_CONST]); int bitrate_cnt = RTA_PAYLOAD(tb[IFLA_CAN_BITRATE_CONST]) / sizeof(*bitrate_const); int i; __u32 bitrate = 0; if (tb[IFLA_CAN_BITTIMING]) { struct can_bittiming *bt = RTA_DATA(tb[IFLA_CAN_BITTIMING]); bitrate = bt->bitrate; } can_print_nl_indent(); print_uint(PRINT_ANY, "bittiming_bitrate", " bitrate %u", bitrate); can_print_nl_indent(); open_json_array(PRINT_ANY, is_json_context() ? "bitrate_const" : " ["); for (i = 0; i < bitrate_cnt; ++i) { /* This will keep lines below 80 signs */ if (!(i % 6) && i) { can_print_nl_indent(); print_string(PRINT_FP, NULL, "%s", " "); } print_uint(PRINT_ANY, NULL, i < bitrate_cnt - 1 ? "%8u, " : "%8u", bitrate_const[i]); } close_json_array(PRINT_ANY, " ]"); } /* data bittiming is irrelevant if fixed bitrate is defined */ if (tb[IFLA_CAN_DATA_BITTIMING] && !tb[IFLA_CAN_DATA_BITRATE_CONST]) { struct can_bittiming *dbt = RTA_DATA(tb[IFLA_CAN_DATA_BITTIMING]); char dsp[6]; open_json_object("data_bittiming"); can_print_nl_indent(); print_uint(PRINT_ANY, "bitrate", " dbitrate %u", dbt->bitrate); snprintf(dsp, sizeof(dsp), "%.3f", dbt->sample_point / 1000.); print_string(PRINT_ANY, "sample_point", " dsample-point %s", dsp); can_print_nl_indent(); print_uint(PRINT_ANY, "tq", " dtq %u", dbt->tq); print_uint(PRINT_ANY, "prop_seg", " dprop-seg %u", dbt->prop_seg); print_uint(PRINT_ANY, "phase_seg1", " dphase-seg1 %u", dbt->phase_seg1); print_uint(PRINT_ANY, "phase_seg2", " dphase-seg2 %u", dbt->phase_seg2); print_uint(PRINT_ANY, "sjw", " dsjw %u", dbt->sjw); print_uint(PRINT_ANY, "brp", " dbrp %u", dbt->brp); if (tb[IFLA_CAN_TDC]) can_print_tdc_opt(f, tb[IFLA_CAN_TDC]); close_json_object(); } /* data bittiming const is irrelevant if fixed bitrate is defined */ if (tb[IFLA_CAN_DATA_BITTIMING_CONST] && !tb[IFLA_CAN_DATA_BITRATE_CONST]) { struct can_bittiming_const *dbtc = RTA_DATA(tb[IFLA_CAN_DATA_BITTIMING_CONST]); open_json_object("data_bittiming_const"); can_print_nl_indent(); print_string(PRINT_ANY, "name", " %s:", dbtc->name); can_print_timing_min_max("tseg1", " dtseg1", dbtc->tseg1_min, dbtc->tseg1_max); can_print_timing_min_max("tseg2", " dtseg2", dbtc->tseg2_min, dbtc->tseg2_max); can_print_timing_min_max("sjw", " dsjw", 1, dbtc->sjw_max); can_print_timing_min_max("brp", " dbrp", dbtc->brp_min, dbtc->brp_max); print_uint(PRINT_ANY, "brp_inc", " dbrp_inc %u", dbtc->brp_inc); if (tb[IFLA_CAN_TDC]) can_print_tdc_const_opt(f, tb[IFLA_CAN_TDC]); close_json_object(); } if (tb[IFLA_CAN_DATA_BITRATE_CONST]) { __u32 *dbitrate_const = RTA_DATA(tb[IFLA_CAN_DATA_BITRATE_CONST]); int dbitrate_cnt = RTA_PAYLOAD(tb[IFLA_CAN_DATA_BITRATE_CONST]) / sizeof(*dbitrate_const); int i; __u32 dbitrate = 0; if (tb[IFLA_CAN_DATA_BITTIMING]) { struct can_bittiming *dbt = RTA_DATA(tb[IFLA_CAN_DATA_BITTIMING]); dbitrate = dbt->bitrate; } can_print_nl_indent(); print_uint(PRINT_ANY, "data_bittiming_bitrate", " dbitrate %u", dbitrate); can_print_nl_indent(); open_json_array(PRINT_ANY, is_json_context() ? "data_bitrate_const" : " ["); for (i = 0; i < dbitrate_cnt; ++i) { /* This will keep lines below 80 signs */ if (!(i % 6) && i) { can_print_nl_indent(); print_string(PRINT_FP, NULL, "%s", " "); } print_uint(PRINT_ANY, NULL, i < dbitrate_cnt - 1 ? "%8u, " : "%8u", dbitrate_const[i]); } close_json_array(PRINT_ANY, " ]"); } if (tb[IFLA_CAN_TERMINATION_CONST] && tb[IFLA_CAN_TERMINATION]) { __u16 *trm = RTA_DATA(tb[IFLA_CAN_TERMINATION]); __u16 *trm_const = RTA_DATA(tb[IFLA_CAN_TERMINATION_CONST]); int trm_cnt = RTA_PAYLOAD(tb[IFLA_CAN_TERMINATION_CONST]) / sizeof(*trm_const); int i; can_print_nl_indent(); print_hu(PRINT_ANY, "termination", " termination %hu [ ", *trm); open_json_array(PRINT_JSON, "termination_const"); for (i = 0; i < trm_cnt; ++i) print_hu(PRINT_ANY, NULL, i < trm_cnt - 1 ? "%hu, " : "%hu", trm_const[i]); close_json_array(PRINT_ANY, " ]"); } if (tb[IFLA_CAN_CLOCK]) { struct can_clock *clock = RTA_DATA(tb[IFLA_CAN_CLOCK]); can_print_nl_indent(); print_uint(PRINT_ANY, "clock", " clock %u ", clock->freq); } } static void can_print_xstats(struct link_util *lu, FILE *f, struct rtattr *xstats) { struct can_device_stats *stats; if (xstats && RTA_PAYLOAD(xstats) == sizeof(*stats)) { stats = RTA_DATA(xstats); can_print_nl_indent(); print_string(PRINT_FP, NULL, "%s", " re-started bus-errors arbit-lost error-warn error-pass bus-off"); can_print_nl_indent(); print_uint(PRINT_ANY, "restarts", " %-10u", stats->restarts); print_uint(PRINT_ANY, "bus_error", " %-10u", stats->bus_error); print_uint(PRINT_ANY, "arbitration_lost", " %-10u", stats->arbitration_lost); print_uint(PRINT_ANY, "error_warning", " %-10u", stats->error_warning); print_uint(PRINT_ANY, "error_passive", " %-10u", stats->error_passive); print_uint(PRINT_ANY, "bus_off", " %-10u", stats->bus_off); } } static void can_print_help(struct link_util *lu, int argc, char **argv, FILE *f) { print_usage(f); } struct link_util can_link_util = { .id = "can", .maxattr = IFLA_CAN_MAX, .parse_opt = can_parse_opt, .print_opt = can_print_opt, .print_xstats = can_print_xstats, .print_help = can_print_help, };